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Abstract

Since more than 2000 years, people have been interested in understanding and analyzing the
movements of animals and humans which lead to the development of advanced computer sys-
tems for motion capture. Although marker-based systems for motion analysis are commercially
successful, capturing the performance of a human or an animal from a multi-view video se-
quence without the need for markers is still a challenging task. The most popular methods for
markerless human motion capture are model-based approaches that rely on a surface model of
the human with an underlying skeleton. In this context, markerless motion capture seeks for the
pose, i.e., the position, orientation, and configuration of the human skeleton that is best explained
by the image data. In order to address this problem, we discuss the two questions:

1. What are good cues for human motion capture? Typical cues for motion capture are sil-
houettes, edges, color, motion, and texture. In general, a multi-cue integration is necessary for
tracking complex objects like humans since all these cues come along with inherent drawbacks.
Besides the selection of the cues to be combined, reasonable information fusion is a common
challenge in many computer vision tasks. Ideally, the impact of a cue should be large in situa-
tions when its extraction is reliable, and small, if the information is likely to be erroneous. To
this end, we propose an adaptive weighting scheme that combines complementary cues, namely
silhouettes on one side and optical flow as well as local descriptors on the other side. Whereas
silhouette extraction works best in case of homogeneous objects, optical flow computation and
local descriptors perform better on sufficiently structured objects. Besides image-based cues, we
also propose a statistical prior on anatomical constraints that is independent of motion patterns.
Relying only on image features that are tracked over time does not prevent the accumulation
of small errors which results in a drift away from the target object. The error accumulation
becomes even more problematic in the case of multiple moving objects due to occlusions. To
solve the drift problem for tracking, we propose an analysis-by-synthesis framework that uses
reference images to correct the pose. It comprises an occlusion handling and is successfully
applied to crash test video analysis.

2. Is human motion capture a filtering or an optimization problem? Model-based human mo-
tion capture can be regarded as a filtering or an optimization problem. While local optimization
offers accurate estimates but often looses track due to local optima, particle filtering can recover
from errors at the expense of a poor accuracy due to overestimation of noise. In order to over-
come the drawbacks of local optimization, we introduce a novel global stochastic optimization
approach for markerless human motion capturing that is derived from the mathematical theory
on interacting particle systems. We call the method interacting simulated annealing (ISA) since
it is based on an interacting particle system that converges to the global optimum similar to
simulated annealing. It estimates the human pose without initial information, which is a chal-
lenging optimization problem in a high dimensional space. Furthermore, we propose a tracking
framework that is based on this optimization technique to achieve both the robustness of filtering
strategies and a remarkable accuracy.

In order to benefit from optimization and filtering, we introduce a multi-layer framework that
combines stochastic optimization, filtering, and local optimization. While the first layer relies
on interacting simulated annealing, the second layer refines the estimates by filtering and local
optimization such that the accuracy is increased and ambiguities are resolved over time without
imposing restrictions on the dynamics.



In addition, we propose a system that recovers not only the movement of the skeleton, but also
the possibly non-rigid temporal deformation of the 3D surface. While large scale deformations
or fast movements are captured by the skeleton pose and approximate surface skinning, true
small scale deformations or non-rigid garment motion are captured by fitting the surface to the
silhouette. In order to make automatic processing of large data sets feasible, the skeleton-based
pose estimation is split into a local one and a lower dimensional global one by exploiting the
tree structure of the skeleton.

Our experiments comprise a large variety of sequences for qualitative and quantitative evalu-
ation of the proposed methods, including a comparison of global stochastic optimization with
several other optimization and particle filtering approaches.



Zusammenfassung

Seit mehr als 2000 Jahren interessieren sich Menschen fiir den Ursprung und die Analyse men-
schlicher und tierischer Bewegungsabldiufe was letztendlich zur Entwicklung modernster Com-
putersysteme zur Bewegungserfassung fiihrte. Obwohl sich Systeme mit aktiven oder passiven
Markern am Markt erfolgreich durchgesetzt haben, ist die rein bildbasierte Bewegungserfassung
von Menschen und Tieren mittels mehrerer Kameras immer noch eine grofie Herausforderung.
Unter den markerlosen Verfahren sind modellbasierte Anscdtze am weitesten verbreitet. Diese
beruhen auf ein Oberflichenmodell des menschlichen Korpers dessen Verformungen iiber ein
Skelett gesteuert werden. In diesem Zusammenhang reduziert sich die markerlose Bewegungser-
fassung auf das Finden der menschlichen Pose, die am besten mit den Bilddaten iibereinstimmt,
wobei die Pose durch die Position, Orientierung und Konfiguration des menschlichen Skelettes
definiert ist. Wir widmen uns diesem Problem, indem wir die folgenden zwei Fragestellungen
angehen:

1. Was sind geeignete Hinweisreize zur menschlichen Bewegungserfassung?  Typis-
che Hinweisreize zur Bewegungserfassung sind Silhouetten, Kanten, Farbe, Bewegung und
Oberflichenstruktur. Zur Erfassung komplexer Objekte wie Menschen ist im Allgemeinen eine
Kombination von mehreren Hinweisreizen notwendig, da jeder einzelne Hinweisreiz einen spez-
ifischen Nachteil aufweist. Neben der Auswahl geeigneter Hinweisreize ist die Informationsfu-
sion eine generelle Herausforderung fiir viele Anwendungen des maschinellen Sehens. Idealer-
weise sollte der Einfluss eines einzelnen Reizes grofs sein, wenn er zuverldssig extrahiert werden
kann, und klein, wenn die gewonnene Information voraussichtlich fehlerhaft ist. Aus diesem
Grund schlagen wir ein adaptives Gewichtungsschema vor, das komplementdiire Hinweisreize
vereint. Dies sind zum einen Silhouetten und zum anderen optischer Fluss sowie lokale Deskrip-
toren. Wihrend die Silhouettenextraktion am besten fiir homogene Objekte funktioniert, eignen
sich optischer Fluss und lokale Deskriptoren besser fiir ausreichend strukturierte Oberflichen.
Neben visuellen Hinweisreizen schlagen wir die statistische Modellierung anatomischer Ein-
schrankungen des Skelettes vor, und zwar unabhdngig von etwaigen Bewegungsmustern.

Wenn nur Bildmerkmale verwendet werden, die iiber die Zeit verfolgt werden, besteht die Gefahr,
dass sich kleine Schdtzfehler zu einem unkorrigierbaren Fehler aufsummieren. Dies fiihrt zu
einer Drift weg vom eigentlichen Ziel. Die Fehlerakkumulation tritt verstdrkt bei Verdeckungen
auf, wie sie bei mehreren Objekten hdiufig vorkommen. Um dieses Driftproblem zu losen, schla-
gen wir ein Analyse-durch-Synthese-Verfahren vor, das synthetische Referenzbilder verwendet
um Schdtzfehler zu korrigieren. Dariiberhinaus beinhaltet es ein aktives System zu Erkennung
und Handhabung von Verdeckungen. Das Verfahren wurde bereits erfolgreich zur Crashtest-
analyse eingesetzt.

2. Ist die menschliche Bewegungserfassung ein Filter- oder Optimierungsproblem? Mod-
ellbasierte Bewegungserfassung kann als Filter- oder Optimierungsproblem betrachtet wer-
den. Wihrend lokale Optimierungsverfahren die menschliche Pose genau schdtzen, aber hdufig
das Objekt auf Grund von lokalen Optima verlieren, sind Partikelfilteransditze fihig sich von
Schdatzfehlern zu erholen. Allerdings ist die Genauigkeit von Filteransdtzen hdufig ungeniigend,
da eine ungenaue Problemmodellierung meist mit einer Uberschiitzung des Signalrauschens
kompensiert wird. Um die Nachteile der lokalen Optimierung zu tiberwinden, priisentieren
wir ein stochastisches Verfahren zur globalen Optimierung. Das Verfahren ist fiir die mark-
erlose Bewegungserfassung geeignet und leitet sich von der mathematischen Theorie iiber in-



teragierende Partikelsysteme ab. Wir bezeichnen das Verfahren mit Interacting Simulated An-
nealing (ISA), da es auf einem interagierenden Partikelsystem basiert, das dhnlich wie Sim-
ulated Annealing zum globalen Optimum konvergiert. Es schdtzt die menschliche Pose ohne
zusdtzliches Vorwissen, was ein schwieriges Optimierungsproblem in einem hochdimension-
alen Suchraum ist. Dariiberhinaus fiihren wir ein Bewegungserfassungssystem ein, das auf
diesem Optimierungsverfahren basiert und die Zuverlissigkeit von Filteransdtzen mit einer be-
merkenswerten Genauigkeit vereint.

Um von den positiven Eigenschaften von Filter- und Optimierungsansdtzen gleichzeitig zu prof-
itieren, stellen wir ein mehrstufiges System vor, das stochastische Optimierung, Filterung und
lokale Optimierung kombiniert. Wihrend die erste Stufe auf Interacting Simulated Annealing
beruht, verfeinert die zweite Stufe die geschditzte Pose mittels Filterung und lokaler Optimierung,
so dass die Genauigkeit verbessert wird und Ambiguitdten iiber die Zeit aufgelost werden. Hier-
bei werden jedoch keine Restriktionen beziiglich der Bewegungsdynamik auferlegt.

Des Weiteren schlagen wir ein System vor, das nicht nur die Bewegungen des menschlichen
Skelettes erfasst sondern auch mogliche unstarre Deformationen der Oberfliche. Wiihrend
grobe Deformationen oder schnelle Bewegungen von der Skelettpose und der damit verbunde-
nen Oberflichendeformation eingefangen werden, werden feine Deformationen und die unstarre
Bewegung von Kleidungsstiicken durch das Anpassen der Oberfliiche an die Bildsilhouette er-
fasst. Um auch grofie Datenmengen automatisch verarbeiten zu konnen, wird die Schéitzung der
Skelettpose in ein lokales und ein globales Optimierungsproblem mit einem kleineren Suchraum
aufgeteilt, wobei die Baumstruktur des menschlichen Skelettes ausgeniitzt wird.

Unsere Experimente beinhalten eine grofie Bandbreite an Bildsequenzen zur qualitativen und
quantitativen Evaluierung der vorgestellten Verfahren einschliefflich eines Vergleiches unseres
globalen stochastischen Optimierungsverfahrens mit mehreren anderen Partikelfilter- und Opti-
mierungsansdtzen.
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Introduction

For if one of the parts of an animal be
moved, another must be at rest, and this is
the purpose of their joints; animals use joints
like a centre, and the whole member, in which
the joint is, becomes both one and two, both
straight and bent, changing potentially and
actually by reason of the joint.

— Aristotle

The interest in understanding the movements of animals and humans goes back to the Greek
philosopher Aristotle (384-322 B.C.E.) who studied the gait of animals [Ari07]] and regarded
the bodies as mechanical systems consisting of limbs and joints. Kinematic trees, nowadays
called kinematic chains, for modeling human motion can also be found in the sketchbooks of
Leonardo da Vinci (1452-1519), see [RKMO8, Chapter 1]. The first detailed study on human
motion, which contained also quantitative measurements, was performed by Alfonso Borelli
(1608-1679) [Bor89]]. He discovered that the human movement follows mechanical principles.
While Borelli analyzed the movements still by eye, Wilhlem Weber (1804-1891) and Eduard We-
ber (1806-1871) established a theory of locomotion by analyzing the human gait with accurate
chronometers and telescopes [WWO92]. At the end of the 19th century, the technological progress
revolutionized the field of motion analysis. The French astronomer Pierre-Jules-César Janssen
(1824-1907) invented a multi-exposure camera that took forty-eight exposures in seventy-two
seconds on a daguerreotype disc [HM96]. The technique called geometric chronophotogra-
phy was used by Etienne-Jules Marey (1830-1904) to study locomotion of animals and hu-
mans [Mar73| Mar94]]. He also introduced marker-based human motion capture where the sub-
ject wore a black dress with metal buttons and shinning bands to mark limbs, see Figure
Another important representative for chronophotography was Eadweard Muybridge (1830-1904)
whose famous work “Animals in Motion” [Muy57|] contains several movement studies captured
by a series of cameras. The marker-based approach of Marey was further developed by Wilhelm
Braune and Otto Fischer [BE87]]. They attached light rods to the subject’s limbs to study human
motion. This principle is known as moving light displays and was used by psychologist Gun-
nar Johannsson to investigate human motion perception [Joh76]. He discovered that the sparse
spatio-temporal information of the markers is enough for humans to recognize different activi-
ties from a sequence of images showing only the set of light dots. This fundamental observation
laid the foundation of nowadays marker-based human motion capture systems. The step towards
computer-driven motion analysis was taken in the 80s, when Rashid presented a computer system
for tracking and clustering the points of moving light displays [Ras80]. The rapid technological
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Figure 1.1: Marker-based motion capture by Etienne-Jules Marey ( 1830—1904)[}&1) Black suit
with marked limbs. b) Geometric chronophotograph of a running sequence with such a black
suit.

progress of computers and camera systems since then has resulted in commercial marker-based
human motion capture systems, e.g. [Ari08, Mot08l (Qua08l, Sim08|, [VicO8]], that are successfully
applied to various areas like entertainment, movement analysis, and engineering. These systems
still follow the basic principle of Marey, Braune, and Fischer: passive or active markers are
attached to the subject and the subject’s movement is captured by several high-speed cameras.
From the tracked motion of the markers, the motion of the kinematic model is estimated.

1.1  Why human motion capture?

Since more than 2000 years, people have been fascinated by the movements of animals and
humans which lead to the development of advanced computer systems for motion capture. It
is not only the general interest in understanding nature that drives people working in this field,
but it is also the wide range of applications that affect our everyday lives. A variety of appli-
cations can be found in surveys like [Gav99]]. For instance, human motion capture data is used
for character animation in games and movies. Other examples from the field of virtual reality
are avatars, interactive virtual worlds, 3D-TV, and teleconferencing. In the course of the rapid
increase of web-based applications, it is expected that the market for video-based human motion
capture systems will grow further. Alone the company Oxford Metrics Group, which sales the
Vicon systems, reported a turnover of £19.6m for 2007 [OMGO7|]. Even though the film and
game industry are the most popular customers for human motion capture systems, the industrial
applications also include virtual training, robotics, ergonomics, virtual design, and crash anal-
ysis. Other areas are sport science and medical diagnostics where gait analysis, rehabilitation,
sports performance, biomechanical research, and medical robotics are only some examples for
applications. Furthermore, surveillance and model-based video coding are worth mentioning.

! ©Bibliotheque interuniversitaire de médecine (Paris).
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1.2 Why markerless motion capture?

Although marker-based systems for motion analysis are commercially successful, they have sev-
eral drawbacks. The attachment of markers is not only time-consuming and uncomfortable for
the subject to wear it can also significantly change the pattern of locomotion [FWAOQ3l]. In gen-
eral, the requirements on the environment, lighting conditions, and clothing limit their applica-
tion, e.g. for outdoor sequences or natural environments. Furthermore, a manual intervention is
sometimes necessary when tracking or identification of markers fails. Since the skeletal move-
ment is usually estimated from a finite set of markers placed on the skin by assuming rigid
body parts, soft tissue artifacts are introduced and affect the estimation of the movement, see
e.g. [RBNT97] or [RKMOS|, Chapter 15]. This problem becomes more evident when the mark-
ers are placed on clothes that are not tight. Hence, markerless motion capture is a promising
alternative where the motion is estimated directly from the images without attached markers.

In contrast to marker-based systems, markerless human motion capture is still a challenging task.
Although substantial research has been conducted in this field since the 80s [[OB80, MGO1a,
MHKOG6|], there are only few companies like [Org08]] that offer commercial products. The wide
range of applications and the potential benefits of markerless human motion capture make the
development of such a system interesting for researchers and companies where the ultimate goal
is

the design of a markerless tracking system that captures the motion of a hu-
man in an outdoor scene with the accuracy of a commercial marker-based
system in an indoor scene.

This means that the system is expected to be robust enough for outdoor scenes that are more
challenging than a controlled laboratory environment since the background is usually non-static,
the lighting conditions can be difficult, and multiple moving objects and occlusions need to be
handled. Furthermore, its accuracy must also be measurable against marker-based systems.

1.3 Why model-based motion capture?

A prior knowledge that is frequently used in markerless human motion capture are surface mod-
els of humans with underlying skeletons, see Figure [I.2] This is a very natural representation
that is motivated by the anatomy of humans and animals. Admittedly, the human body is very
complex. The skeleton of an adult, for example, consists of 206 distinct bones [Gral8|] and the
estimation of each bone is beyond the realm of possibility for any human motion capture system.
On this account, the models are more or less approximations of humans where the degrees of
freedom (DOF) of the kinematic skeleton are reduced to a manageable size — which is usually
between 25 and 40 DOF. While the shape of the model was approximated with simple cylin-
ders [[Hog83|| at the beginning of the 80s, the substantial progress in computer graphics and 3D
scanning technology allows nowadays more detailed 3D surface models like SCAPE [ASK™03].
Another aspect is the surface deformation according to the movement of the underlying skele-
ton. The simplest methods are rigid transformations, which are used for articulated models, and
skeleton-subspace deformations, but also more realistic deformation schemes have been devel-
oped mainly for character animation in the last years, see e.g. [LCF00].

Model-based approaches are especially suited to markerless motion capture since they provide
an intuitive way to constrain the search space by the degrees of freedom of the skeleton. Further-
more, the advances in the field of computer graphics have made the acquisition, processing, and
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() (@

Figure 1.2: From left to right: a, b) Anatomical illustrations of an elbow joint and muscles of
a leg taken from [Gral8]]. ¢) 3D models of humans taken from [Gav96]. d) Scanned 3D model
with underlying skeleton. The model was rigged by Pinocchio [BPO7]].

deformation of 3D surface models efficient and common practice. Hence, from a model-based
perspective, motion capture seeks for the pose of the human, i.e., the position, orientation, and
deformation of the human skeleton that is best explained by the image data.

1.4 Optimization and Filtering

The essential question for markerless human motion capture that needs to be solved is:

What is the best way to determine the sequence of human poses that fits a
given image sequence best?

The techniques for model-based human motion capture that appeared in the last decade can be
classified into two groups, namely filtering and optimization strategies. The filtering approaches
regard the images as noisy observations of the unknown true state that is the position, rotation,
and joint configuration of the human model in each frame. They assume that the dynamics
of the human can be modeled by a stochastic process, usually a Markov process, and that the
images are generated from the true pose by a stochastic process disturbed by noise. Depending
on the underlying processes, the solutions are based on Kalman filtering [Kal60] or particle
filtering [GSS93]].

The optimization approaches assume the existence of a cost function based on some image fea-
tures such that the true pose is a global optimum of the function. The cost function may depend
on the estimates from previous frames as it occurs from Bayesian modeling where a posterior
distribution for a single frame is optimized. After optimization, however, only the estimate but
not the distribution is taken into account for the next frame — in contrast to filtering where the un-
certainty in the estimate is propagated over time. Since standard global optimization techniques
are very expensive, local optimization algorithms like gradient descent are commonly used. So
far, neither filtering nor optimization performed significantly better than the other, since both
strategies have advantages and disadvantages.

Filtering methods are known to be robust and can recover from errors since they can model
noise and resolve ambiguities over time. Particularly, particle filters are popular due to the
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multimodality of the solution since they approximate a distribution instead of a single value.
Furthermore, they do not require linearity of the involved model like the Kalman filter. However,
the available convergence results assume that the underlying stochastic processes are known —
which in practice is rarely the case. Finding the right models for human motion tracking —
both for the dynamics and for the likelihood — is very difficult and so far unsolved. Instead, the
weakness of the models is often handled by overestimating the noise yielding a poor performance
in high dimensional spaces.

Energy minimization approaches are usually more flexible with regard to the underlying model
and can be solved by local or global optimization. While global optimization is limited by the
time constraints of tracking, local optimization suffers from local optima. This has the effect that
tracking fails in case of fast motion and the methods usually cannot recover from errors.

In summary, the decision for filtering or optimization is not only a trade-off between robustness
and accuracy, but it also affects the perspective on the problem and thus the modeling. A well
approximated likelihood for filtering is usually not an ideal energy function for optimization and
vice versa as illustrated by the synthetic 2D example in Figure [[.3] The cone-shaped energy
function differs from the unique solution for the likelihood, namely the Dirac measure, on the
one hand. On the other hand, an energy function that is constant except at the global minimum
like a Dirac measure is a worst-case scenario for optimization since it can only be solved by
guessing the solution.
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Figure 1.3: Synthetic 2D example with a disc. From left to right: a) The white circle is the
noise-free silhouette of the disk located at the center of the image, namely at (200, 200). The
gray discs indicate samples which were taken from 80 to 320 in x- and y-directions. b) The
energy function can be modeled as cone-shaped function with global minimum at (200, 200).
In this case, the non-overlapping pixels between the white silhouette and the gray samples are
counted. At (200, 200), the gray disc covers completely the white silhouette which yields an
energy of zero. ¢) Since the image is noise-free, we know that the image can only be generated
by a gray disc that completely covers the silhouette. Hence, the exact likelihood is a Dirac-
measure that is 1 at (200,200) and O otherwise. While there exists a unique solution for the
likelihood, namely the Dirac measure, the energy function can be modeled in various ways.

1.5 Contribution

In this work, we address the question “What is the best way to determine the sequence of human
poses that fits a given image sequence best?” from Section [[.4] by discussing the following
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two subquestions in the context of markerless human motion capture with skeleton-based shape
models:

1. What are good cues for human motion capture?

2. Is human motion capture a filtering or an optimization problem?

1.5.1 What are good cues for human motion capture?

Typical cues for motion capture are silhouettes, edges, color, motion, and texture. In general,
a multi-cue integration is necessary for tracking complex objects like humans since all these
cues come along with inherent drawbacks. Besides the selection of the cues to be combined,
reasonable information fusion is a common challenge in many computer vision tasks. Ideally,
the impact of a cue should be large in situations when its extraction is reliable, and small, if
the information is likely to be erroneous. We propose an adaptive weighting scheme that com-
bines complementary cues, namely silhouettes on one side and optical flow as well as local
descriptors on the other side. Whereas silhouette extraction works best in case of homogeneous
objects, optical flow computation and local descriptors perform better on sufficiently structured
objects [BRGCO9].

Relying only on image features that are tracked over time does not prevent the accumulation
of small errors which results in a drift away from the target object. The error accumulation
becomes even more problematic in the case of multiple moving objects due to occlusions. To
solve the drift problem for tracking, we propose an analysis-by-synthesis framework that uses
reference images to correct the pose. It comprises an occlusion handling that discards image
features which are detected to be occluded [[GRS06,IGRS08al|.

The proposed concept can be applied to crash test sequences in order to estimate position and
orientation of a dummy’s head for instance. The analysis of crash test videos is an important
task for the automotive industry in order to improve the passive safety components of cars.
In particular, the motion estimation of crash test dummies helps to improve the protection of
occupants and pedestrians. In contrast to conventional marker-based systems which provide
only sparse 3D measurements, our approach estimates all six degrees of freedom of dummy
body parts like the head. This opens up new opportunities for analyzing pedestrian crashes
where many biomechanical effects are not fully understood [GRGSO08,|GBGOS]].

Besides image-based cues, prior knowledge is another important source of information for mark-
erless human motion capture. The body shape and the kinematic structure of humans are already
exploited by a surface model with an underlying skeleton. It reduces significantly the search
space but it does not take into account physical restrictions on the kinematic model. For in-
stance, anatomical limits of joints like knees and elbows constrain the search space as well as
unrealistic self-intersections. Instead of modeling the physical restrictions as hard constraints,
we allow for the simplification and approximation of the kinematic model by integrating this
prior knowledge as soft constraints [GRBSO06].

1.5.2 Is human motion capture a filtering or an optimization problem?

Markerless human motion capture can be regarded as a filtering or an optimization problem
as discussed in Section While the filtering approaches rely often on particle filters, the
optimization problem is commonly solved by iterative methods like gradient descent. Local op-
timization provides very accurate results given that the state vector is initialized near the global
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optimum. Since it searches only for the locally best solution, it usually cannot recover from er-
rors and requires an initialization. Without additional prior information, the tracking often fails
in case of fast motions and ambiguities. In order to overcome the drawbacks of local optimiza-
tion, global optimization like simulated annealing can be applied for motion capture [CMC™06].
Filtering approaches exploit temporal coherence, handle noise, and are able to recover from
errors, but they are usually too imprecise for motion analysis in high dimensional spaces. For
this reason, a heuristic approach, called annealed particle filter [DBROO], has been proposed
to combine the ideas of particle filtering and simulated annealing for motion capturing. The
annealed particle filter, however, does not perform annealing in the classical sense where the
temperature is monotonically decreased, but relies on the fluctuating survival rate of the particles.
Particle filters belong to the more general class of interacting particle systems. They approximate
a distribution of interest by a finite number of particles where the particles interact between the
iteration steps. In the context of filtering, they are known as particle filters and approximate the
posterior distribution, but there also exist interacting particle systems with annealing properties,
which makes them suitable for optimization.

We introduce a novel global stochastic optimization approach for markerless human motion cap-
turing that is derived from the mathematical theory on interacting particle systems [Mor(04]. We
call the method interacting simulated annealing (ISA) since it is based on an interacting particle
system that converges to the global optimum similar to simulated annealing [GPS™07,[GRS08b].
It estimates the human pose without initial information, which is a challenging optimization
problem in a high dimensional space and is essential for initialization and texture acquisi-
tion [GRSO7]. Furthermore, we propose a tracking framework that is based on this optimiza-
tion technique to achieve both the robustness of filtering strategies and a remarkable accu-
racy [GPST07]. The latter is demonstrated by a quantitative error analysis that includes the
HumanEva-ITI benchmark [SBO6|] and a comparison with several optimization and particle
filtering approaches.

In order to benefit from optimization and filtering, we introduce a multi-layer framework that
combines stochastic optimization, filtering, and local optimization. While the first layer relies
on interacting simulated annealing, the second layer refines the estimates by filtering and local
optimization such that the accuracy is increased and ambiguities are resolved over time without
imposing restrictions on the dynamics [GRBSOS].

In addition, we propose a system that recovers not only the movement of the skeleton, but also
the possibly non-rigid temporal deformation of the 3D surface. While large scale deformations
or fast movements are captured by the skeleton pose and approximate surface skinning, true
small scale deformations or non-rigid garment motion are captured by fitting the surface to the
silhouette. In order to make automatic processing of large data sets feasible, the skeleton-based
pose estimation is split into a local one and a lower dimensional global one by exploiting the tree
structure of the skeleton. We show on various sequences that our approach can capture the 3D
motion of animals and humans accurately even in the case of rapid movements and wide apparel
like skirts [GSAT09].

1.6 Assumptions

Throughout the paper we assume that a skeleton-based shape model as in Figure d) is avail-
able. Hence, we will not cover the acquisition of such models. In general, the 3D surface
models can be acquired by a 3D scanner as shown in Figure[I.4]a) or extracted from silhouettes
or stereo data [KM98, HBG ™00, [PF03, MTHCO3}, [CBKO03]. Other sources are repositories of
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(b)

Figure 1.4: From left to right: a) Human body scanner [Vit0O8]]. b) Mobile multi-camera
capture system with calibration target.

Figure 1.5: Since the cameras are calibrated, any 3D point on the surface mesh can be projected
onto the image plane of each camera. The projection rays for 4 points are indicated by the cyan
lines. According to our assumptions, we seek for the pose of the human, i.e. the position and
orientation in the world coordinate system and the deformation of the human skeleton, such that
the projections onto the image planes are consistent with the image data.
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scanned humans [MCAQ7] or generic models like the SCAPE model [ASK™T05], which needs to
be learned from a set of 3D scans of different people. The skeleton can be inserted manually or
automatically [BPO7].

Furthermore, the image sequences are assumed to be captured by 2-5 cameras that are synchro-
nized and calibrated. For instance, the cameras are connected to a mobile system for hardware
synchronization and image storage that is equipped with a rechargeable battery. For calibration,
Jean-Yves Bouguet’s toolbox [BouO8]] and a 3D calibration rig with known geometry and LEDs
have been used, see Figure[1.4]b). The camera calibration provides a common world coordinate
system for all cameras. Hence, the projection from a 3D point in the world coordinate system to
the 2D image plane of each camera is known as illustrated in Figure[I.5]

These two assumptions are common for model-based human motion capture from multi-view
video sequences. While the surface model can be approximated and acquired by the mentioned
techniques, the calibration of the cameras can be performed with minimal effort before capturing
the sequence. In general, we will not impose strong restrictions neither on the environment nor
on the movements. We do not assume that

e the motion pattern is known a-priori or part of a special subset of motions,
e the camera views are redundant,

e the scene has been captured in a controlled studio environment with static background.

1.7 Overview

The work is structured as follows. While Chapter [2|discusses related work, a brief introduction
to underlying mathematical techniques is given in Chapter [3] Chapter ] mainly discusses the
modeling problem of filtering approaches in the context of model-based human motion capture.
Furthermore, a prior on physical restrictions on the kinematic chain is proposed to constrain the
state space and to improve weak models of the human dynamics within the framework of particle
filters. The question “What are good cues for human motion capture?” is addressed in Chap-
ter [5| where various image cues are discussed using a fixed local optimization scheme. Finally,
an analysis-by-synthesis framework is introduced that combines complementary cues to track a
variety of objects. The potential of the framework is demonstrated on various sequences and on
a challenging real-world problem, namely crash test video analysis. In Chapter[6] a global opti-
mization method is introduced that overcomes the dilemma of local optima and that is suitable
for the optimization problems as they arise in human motion capturing. Besides a discussion of
the asymptotic behavior, an exhaustive parameter evaluation is provided. Furthermore, the op-
timization technique is used to solve the pose initialization and pose tracking problem where a
comparison with several other optimization and particle filtering approaches is given. The chap-
ter concludes by addressing the question “Is human motion capture a filtering or an optimization
problem?”. Chapter[/]focuses on high-performance tracking systems for human motion capture
that combine the techniques from the previous chapters and outperform the current state-of-the-
art. Finally, Chapter [ concludes with an outlook on future research.



2

Related Work

Markerless human motion capture has been studied since more than 25 years and is still a very
active research area in computer vision. The surveys [MGO1al MHKO6] count nearly 500 pub-
lications in this field. In order to provide a structured overview of related work, the chapter
is divided into several sections which are not disjoint. In Section [2.1} various 3D model rep-
resentations for motion capture are briefly discussed. While Section gives an overview of
image-cues that have been proposed in the literature, Section [2.3] divides the approaches into
optimization and filtering strategies. Section covers various learning approaches that take
additional prior knowledge into account.

2.1 Model Representation

One of the first human models for motion estimation has been proposed by O’Rourke and
Badler [OB80]. The model consists of about 600 overlapping spheres and has been used
for synthesizing images and estimating the human pose on the synthesized images. Other
representations for human modeling are cylinders [Hog83|, stick figures [LC85]], polygo-
nal meshes [YKOI], patches [KMI93|], truncated cones [GBUP9S|, superquadrics [GD96],
boxes [MDNO97]], ellipsoids [BM98]], and scaled prismatics [CR99]. A human modeled by su-
perquadrics is shown in Figure ¢). Recently, more realistic models have been proposed like
implicit surfaces based on metaballs [PFO3|]. Other approaches rely on high resolution poly-
gon meshes [CTMSO03) ISHO3, MTHCO3] that are fitted to accurate silhouettes from several
camera views. The availability of 3D scans of humans has resulted in example-based mod-
els [ACP02, ASKT05]] where the model deformations are derived from a finite set of scans.
Such a model has been applied to human motion capture in [BSB™07].

While these approaches assume that the limbs are connected, graphical models or pictorial struc-
tures [FHOO, TFO1,\SBR04] model the limbs as weakly connected rigid body parts by penalizing
large gaps between the limbs. They have been used for bottom-up approaches where possible
positions of body parts are detected independently. The final human pose is then estimated
by assembling the limbs. Even though the bottom-up approaches with graphical models are
particularly useful for initialization, the relaxation of the skeleton constraints allows unrealistic
deformations like a varying length of a limb over time.

2.2 Image-based Cues

Typical cues for motion capture are edges, silhouettes, color, motion, and texture.
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2.2.1 Edges

The classic approach to pose estimation is by means of an edge detector applied to the images.
Given a model of the object surface, its silhouette or edges can be matched to the detected edges,
seeking to maximize the consistency of both [Low87, [Low91),RK94, DDDS03|]. One of the first
approaches in human motion capture, which has been proposed by Hogg [Hog83], relies on edge
information. In order to make the matching feasible, the search space is reduced by a bounding
box that is detected by background subtraction. Gavrila and Davis [GD96] have used chamfer
matching to compare image and model edges. They simplify the task by assuming tight clothes
where the body parts have different colors. Though plausible and fast, the main drawback of
edge-based approaches is the numerous local minima. They are caused by many spurious edges
due to noise, background clutter, or texture on the object itself.

2.2.2 Silhouettes

Region-based approaches that rely on silhouettes follow a similar concept as the edge-based
approaches. Here the overlap error of the projected surface with the object region in the image is
sought to be minimized. In [KMI93], the comparison is performed by an XOR operation. They
assume that the 3D position of the root is given and estimate only the rotations. For matching,
the search space is discretized and an exhaustive search is conducted for each limb one by one.
Kakadiaris and Metaxas [KM96] establish correspondences between the projected contour and
the silhouette contour to track an arm. Other approaches estimate the human pose from the
visual hull or voxel data which is obtained from the silhouettes [CKBHOO, MTHCO1]]. Balan et
al. [BBHSO7]] consider not only silhouettes for human pose estimation, but also cast shadows to
gain some additional information in monocular sequences.

In a controlled environment, the silhouettes can be efficiently extracted by background sub-
traction. More general methods rely on different intensity distributions in the foreground and
background region and take the object model as a shape constraint into account. This leads to a
fusion of pose estimation and silhouette extraction, which is performed by level-set segmenta-
tion [BRWO03, RBS ™06, RBW07|| or graph-cut segmentation [BKT06]|. The computational costs
for these methods are higher than with edge-based approaches. On the other hand segmentation
can better deal with low contrast edges and noise. Although there are usually fewer local optima
than in the edge-based approach, local optima are still a significant problem, as they prohibit
tracking in case of large transformations from frame to frame. Another problem is ambiguous
solutions. For instance, the pose of a sphere cannot be uniquely determined from its silhouette.

2.2.3 Appearance

Instead of taking only the contour or edges into account, the appearance of the surface can be
modeled in a more general manner. To this end, the appearance like color needs to be acquired
either in a pre-processing step or is initialized at the first frame and optionally updated during
tracking. Having an appearance model for the surface, one seeks for the pose such that the
appearance of the surface is consistent with the image data measured at the projected surface.
Wachter and Nagel [WN99|] have extended an edge-based approach with an appearance model
that contains the gray values of some surface points. They assume that the gray values of pro-
jected surface points remain constant in consecutive frames and optimize the pose such that the
gray values measured at the projected surface points resemble their values in the appearance
model. Wren et al. [WADP97] cluster pixels into regions with similar image properties such
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as color and spatial similarity. Particularly in the context of 2D tracking, various appearance
models have been proposed like color histograms [Bir98, [CRMO00], view-based subspace mod-
els of appearance [BJ98., |GB98|], which are learned from training data, or more sophisticated
methods that combine a slowly adapting template, a fast adapting template, and an outlier pro-
cess [JFEMO3]. The latter has also been adapted to human motion capture where the appearance
is modeled by a mixture of Gaussians [BB06].

In contrast to 2D appearance models, texture-based approaches map the texture onto the 3D
surface and synthesize images by projecting the textured model onto the image plane. Li et
al. [LRE93| have proposed such an approach for head tracking. They use optical flow to match
the synthesized image with the original image and iterate the processes of synthesizing and
matching until it converges. Lerasle et al. [LRD99|] have generated a fully textured model of a leg
from several camera views where they assume that the subject wears richly textured tights. For
comparison, the normalized cross-correlation is used. In order to handle illumination differences
between synthesized images and original images, illumination templates have been proposed for
head tracking [CSAOQO]]. Leptit et al. [LPFO4] have formulated 3D tracking of rigid objects as
a detection problem. They store patches of a textured model from different viewpoints in a
preprocessing step and match each frame to one of the key frames. Although there is a real-
time implementation that uses randomized trees [LLFOS], it is not suitable for articulated objects
since the large number of degrees of freedom requires a large number of keyframes.

Color and texture provide more information than geometric features like silhouettes and edges,
but they need to be acquired a priori or online from the video sequence. In addition, the appear-
ance model needs to be updated during tracking in order to deal with changes of the illumination,
for instance. Updating, however, is problematic since it is usually sensitive to pose estimation
errors and occlusions. Another disadvantage of appearance models over silhouettes is the more
complex matching which relies either on homogeneous surfaces using local or global statistics,
like histograms, or structured surfaces using optical flow or patch-based matching. The latter
two matching methods are also commonly used for motion cues.

2.2.4 Motion

Since the movement in the 3D space involves image motion between two consecutive frames,
it is a convenient cue for pose estimation. In general, 2D correspondences between successive
frames are established by flow-based or patch-based techniques. Under the assumption that the
pose in the previous frame is well estimated, the 2D correspondences on the projected surface
indicate the 2D movement of the subject and are used to estimate the pose for the current frame.
Optical flow methods assume brightness constancy between pairs of adjacent frames [HS81,
LKS81]]. The success of these approaches depends considerably on the chosen optical flow
method. Most methods are restricted to small pixel displacements and rely on parametric flow
models that might be too restrictive, for instance, in case of human motion estimation. More-
over, optical flow estimation is usually very sensitive even to small brightness changes. These
problems are better handled by current variational methods like [BBPWO04|], which can be im-
plemented in real-time using a fast multi-grid solver [BWO03). Optical flow has been used for
human motion capture in [PH91,JBY96, BM9S§|.

Patch-based methods locate interest points or regions in the image that are invariant under certain
transformations [MTS™05]. The so-called keypoints are encoded by local descriptors [MSO03],
which are distinctive representations of the keypoints’ neighborhoods. Correspondences be-
tween two images are then established by matching the descriptors of the keypoints. Among
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the most popular patch-based approaches are the KLT tracker [ST94] and a tracker based on the
recently developed SIFT features [Low99, [Low04]. Especially the SIFT tracker can deal with
small frame rates and fast motion, as it is invariant with respect to scaling, image rotation, and
moderate lighting changes. The features, however, might not be well distributed on the object’s
surface such that the pose estimation becomes inaccurate, whereas optical flow provides a dense
field of correspondences.

The main drawbacks of patch-based and flow-based trackers in general are their need for suffi-
ciently textured objects and the accumulation of errors over time, which results in a drift away
from the object. The latter is caused by the assumption of knowing the correct pose in the
previous frame.

2.2.5 Multi-cue

Since all these cues come along with inherent drawbacks, it makes sense to combine comple-
mentary cues. This has been suggested in [DMOO], where optical flow is incorporated as a hard
constraint in an edge-based method to face tracking. In this method, the optical flow dominates
the tracking. In contrast, the work in [MBCMO99]| uses the optical flow in order to predict the
pose parameters in a new frame, which serve as initialization for an edge-based method. The
idea in [MBCM99] is that a multi-resolution optical flow method captures large displacements
of the object and thus helps the edge-based method to hit better local optima. In addition, the
importance of edges can be weighted according to the motion boundaries extracted from the
optical flow [STO3]. Optical flow has also been used for constructing a 3D flow field [TCMS04]
to refine the human pose after estimating the pose from silhouettes. This approach requires ac-
curate silhouettes and a relatively large number of cameras to get a stable 3D flow field. Brox
et al. [BRCS06] improve the shape prior for the segmentation by predicting the pose of a rigid
object from optical flow. The final pose is then estimated iteratively by combining correspon-
dences from region matching and optic flow. Vacchetti et al. [VLLFO4a] propose the combination
of a patch-based tracker and an edge-based method. The latter aims at preventing the accumula-
tion of errors of the patch-based tracker. However, they show that the edge-based method tends
to degrade results, despite the close initialization by patch-based tracking, since there are still
local optima in the vicinity of this initialization. A patch-based tracker for rigid objects has
been combined with an appearance model consisting of keyframes [VLF04b]]. Even though the
keyframes prevent an error accumulation and help the tracker to recover after significant tracking
errors, the keyframe matching is not suitable for articulated objects and objects with homoge-
neous surfaces. Instead of combining several cues manually, Sidenbladh and Black [SB0O3] learn
a multi-cue likelihood for a Bayesian tracking framework from a large set of training data. They
present tracking results for an arm where the learned likelihood combines steered filter responses
corresponding to edges, ridges, and motion-compensated temporal differences. Other combina-
tions, which have been proposed for human motion capture, are silhouettes and edges [DBROO]
or silhouettes and stereo data [PEO3].

2.3 Optimization and Filtering
2.3.1 Optimization

Local optimization has been widely used for 3D human motion capture, e.g. [RK94, [GD96,
KM96, [BM98|, WN99, [DCO1., [CTMS03|, BMP04, [CBKO03, KBG03, RBS ™06, MCA07, BCOS,
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KRHOS|]. While Rehg and Kanade [RK94] model the hand by quaternions and apply a
Levenberg-Marquardt method to the resulting nonlinear least-squares problem, Bregler and
Malik [BM9§]|| represent the kinematic chain by twists and solve the least squares problem
by a Newton-Raphson method. Stochastic meta descent for local optimization has been used
in [KBGOSJ. Gavrila and Davis [GDY6]] propose a search space decomposition where the pose
of each limb is estimated in a hierarchical manner according to the kinematic chain. Starting
with the torso and keeping the parameters of the other limbs fixed, the pose of each limb is es-
timated in a low-dimensional search space one after another. The local search is performed by
discretization of the continuous space around the previous pose. This approach not only limits
the accuracy by the discretization, but also propagates errors through the kinematic chain such
that the extremities suffer from estimation errors of preceding limbs. The latter is addressed
by Drummond and Cipolla [DCO1]. They iteratively propagate the distributions of the motion
parameters for the limbs through the kinematic chain to obtain the maximum a posteriori pose
for the entire chain subject to the articulation constraints.

Local optimization methods provide very accurate results provided that the state vector is ini-
tialized near the global optimum. Since they search only for the locally best solution, they
usually cannot recover from errors and require an initialization. Without additional prior infor-
mation, the tracking often fails in case of fast motions and ambiguities. The optimization for
pose estimation has recently been coupled with level-set segmentation [RBST06] and graph-cut
segmentation [BKTO06| where the estimated pose serves as shape prior for segmentation. Even
though the shape prior yields better segmentation results and can be applied more generally than
background subtraction, it introduces a local term for energy minimization that depends on the
previous estimate. Hence, these approaches are not able to recover from errors since a wrong
estimate results in a wrong shape prior and a wrong segmentation for the next frame.

To overcome the problem of local minima, fast simulated annealing [SH87] has been proposed
for human motion capture [CMCT06]. The time constraints for tracking, however, limit the
number of iterations for each frame such that the global optimization needs to be aborted be-
fore the global optimum is reached. In general, optimization methods cannot handle ambiguities
since they provide only a single value or a single hypothesis for the pose. An estimation error,
e.g. caused by occlusions or noisy image data, results in a poor initialization for the next frame
such that the search for the global optimum becomes very expansive in case of global optimiza-
tion or impossible in case of local optimization. In contrast to optimization methods, filtering
approaches represent the solution by a distribution and take noise and ambiguities into account.

2.3.2 Filtering and Smoothing

Filtering approaches estimate the unknown true state x; from some noisy observations vy,
e.g. images. In general, the estimation is called prediction, filtering, or smoothing if obser-
vations before frame ¢, including ¢, or also after ¢ are taken into account. The filtering problem
is typically solved by Kalman filtering [Kal60]| or particle filtering [GSS93|] where it is assumed
that the underlying stochastic processes

Tip1 = fi(@) + vy, (2.1)
yr = he(m) +wy (2.2)

with noise v; and w; are known. While f; models the transition of the state from time step
t to t 4+ 1, the mapping from the state space to the observation space is given by h;. Isard
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and Blake [IB96] have applied a particle filter to 2D tracking and have extended it to a two-
pass smoothing algorithm [IB98|]. For 3D human motion capture, Sidenbladh et al. [SBFOO]
have combined a particle filter with very strong motion priors to resolve the ambiguities from
monocular sequences. Motion priors have been also proposed for a Rao-Blackwellised par-
ticle filter [XLO7]. In [WRO06] various variants of particle filters like the unscented particle
filter [MDEFWOQO] have been evaluated for human motion capture. The most modifications aim
to improve the distribution of the particles in the high-dimensional space to obtain a better ap-
proximation of the posterior. In [CEO1] hybrid Monte Carlo filtering has been applied where
a Markov chain Monte Carlo technique is used within a particle filter to get better samples
from the posterior. Another approach follows the idea of search space decomposition where the
space is divided into independent low-dimensional subspaces [MI00]. When human models are
represented as graphical models, nonparametric belief propagation [LN06, SBR™04] has been
proposed, which allows inference over arbitrary graphs rather than a simple chain.

Pentland and Horowitza [PH91]] combine a Kalman filter with a finite element method for track-
ing non-rigid and articulated objects. An extended Kalman filter has been applied by Goncalves
et al. [GBUP93| to track a human arm even though the noise wy for the observations is not Gaus-
sian according to their measurements, which are given by comparing the brightness between the
real and the predicted image at several sample points. Rohr [Roh97|] has suggested a Kalman
filter framework for human motion capture where the measurements ¥, are obtained by a local
grid search and a constant velocity is assumed for prediction. The Kalman filter not only pro-
vides a better initialization for the local optimization, but also filters the noisy pose estimates
from the local search. A Kalman filter has been also integrated into a more complex framework
with multiple abstraction levels of the human dynamics [Bre97]. Since a Kalman filter provides
only a single hypothesis, Cham and Rehg combined several Kalman filters to track multiple
hypotheses [CR9Y].

Even though filtering approaches exploit temporal coherence, handle noise and are able to re-
cover from errors, they are usually too imprecise for motion analysis in high dimensional spaces.
Since accurate models for f; and h; are rarely available, the model’s weakness is compensated
by overestimating the noise vectors v; and w; at the expense of poor performance. For this rea-
son, some heuristics based on particle filters have been developed to combine local optimization
with filtering. Sminchisescu and Triggs [STO03] propose covariance scaled sampling to guide
the particles to the local maxima of a posterior distribution. To find the local maxima, the par-
ticles are broadly spread in the search space by inflating the covariance of the dynamic prior
and refined by a local optimization with respect to the likelihood. The posterior is then modeled
by a mixture of Gaussians where the means and covariance matrices are given by the detected
local maxima and their Hessians. Smart particle filtering [BKMGO7|] combines a particle filter
with the stochastic meta descent [Sch99] for local optimization. Since the optimization of the
particles changes the approximated distribution, a correction factor is used to compensate for the
additional set of particles. The factor, however, depends on the unknown posterior distribution.
Hence, a regularization [DFGO1, Chapter 12], which introduces an error, is performed to esti-
mate the continuous posterior distribution from the finite set of particles before the optimization
step. Particularly, the low number of particles makes an accurate estimation of the correction fac-
tor infeasible. Deutscher et al. propose an annealed particle filter [DBROO, [DROS5]| that follows
the idea of annealing to guide the particles to the global maximum of the likelihood. To this end,
the shape of the likelihood is gradually changed and the sampling is repeated. The approach does
not perform annealing in the classical sense where the temperature is monotonically decreased,
but relies on the fluctuating survival rate of the particles. Hence, the annealed particle filter is
not suitable for global optimization and requires an additional technique for initialization like
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the other approaches that combine local optimization with particle filter. Although it has been
shown that these heuristics work well tracking hands or humans, there is no evidence that they
converge to the optimal solution of the filtering problem as stated in Equations and in
contrast to Kalman or particle filtering.

2.4 Prior Knowledge

Besides a known surface model, other prior knowledge has been proposed for human motion
capture like anatomical constraints, motion, and appearance priors. In particular, the use of
prior poses or motion patterns learned from a motion database has become very popular in order
to achieve robust tracking also in difficult and ambiguous scenarios [SBF00, SBS02, [UFO4,
RBSO7]. By learning the mapping between the image space and the pose space, the pose
can be directly recovered from silhouettes and image features [GSDO03| |AT06, [LE07, ISKMO7].
In [TDDSO06] pose estimation is formulated as inference in a conditional random field model
where the observation potential function is learned from a large set of trainings data. Gaus-
sian process dynamical models [MPOQ6, [UFFQ6] have been used for embedding motion in a
low-dimensional latent space. In [LYSTO6] locally linear coordination is proposed for dimen-
sionality reduction. Although these learning strategies allow for tracking even in monocular
video sequences, they impose strong assumptions on the tracked motion. The restriction to a
small subset of human motion patterns limits their application in practice. A prior on anatomical
constraints is independent of the motion and can be learned [BRKCOG6], but the used training
data also introduces some bias. When, for example, the movement of a person with an artificial
hip joint is measured using training data from persons with natural hip joints, the estimates are
likely to be biased towards the movement of a person with natural hip joints, i.e., one eliminates
exactly the information that is important for the medical application.

Tracking-by-detection approaches [SVDO03,[LESC04, MMO06, ARSOS]| rely on a learned template
model and require a large training set. Since the detection is usually limited to canonical poses
like lateral walking, the human poses are only detected on a subset of frames. A second step is
therefore required to interpolate or track between the detected frames. The tracking or refinement
is usually done offline since the detected poses are also used to learn a subject specific appearance
model [FDLFO7, REZ07]. A more detailed description of various learning approaches can be
found in the survey [PopO7].



3

Preliminaries

3.1 Model Representation

There are several ways to represent the pose of an object, e.g., Euler angles, quaternions [Gol80]],
twists [MLS94], or the axis-angle representation. Stochastic approaches like particle filter or ISA
require from the representation that primarily the mean but also the variance can be at least well
approximated. For this purpose, we have chosen the axis-angle representation of the absolute
rigid body motion M given by the 6D vector (fw, t) with

w = (wl,wz,wg), ||w||2 =1 and t= (tl,tQ,tg).

Using the exponential, M is expressed by

0o -
exp (Qw) t wsooe
0 b

M= X o= ws 0 -—w]|. 3.1)

—wy Wi 0

While ¢ is the absolute position in the world coordinate system, the rotation vector fw describes
a rotation by an angle 6 € R about the rotation axis w. The function exp (fw) can be efficiently
computed by the Rodriguez formula [MLS94].

Given a rigid body motion defined by a rotation matrix R € SO(3) and a translation vector
t € R3, the rotation vector is constructed according to [MLS94]| as follows: When R is the
identity matrix, 6 is set to 0. For the other case, 6 and the rotation axis w are given by

T3g — T
_; [trace(R) — 1 1 e

0 = cos — s ) w = m ri3—r7r31 |- (3.2)
r21 — T12

We write log(R) for the inverse mapping of the exponential.

The mean of a set of rotations 7; in the axis-angle representation can be computed by using the
exponential and the logarithm as described in [PA98| [Pen98|]. The idea is to find a geodesic
on the Riemannian manifold determined by the set of 3D rotations. When the geodesic starting
from the mean rotation in the manifold is mapped by the logarithm onto the tangent space at the
mean, it is a straight line starting at the origin. The tangent space is called exponential chart.
Hence, using the notations

ro * 11 = log (exp(ra) - exp(r1)), rl_l = log (exp(rl)T)
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for the rotation vectors 1 and r9, the mean rotation 7 satisfies

> (F ) =0. (3.3)

%

Weighting each rotation with ) |, m; = 1, yields the least squares problem:
1 1 2 .
527@“7" *ri||2 — min. (3.4)
i

The weighted mean can thus be estimated by

.
Pyt =y % (Z" mz(r;,*n)> : (3.5)

The gradient descent method takes about 5 iterations until it converges. The variance and the
normal density on a Riemannian manifold can also be approximated, cf. [Pen06].

The twist representation used in [BM98, BMP04, RBS™06] is quite similar. Instead of a sepa-
ration between the translation ¢ and the rotation r, it describes a screw motion where the motion
velocity 6 also affects the translation. A twist 95 € se(3) is represented by

A w v
0 =10 <0 0) , (3.6)

where exp(€) is a rigid body motion. The logarithm of a rigid body motion M € SE(3) is the
following transformation:

6w =log(R), wv=A"'t, (3.7)

where
A= (I —exp(8))& + ww'd (3.8)

is obtained from the Rodriguez formula. This follows from the fact, that the two matrices which
comprise A have mutually orthogonal null spaces when 6 # 0. Hence, Av = 0 < v = 0.

Since the position of a joint is constrained by the skeleton, a joint j can be modeled as a rotation
around a given axis, i.e., the joint motion depends only on the rotation angle ;. We remark that
the twist and angle-axis representation are identical in this case. Hence, we write Mpps for
the rigid body motion and M (6;) for the joints. Furthermore, we have to consider the kinematic
chain of the skeleton. Let X; be a point on the limb £; whose position is influenced by 7y, joints
in a certain order. The inverse order of these joints is then given by the mapping ¢, ; for example,
a point on the left shank is influenced by the left knee joint ¢, (4) and by the three joints of the
left hip ¢, (3), ¢k, (2), and ¢, (1). Using homogeneous coordinates, the transformation of X is
given by

Xi=MrpuM (O, 1))-.- M0 Xi. (39)

Lk, (nki))
Since the body parts of humans are not rigid, a skeletal subspace deformation (SSD) can be
performed to interpolate around the joints. Instead of associating each vertex X; of the mesh
with only one bone and thus obtaining one transformation X { = Ty, X;, SSD [MTLTSS8, ILCEFO0]
linearly interpolates between the vertex transformations with respect to several bones. The in-
fluence of a bone k on a vertex X is given by wy; where >, wy; = 1. Equation then
becomes

X! = Z Wy, Ti X (3.10)

k
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Figure 3.1: The positions and orientations of the cameras with respect to the world coordinate
system are specified by the extrinsic parameters.

Even though SSD is very fast, it has several well-known drawbacks. When the joints are rotated
to extreme angles, a loss of volume can be observed since the linear interpolation of the trans-
formation matrices is not equivalent to the linear interpolation of their rotations. Furthermore,
the variety of shapes is limited to the linear subspace of transformations such that subject spe-
cific deformations like bulging of muscles cannot be modeled. In order to achieve more realistic
character animations, a variety of methods like [LCF00, IACP02, ASKT05 MMGO06, KCvO07,
WSLGO7,[YBSO7]] have been proposed. For human motion capture, however, the fast computa-
tion time of SSD usually outweights the artifacts which affect only very few pixels. When the
motion capture data is used for animation, a more sophisticated deformation scheme in combi-
nation with a high resolution mesh can be applied after pose estimation to achieve the necessary
visual quality.

3.2 Camera Calibration

In order to fuse the information form several camera views, a common world coordinate
system is required. This is obtained by calibrating each camera using a 2D or 3D rig as
shown in Figure b). For calibration, we use Jean-Yves Bouguet’s camera calibration tool-
box [Bou08]] that determines the intrinsic and extrinsic parameters for each camera. While the
intrinsic parameters describe the camera model, the extrinsic parameters determine the posi-
tion and orientation of a camera according to a common world coordinate system. Detailed
descriptions of various camera models and calibration methods can be found, for example,
in [Bro71}, [Tsa87, [HS97,ISM99,[Zha99]. When the radial and tangential distortions are removed,
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the projection matrix P can be written as

uo
o (3.11)
1

PzK(R t), where K =

oS o R
o @ 2

and the extrinsic parameters are given by the rotation matrix 12 and the translation vector ¢. The
parameters (ug, vg) are the coordinates of the principal point, o and /3 are scale factors in image
axes, and +y describes the skewness of the two image axes. Knowing P and using homogeneous
coordinates, the projection from a 3D point X in the world coordinate system onto the image
plane is given by x = II(P X) where II denotes the projection from homogeneous to non-
homogeneous coordinates. The world coordinate system and camera projections are illustrated

in Figures[I.5|and 3.1]

3.3 Level-Set Segmentation

Assuming that only one object is to be segmented, level-set segmentation splits the image domain
Q) into two disjoint regions, namely foreground {2; and background €2,. The probability that a
pixel = belongs to the region 2; or {25 is modeled by the probability density functions p; and
p2. The contour is given by the zero-line of a level-set function ® : Q@ — R, where ®(z) > 0 if
x € Q and ®(z) < 0 otherwise. We generally constrain ® to be the signed distance image of
the contour. This means the absolute value of ®(z) is the minimum distance of x to the contour.
The segmentation problem can be formulated as an energy minimization problem [MS89,ICVO01,
PDO02, BRDWO3|:

E(®, p1,p2) = — /Q H(®)lnpy + (1 - H(®))lnpyda + 9 /Q VH(®)| dr,  (3.12)

where H is a regularized version of the Heaviside step function with lims_,_ H(s) = 0,
lims .o H(s) = 1, and H(0) = 0.5. While the first term maximizes the likelihood, the second
term, weighted by the fixed parameter ¢, regulates the smoothness of the contour. The mini-
mization of Equation (3.12)) with respect to ® and p; is achieved by gradient descent. Having an
initial level-set function ®, the densities p; can be estimated. At the same time step, ® is updated
by

FH! = oF 4 H'(DF) (1 it + 9di <vq)k )) (3.13)

= n oA iv VoF .

with iteration index k. The steps are iterated until the segmentation process converges to a local
minimum.
There are various ways to model the probability densities p; and ps. The most simple choice is
the approximation of each region by its mean [[CVOI1[]. However, this would restrict the segmen-
tation to homogeneous objects with homogeneous background. Other choices are Gaussians,
mixture of Gaussians [PD02], or nonparametric Parzen density estimates [KFY"05]]. In order to
keep the region model manageable, the color or feature channels w; are assumed to be uncorre-
lated. Hence, the joint probability density function for a region {); can be written as

pi(r) = Hpij(uj(x))- (3.14)
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Using the notation Hy = H(®) and Hy = 1 — H(®), the Gaussian distribution

() — )2
pij(u;(x)) = L exp <M> (3.15)

2
27ro’i2j 2‘7ij

is given by the mean and variance

Jo ui(Q)Hi(¢) d¢
= (3.16)
H Jo H
. AV &
01'23' _ fQ(uJ(j) HN@J) H;(¢)d¢ (3.17)
o i

The nonparametric Parzen density estimate is computed by smoothing the histograms for each
region ¢ and channel j by a Gausian Kernel K, with standard deviation p:

. NH;(C)d
pij(uj(x)) = K, * Jod JIQ C) © C, (3.18)

with 0, (y) = 1if 2 = y and 0 otherwise. In comparison to the Gaussian approximation, the non-
parametric probability density functions describe the region statistics better but they adapt more
specifically to the given data which results in more local minima in the energy function (3.12).
In contrast to conventional distributions that assume homogeneous regions, local distributions
relax this assumption to be satisfied only locally [BRWOS]]. At each spatial position x, a sepa-
rate probability density function is estimated from its local neighborhood. In the case of local
Gaussian distributions, the regions are modelled by

pij(uj(x),x) _ 1 exp <(U3($) _ Mz‘j(ﬁU))Q) ' (3.19)
5 (@)

27(0-1’2' 20’%({1})

Estimation of the parameters y;;(x) and o;;(x) can be achieved using a window function, e.g. a
Gaussian K, with standard deviation p, and restricting the estimation only to points within this
window:

(u;(€) — ij *H;

The window function implies spatial smoothness of the densities. The amount of smoothness is
steered by the parameter p. Obviously, the local model converges to the corresponding homoge-
neous distribution model for p — oo.

In general, a bunch of channels u; can be used to obtain discriminative region models. Typical
channels are intensity, color, and texture information like Gabor filters [Gab46] or texture fea-
tures [BWO6al]. Since the number of channels and the complexity of the statistical model affect
the computation time, the optimal model for segmenting an entire sequence is the simplest one
that still has the ability to distinguish between fore- and background. Hence, the optimal model
depends on the image data when the computation time is considered. For a more comprehensive
survey on region-based segmentation schemes, we refer to [CRDOQ7.
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3.4 Particle Filter

Particle filters are designed to solve a filtering problem outlined by Equations and (2.2). In
this section, we summarize the fundamentals of particle filters and discuss convergence results
under various assumptions as well as their impact on applications, particularly on motion cap-
turing. Before a basic particle filter is presented as solution to the filtering problem described
in [DFEGO1,, Ch. 2] and [[CG99]], some basic notations are introduced.

3.4.1 Notations

Let (E, T) be a topological space, and let B(E) denote its Borel o-algebra. B(E), C(E), and
P(E) denote the set of bounded measurable functions, bounded continuous functions, and prob-
ability measures, respectively. J,, is the Dirac measure concentrated in « € E, i.e. 6;({z}) =1
and 0, (C{z}) = 0. A Markov kernel K is a function K : E x B(E) — [0, oo] such that K (-, B)
is B(E)-measurable VB and K (z, -) is a probability measure V. An example of a Markov ker-
nel is given in Equation (3.30). For a thorough introduction to measure and probability theory,
we refer to [Bau90, Bau91| Bau96, Bil95]]. The supremum norm is denoted by || - || ..
Throughout this paper, we use the following compact notation for integrals:

)= [ #Ga) utie), (322)
(K, f)(x) = /Ef(y) K(z,dy) for z€E, (3.23)
(u, K)(B) = /EK(x,B)u(dw) for B e B(E), (3.24)

where f € B(E), p € P(E), and K is a Markov kernel on E.

3.4.2 Filtering

Let X = (Xi)ien, be an R?-valued Markov process, called signal process, with initial dis-
tribution 79 and a family of transition kernels (K;).cn, satisfying the Feller property [RWO1],
ie. (Ki f) € Cyp(E) forall t and f € Cp(E). Let Y = (Y;)ien, be an R™-valued stochastic
process, called observation process, defined as

Y: = h(Xy) + Wy fort > 0, Yo =0, (3.25)

where, foreach t € N, h; : R — R™ is a continuous function, (W4, t € N) are independent m-
dimensional random vectors and their distributions possess densities g; € Cy(R™). The filtering
problem consists in computing the conditional distribution

m(B):=P(X, € B|Y;,....Yp), (3.26)

for all B € B(R?) or, alternatively, (n;, ¢) = E[p(X}) | Vs, ..., Yo] forall ¢ € B(RY).

The generic particle filter (GPF) is a commonly used particle filter for the solution of the fil-
tering problem, which provides a basis for further developments and modifications for other
applications. The algorithm consists of the four steps “Initialization”, “Prediction”, “Updating”,
and “Resampling”. During the initialization, we sample n times from the initial distribution 7.
By saying that we sample 2™ from a distribution 1, we mean that we simulate n independent
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random samples, also named particles, according to p. Hence, the n random variables (Xéz))
are independent and identically distributed (i.i.d.) according to 7ng. Afterwards, the values of
the particles are predicted for the next time step according to the dynamics of the signal pro-
cess. During the “Updating” step, each predicted particle is weighted by the likelihood function

9t(yt — he(+)) which depends on the observation y;. The resampling is done by drawing n times

with replacement from the set (:Z’Ei)l) j=1...n according to the probabilities 7r§i)1.

Algorithm 1 Generic Particle Filter

Requires: number of particles n, 79, (K¢)ien,» (9¢)ten, (ht)ien, and observations (y:)ien

1. Initialization

e Sample :n(()i) from 7 for all ¢

2. Prediction
(@) (@)

e Sample :Etil from K;(x;”, ) forall ¢

3. Updating

o Set ﬂt(zzl — grr1(Yep1 — htH(:Egl)) for all ¢
4. Resampling

e Set ;Ugle — a‘sgi)l with probability %
k=1T

for all ¢ and go to step 2

Also other “Resampling” steps than the one described in Algorithm [T have been employed for
the particle filter, e.g. branching procedures [CG99, (CML99, DFGOI1]]. A detailed discussion
can be found in [Mor04, Ch. 11.8]. The particle system is also called interacting particle sys-
tem [Mor98] since the particles are (obviously) not independent after resampling.

For the case of a one-dimensional signal process, the operation of the algorithm is illustrated in
Fig. where the grey circles represent the unweighted particles after the “Prediction” step and
the black circles represent the weighted particles after the “Updating” step. While the horizontal
positions of the particles indicate their values in the state space of the signal process, the diam-
eters of the black circles indicate the particle weights, that is the larger the diameter the greater
the weight. As illustrated, the particles with large weight generate more offsprings than particles
with lower weight during the “Resampling” step. In order to discuss the mathematical properties
of the algorithm, we use the following notions (cf. also [Mac00]).

Definition 3.4.1. A weighted particle is a pair (z,7) where x € R? and 7 € [0,1].
A weighted particle set S is a sequence of finite sets of random variables whose values
are weighted particles: the nth member of the sequence is a set of n random variables

S = (XMW 1), . (X® 1IM)}, where 7 TI™ = 1.

It is clear that every weighted particle set determines a sequence of random probability measures
by

Z H(i)éx@ forn € N.
i=1
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Figure 3.2: Operation of the generic particle filter. The predicted particles (gray circles) are
weighted by the likelihood. The weighted particles (black circles) are resampled and predicted
for the next time step.

The idea now is to approximate the conditional distribution 7, (3.26) by the distribution of an
appropriate weighted particle set. We note that each step of the generic particle filter defines a
particle set and consequently a random probability measure:

n

1 & (i 1 ¢
n o, . =N ,__ i) . n._ )
= n;(s&(”’ i '_;Ht Ogws i = n;(&t@)-

With this notation, the algorithm is illustrated by the three separate steps

n  Prediction .p Updating _n Resampling o,
Ny ——— Tt1 M1 M1 (3.27)

3.4.3 Convergence

The proof of the following convergence result can be found in [Mor96].

Theorem 3.4.2. For allt € Ny, there exists c; independent of n such that

2
E [((77?, @) — (m,¢)?| < CtWTUOO Vo € B(RY). (3.28)

Inequality shows that the rate of convergence of the mean square error is of order 1/n.
However, c; depends on ¢ and, without any additional assumption, c; actually increases over time.
This is not very satisfactory in applications as this implies that one needs an increasingly larger
number of particles as time ¢ increases to ensure a given precision. We will state below a recent
convergence result (Theorem [3.4.6) which is uniform in time under additional assumptions on
the filtering problem. The idea of preventing an increasing error is to ensure that any error is
forgotten fast enough. For this purpose, we define a so-called mixing condition in accordance
with [MGO1b] and [GOO04].
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Definition 3.4.3. A kernel on E is called mixing if there exists a constant 0 < ¢ < 1 and a
measure 4 on F such that

—_

en(B) < K(x,B) < —p(B) Vr € E.B€B(E). (3.29)

This strong assumption means that the measure K (z,-) depends only “weakly” on z. It can
typically only be established when E C R? is a bounded subset which is the case in many
applications like human motion capturing. For example, the (bounded) Gaussian distribution on

1

K(z,B) :== % /Bexp <—2 (z—y)Te - y)) dy (3.30)

with Z := [, exp(—% (x—y)T £~ (2 —y) dy is mixing if and only if E is bounded. Moreover,
a Gaussian with a high variance satisfies the mixing condition with a larger ¢ than a Gaussian
with lower variance. We give two examples where the kernels are not mixing.

Example 3.44. Let E = {a,b} and K(x,B) := ,(B). Assume that K is mixing. From
inequality (3.29) we get the following contradiction

K(a, b)) = 0.({8}) =0 = u({b}) =0,
Kb, () =5({0) =1 = u({b}) > 0.

Example 3.4.5. Let £ = R and

Kemym [ an (22 4,

Suppose there exists an € > 0 and a measure y such that the inequality (3.29) is satisfied. Note
that for all z € R and all intervals I = [a,b], a < b, we have K (x,) > 0. Our assumption
entails that p(I) > 0. But then en(I) < K(x,I) cannot hold for all € R, since K (x,1) — 0
as |x| — +oo.

The uniform convergence of the generic particle filter with respect to the time parameter was
first proved by Del Moral and Miclo [MMO0O0] assuming that the mixing condition for (K})ien,
is satisfied. Le Gland and Oudjane [GOO04] showed also the uniform convergence (Theorem
by using the mixing condition for the family of random kernels

Ri(z, B) := /Bgt+1(Yt+1 — hey1(y)) Ki(z, dy).

Theorem 3.4.6. If the family of random kernels (R;)ien, is mixing with e, > € > 0, then there
exists a constant c(g) independent of n such that

2
B[(00) — o] < ee) 10 vt e g, € BERD,

This means that as long as the mixing condition is satisfied there exists an upper bound
of the error that is independent of the time parameter. Hence, the number of particles, that
ensures a given precision in an application, does not increase over time. The mixing condition
can furthermore be relaxed such that the density dK (z, -)/dyu is not p-almost surely greater than
or equal to € > 0 but may vanish on a part of the state space, as shown in [CLO4].
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Filtering

This chapter mainly discusses the modeling problem of filtering approaches in the context of
model-based human motion capture. Furthermore, a prior on physical restrictions on the kine-
matic chain is proposed to constrain the state space and to improve weak models of the human
dynamics within the framework of particle filters.

4.1 Modeling Problem

It is important to note that the convergence results stated in Section [3.4.3|are only valid when the
signal and the observation process are known and satisfy the respective assumptions. Since this
is rarely the case for applications, good approximations are needed. In applications like motion
capture, it is very difficult to model the transition kernels and the noise of the observation process
in an appropriate way. The modeling problem can be addressed by learning techniques [SBS02,
SBO3], but even for large datasets the models are usually not general enough such that they cover
the large space of human motion and human appearance. For applications like motion analysis,
the bias introduced by the training data, particularly in terms of motion priors, is actually a
negative side effect.

In order to illustrate the modeling problem for model-based human motion capture, we continue
the synthetic example from Section [I.4] The example uses a simple model, namely the disc,
and the observation y; is a silhouette image distorted by Gaussian pixel noise as shown in Fig-
urea). Hence, the observation process is known: Ay : R? — R499” i the projection of
the disc and g; is a multivariate Gaussian probability density function. The weighting function
gt(yr — hy(+)) is plotted in Figure 4.1|b). Despite of the severe image distortion, the likelihood
is similar to Figure [I.3]c). It indicates that the impact of observation noise is very small when
silhouettes and surface models are used as it is common for model-based human motion capture.
Without strong motion priors, modeling the human dynamics by Markov kernels K;, which rely
only on the previous state, gives just a rough approximation of the real dynamical model. To
overcome this problem, the state vector x; can be extended by taking velocity and acceleration
into account under the assumption that the framerate is known. While this works fine for low
dimensional tracking problems, it requires estimating a nearly 90-dimensional signal for human
motion capture. When the dynamics cannot be well approximated and the impact of the obser-
vation noise is assumed to be small, the generic particle filter is expected to perform poorly. The
weak prediction causes most of the particles to be far away from the observation and to have
marginal weights. This yields a poor approximation of the mean of 7, as it is illustrated in Fig-
ure {.T| ¢), where 100 particles have been used. An overestimation of the signal noise improves
the estimate but it also changes 7;. The problem of a very peaked likelihood is also addressed
by modifications of the generic particle filter like extended Kalman particle filter [FNGDOQO],
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Figure 4.1: Impact of the noise model. From left to right: a) The synthetic example from
Figure[1.3]is continued. The image y; is severely distorted by independent Gaussian pixel noise
wy. b) The correct likelihood function g;(y; — h¢(+)) is not anymore the Dirac measure but still
very spiky despite the image noise. Such weighting functions are problematic for a particle filter
since the vast majority of the particles have marginal weights such that 7, is basically estimated
by very few particles yielding a poor approximation. ¢) One dimensional example. When the
noise of the observation process g;(y: — h¢(-)) (red) is small and the prediction model in terms
of K} (blue) is weak, the mean of the approximated distribution 7, (black) is poorly estimated
(gray bar). In order to get more particles near to the observation and a better estimate of the
mean, the noise of the signal process can be overestimated (dashed). Note that 7, also becomes
dominated by g;(y: — he(+)).

unscented particle filter [MDEWO0Q], auxiliary particle filter [PS99], and the regularized particle
filter [DEGO1), Chapter 12]. However, the overestimation of the signal noise also reflects the
unreliability of a weak dynamical model such that the posterior is dominated by the likelihood.

4.2 Learning Constraints of the Skeleton

In contrast to dynamical priors or dimensionality reduction techniques, a prior on anatom-
ical constraints is independent of motion patterns and can also be learned from training
data [BRKCO6] as discussed in Section [2.4 The prior constrains the state space such that
anatomical limits of the joints and unrealistic self-intersections are considered for the transi-
tion kernels K;. Instead of modeling the physical restrictions as hard constraints, we allow for
the simplification and approximation of the kinematic model by integrating this prior knowledge
as soft constraints. To this end, a probability density function p,,s. models the probability of a
skeleton configuration in the space of human poses and is combined with a common dynamical
model K”"**. The modified transition kernel is given by

1 d
K, B) = ———Dpose KPre ,d , 4.1
t(l‘t, ) /B Z(a:t)pp ($t+1) ¢ (l’t $t+1) “4.1)

where Z(z;) = (KP™ ppose)(2). As it is often expensive to sample from the corresponding
distribution, we show that it is possible to integrate p,,s. in the updating step, where we write

951 (@e41) = g1 (Wes1 — hesr (@e41)):
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Figure 4.2: The Parzen estimate subject to the angles of the knee joints. From left to right:
a) Using the Euclidean distance leads to a domination of the knee joints. The density rapidly
declines to zero as the values differ from the data. b) The influence of the knees is reduced by
the weighted Euclidean distance.
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Note that sampling from the distribution K7"“*(zy,-)/Z(x;) is equivalent to sample from
K? %d(xt, -) for a given z;. Hence, the prediction step of the particle filter remains unchanged
whereas the particles are weighted by the product g¢11(yt+1 — he41(2¢41)) Ppose(Z¢+1) during
updating.

4.2.1 Probability of a Pose

Only in rare cases, we are able to give an analytical expression for pp,s. Instead, we suggest
learning the probability of the various poses from a finite set of training samples. For a non-
parametric estimate of the density, we use a Parzen-Rosenblatt estimator [Ros56, [Par62] with a

Gaussian kernel
N

Ppose (%) = (1 > exp (—CM) (4.2)

27 02)d/2 N 4 202
i=1

to deal with the complexity of the distribution, where /N denotes the number of training samples
and the function d is a distance measure in E. The estimate depends on the window size o that
is necessary to be chosen in an appropriate way. While a small value of o forces the particles
to stick to the training data, a greater value of o approximates the density smoother. In order
to cope with this, we chose o as the maximum second nearest neighbor distance between all
training samples, i.e. the two neighbors of a sample are at least within a standard deviation.
Other values for the window size are discussed in detail in [S1186]].
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~

(a) (b)

Figure 4.3: From left to right: (a) Original image. (b) Extracted silhouette. (¢) The smoothed
contour is slightly deformed by the markers needed for the marker-based system. (d) 3D model
with 18 DOF used for tracking.

There are also several ways to specify the norm for evaluating the distance between a training
sample z; and a value x in the d-dimensional state space E for Equation (#.2). The commonly
used Euclidean distance weights all dimensions of the state space uniformly. This means in the
context of human motion estimation that a discrepancy of the knee contributes to the measured
distance in the same matter as a discrepancy of the ankle. As illustrated in Figure this
involves a dominated measure by joints with a relatively large anatomical range as the knee in
comparison to joints with a small range as the ankle. A weighted Euclidean distance measure
incorporates the variance of the various joints, i.e.

N2 / , ()%
d(x, z;) = ZW pri= v 4.3)
k=1

d

where (z) denotes the arithmetic mean of the samples in the kth dimension. This distance is
generally applied in image analysis [MR98]] and is equivalent to a Mahalanobis distance in the
case that the covariance matrix is diagonal. A full covariance matrix significantly increases the
computation in high dimensional spaces. We remark that p;,,s. takes only the skeleton configu-
rations, i.e. joint angles, into account without the position and orientation of the human such that
the prior is spatially invariant.

4.2.2 Experiments

To illustrate the impact of pp.se, we have used an annealed particle filter (APF) [DROS] for
tracking the lower part of a human body. The annealed particle filter is actually a heuristic based
on the generic particle filter as discussed in Section [2.3.2] but it suits our purpose. A more
comprehensive discussion on the annealed particle filter is presented in [GRBS06]] and will be
given in Section [6.1.5] In our experiments we use four calibrated and synchronized cameras.
The sequences are simultaneously captured by a commercial marker-based system from Motion
Analysis [Mot08]] allowing a quantitative error analysis. The black leg suit and the attached
retroflective markers are required by the marker-based system, see Figure {.3]a).

The likelihood g} () is calculated pixel-wise similar to [DR0O5]]. Each particle z € E determines
a pose of our 3D model. The projected surface of the model onto the image plane gives a set of
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Figure 4.4: From left to right: a) Results for a walking sequence captured by four cameras.
b) The joint angles of the right and left knee. Solid (thin): Marker-based system. Solid (thick):
Prior with weighted distance. Dashed: Without prior (Tracking fails).
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Figure 4.5: Visual comparison of results. From left to right: (a) Without prior. (b) Without
weighted distance. (¢) With weighted distance.

silhouette points P (z) and a set of contour points PC () for each view i = 1,...,r where a
set contains all pixels p € R? of the silhouette and the contour, respectively. The silhouette SZ-Y
of the observed object is obtained by a level set segmentation where SZ-Y (p) = 1if p belongs to
the foreground and SZ-Y (p) = 0, otherwise. The contour CiY is just the boundary of the silhouette
smoothed by a Gaussian filter and normalized between 0 and 1 as shown in Figures[#.3]b) and c).
The likelihood is approximated by

g/ () ~ exp <— > (ZE (i) + 25@:,1‘))) , (4.4)
=1
where .
Yo .o rY ()2
Yr(x,i) = ‘PZL(I‘)‘ EL: (1-L; (p)) (4.5)
pEP(z)

for L € {S,C}. According to Section the prior is integrated by weighting the particles with
9 (2)Ppose ().
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Figure 4.6: Results for distorted sequences (4 of 181 frames). Only one camera view is shown.
Top: Occlusions by 30 random rectangles. Bottom: 25% pixel noise.

The training data used for learning pj,se consists of 480 samples obtained from walking se-
quences of the same person. The data was captured by the commercial system before recording
the test sequences. The simple dynamical model K " is modeled by a zero-mean Gaussian
distribution with covariance matrix determined by 0.1 p; see Equation (.3). The initial distri-
bution is the Dirac measure of the initial pose that is assumed to be known. Our implementation
of the APF with 250 particles and 10 layers has taken several minutes for processing one frame.
Figure [4.4] visualizes results of a walking sequence that is not contained in the training data.
For the sake of comparison, the results of the APF without using prior knowledge at all are also
visualized in Figure 4.5] The estimated angles of the left and the right knee are shown in the
diagram in Figure .4 where the values acquired from the marker based system provide a ground
truth with an accuracy of about 3 degrees. The root mean square (RMS) error for both knees is
6.2 degrees (red line). While tracking with 100 particles failed, our method also succeeded using
150 and 200 particles with RMS errors 15.3 and 8.8 degrees, respectively.

Figure [4.6] shows the robustness in the presence of noise and occlusions. Each frame has been
independently distorted by 25% pixel noise and by occluding rectangles of random size, position,
and gray value. The legs are tracked over the whole sequence with RMS errors 8.2 and 9.0
degrees, respectively. Finally, we have applied the method to a sequence with scissor jumps as
shown in Figure[4.7} This demonstrates that our approach is not restricted to the motion patterns
that have been used for training as it is when learning the patterns instead of the poses. However,
the 7th image also highlights the limitations of the prior. Since our training data are walking
sequences, the probability that both knees are bended is almost zero, cf. Figure .2] Therefore,
a more probable pose is selected with less bended knees, which yields a higher hip of the 3D
model than in the image. Overall, the RMS error is 8.4 degrees. A similar error can be observed
for the feet since they are more bended for jumping as for walking. Nevertheless, the result is
much better than without using any prior.

4.3 Summary

The main problem for applying filtering techniques to human motion capture is the need for
accurate models. In particular, modeling the human dynamics with Markov kernels is very chal-
lenging. While many learning techniques provide solutions only for certain motion patterns, and
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Figure 4.7: Rows 1-2: Results for a sequence with scissor jumps (8 of 141 frames). Row 3:
The 3D models for the 4 poses on the left hand side of rows 1 and 2 are shown from a different
viewpoint.

therefore very application specific solutions, a general motion model is a crucial step towards
commercial applications. We have proposed a motion pattern independent prior that compen-
sates at least to some extent for the weak dynamical model. The prior ensures that particles
representing a familiar pose are favored such that the state space becomes more constrained.
Even though it improves particle filter approaches, it is not a replacement for a good dynami-
cal model. Without such model, accurate results for human motion capture in reasonable time
are barely to achieve. Hence, it raises the question of whether filtering is the best formulation
of model-based human motion capture. The main advantages of filtering approaches over op-
timization approaches are basically the ability to handle noise and to resolve ambiguities over
time. The example given in Figure [d.1] however, indicates that pixel noise is not a serious prob-
lem in this context. Therefore, it is an important issue of whether optimization techniques can
handle model-based human motion capture better.



5

Local Optimization

Local optimization has been successfully applied to human pose estimation as discussed in Sec-
tion[2.3.1] In this chapter, we focus on the local optimization approach based on twists that has
been proposed by Bregler and Malik [BM98] and that is also used in [RBS™06]. It is motivated
by the field of robotics where twists are commonly used for modeling the kinematics of articu-
lated robots [MLS94]. Letting the optimization scheme fixed, we address the question “What are
good cues for human motion capture?” from Section Before discussing the advantages
and disadvantages of various cues, we summarize the used local optimization in Section [5.1]
Finally, we introduce an analysis-by-synthesis framework that combines complementary cues to
track a variety of objects. The potential of the framework is demonstrated on various sequences
and on a challenging real-world problem, namely crash test video analysis.

5.1 Pose Estimation

The pose of a rigid object or a human is represented by a set of twists Qjéj as discussed in
Section A transformation of a vertex X; on the limb k; influenced by ny, joints is given by

X =exp (95) €xp (9%1.(1)5%.(10 -+ 6Xp <9Lki (nk’i)ébk’i (nki)> X .

where the mapping ¢y, represents the order of the joints in the kinematic chain. Since the joint
motion depends only on the joint angle 6, the state of a kinematic chain is defined by a pa-
rameter vector y := (6¢, ©) that consists of the six parameters for the global twist 95 and the
joint angles © := (01, ..., 0y). For estimating the parameters Y, a sufficient set of 3D-2D point
correspondences is needed. How such correspondences are obtained, is subject of the next sec-
tions. For the moment, we assume that such a set of correspondences (X, x;) with X; € R3 and
x; € R? is already given and represented in homogeneous coordinates.
As the camera parameters are known as explained in Section [3.2] the projection rays can be
reconstructed from the 2D points z;. 3D lines can be represented implicitly by so-called Pliicker
lines [Sto91}, [She98]. A Pliicker line L; = (n;,m;) is determined by a unit vector n; and a
moment m;, where m; = x X n; for a point z on the line. Thereby, x denotes the cross product.
This implicit representation allows to conveniently determine the distance of a 3D point to this
line. Consequently, the distance of a pair (X, z;) is given by the norm of the perpendicular
vector between the line L; and the point X Z’ :

L (X]) % ny — myl|2, (5.2)

(2

where II denotes the projection from homogeneous coordinates to non-homogeneous coordi-
nates.
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Provided the 3D-2D point correspondences are correct, the transformed 3D points must be on
the projection rays reconstructed from their corresponding 2D points. In practice the correspon-
dences are not exact for various reasons, yet we can seek to minimize the above distance. In
particular, we seek a transformation x = (6¢, ©) applied to all points X; such that the total
distance over all correspondences is minimized in the least squares sense:

2

N,
argmin% Z II | exp (05) H exp (9“% (j)ébk,- (j)> X; | xn; —my|| . (5.3)
X i j=1 9

It is worth noting that minimizing the distance to the 3D ray and minimizing the 2D re-projection
error can be made equivalent by appropriate rescaling of each error vector [RBWO07].

Equation (5.3) states a nonlinear least squares problem due to the exponential form of the trans-
formation matrices. In order to solve for the parameters, we use the GauB3-Newton method, i.e.,
the transformation matrix is linearized and the parameter estimation is iterated. With the identity
matrix [ and

S ~\k
exp(0) = > 0O _ ¢ + 6§, (5.4)

|
Pt k!
we can approximate Equation (5.3) as the linear least squares problem

2
ng,

1 . -
arg)r(mn 5 Z II I+ 9§ + Z 9%1(])5%1(]) Xi X n; —mg|| , (5.5)

J=1 9

which can be solved, for instance, with the Householder algorithm. To this end, Equation (5.5)
can be written as linear system:

Ay by
A b
=7 (5.6)
A, b,

where A; € R3¥(6+N) and b, € R3. For convenience, we write

Ai = <(A’1)3x3 (A12>3x3 (Agl>3x1 o (AgN>3x1> ' -7)

3x(6+N)

The matrices A} and A% for the global transformation are given by

0 ng3z  —MNi2
1
Ai = —ni73 0 ’I’Li’l (58)
njo  —MN;1 0
and
—X;3n;3 — X;2n;2 Xiinio Xiin:3
2 __
A7 = Xion;1 —Xi1ni1 — Xi3m;3 Xion;3 . (5.9)

Xi3n1 Xi3nio —Xionio — X;1n;1
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The matrix A{ for the joint 5 is (0 0 O)T if the vertex X is not influenced by joint j. Otherwise,

(Xiangs — Xigng1 +mjo)niz — (Xionj1 — Xiinj2 +m;3) ni2
i_
A = | (Xignj1 — Xianja +myz)nin — (Xignjo — Xiongs +mj1)nig |, (5.10)

(Xianj2 — Xionjz +mj1)nie — (Xiins3 — Xizng1 +mj2) nig

where (n;,m;) is the Pliicker line representation for the rotation axis of the joint j. The vector
b; € R3 is given by
Xignio — Xioni3+mjq
bi = | Xiiniz — Xigni1 +ms2 | - (5.11)
Xioni1 — Xiinj2 +m;3

Each point correspondence yields three equations of rank two, i.e., at least three correspondences
are required for a unique solution in case of a rigid object. For each limb, at least one additional
correspondence for a point on this limb is needed. If the limb has three degrees of freedoms, two
correspondences are required. The acquisition of such a set of correspondences (X;, z;) from
image data is discussed in the following Sections[5.2}[5.3] and[5.4]

5.2 Region-based Tracking

One of the most popular cues for human motion capture is silhouettes or the silhouette contours.
In the simplest case, they can be extracted by background subtraction. A more general procedure
couples level-set segmentation with pose estimation [RBWO7]]. It has the distinct advantage that
it does not require a static background which makes it suitable for outdoor scenes and multiple
moving objects.

Since the energy functional in Section [3.3] does not take the knowledge of the 3D shape
into account, it tends to separate other regions than the object regions. Hence, additional con-
straints are required in order to restrict the sought contour to stay close to the object shape. To
this end, the functional is extended by an additional term. This term implements the model
assumption that the shape in the image should be close to the projection of the surface model.
The extended energy reads:

E(q),pl,pg,x):—/gH(<I>)lnp1—|—(1—H((I>))lnp2dm—|-19/Q|VH(<I>)|d:U

~~

segmentation

+ A/(cb — ®,)?dx, (5.12)
Q

~
shape distance

where @, denotes the shape of the projected surface model with pose parameters . In order to
compare the object shape @, with the level-set function @, the shape is represented by the signed
Euclidean distance function. To this end, the surface is transformed according to Equation (5.1)
and projected onto the image plane as described in Section[3.2] After applying a signed distance
transform [FHO4] to the binary image of the projected surface <T>X, one obtains

@x(w)—{ dist(z,C) if &, (z) > 0, 5.13)

—dist(z,C) otherwise,
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where dist(z, C') is the shortest Euclidean distance of point z to the contour of &)x It needs to
be emphasized that any skinning method described in Section [3.1]can be used for transforming
the surface model according to the pose parameters x. In general, we use the notation of the
articulated model given by Equation (5.I)) as a synonym for any kind of skeleton-based mesh
transformation throughout the paper.

The last term of Equation (5.12) couples the segmentation model and the pose parameters as it
enforces the projected surface model to match the object region. This has two effects: firstly, the
pose parameters are adapted such that the projection fits the region extracted by the segmentation
part. Secondly, the segmentation is constrained by the shape of the surface model and is not
allowed to deviate too much from this shape. The tolerated amount of deviation depends on the
clarity of the image data and the choice of \.

The energy function can be minimized with respect to ¢ and p; by gradient descent.
Having an initialization of ® by the projected object surface ®,, we can estimate p; as described
in Section[3.3] From this we can update ® by

k Pk
o = o 4 H'(®") <1np1 + ddiv < v

5 |V OF]

>> +20(®, — ®F) (5.14)
Y2

with iteration index k. When moving on to a new frame, it makes sense to run a few iterations
with the densities from the previous frame before adapting p;. This allows the contour to capture
the new position of the object boundary. We assume the distribution to be sufficiently smooth
for being valid also for the displaced regions in the new frame. This smoothness is ensured by
the large window p = 12 for the Gaussian kernel K, (3.18).

(a) (b)

Figure 5.1: Closest point correspondences. a) One seeks 2D-3D correspondences between the
image and the 3D mesh model. b) Projected object surface in blue and the extracted object
contour in yellow. ¢) Correspondences between the silhouette of the blue area and the yellow
contour.

The shape distance in (5.12)
/ (@ — ,)%dx (5.15)
Q

relates the pose parameters x to the region represented by ®. To estimate the pose parameters
for a given ®, we need 2D-3D point correspondences. Since @, is the projection of the object
model, corresponding 3D points on the model are known. Hence, 2D-3D correspondences can
be derived by matching the 2D shapes ® and ®,. Towards this end, we seek the displacement
vector field (u(z), v(x)) that minimizes

/(Cb(x,y) — @, (z +u,y +v))*da. (5.16)
Q
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In practice, we are only interested in correspondences for points along the contours.

Numerous methods on 2D shape matching can be found in the literature. We are interested in a
method that can deal with shape deformations in order to handle projective distortion and artic-
ulated objects. Moreover, we can assume that the transformation between the shapes is limited.
Thus a local method is most effective. A suitable and simple method is closest point search. It
can be computed efficiently, if the two contours ® and ®, are represented by distance images,
i.e., the value of ®(x) is the minimum distance of x to the contour. A very efficient method for
computing the minimum Euclidean distance in linear time has been proposed in [FHO4|]. A more
robust shape matching can be achieved by optical flow [RBCSO06]], but it is also more expensive.
The pose parameters, and consequently the shape prior ®,, and the level set function ® are
optimized in an iterative, alternating scheme that is initialized with the pose from the previous
frame. In summary, the steps

1. Compute shape prior @,

2. Estimate contour ® (5.14)

3. Shape matching between ®, and ®
4. Estimate pose parameters x (5.5)

are iterated until the pose converges or the maximum number of iterations is reached.

Although the described region-based approach performs well even in case of occlusions and
noise [RBWOQ7], it requires many iterations until convergence which makes it very expensive.
Particularly for large transformations from frame to frame, the segmentation and consequently
the pose estimation usually get stuck in a local optimum. Another problem is ambiguous so-
lutions. For instance, the pose of a sphere cannot be uniquely determined from its silhouette.
Hence, more than one feature is needed for robust tracking.

5.3 Motion-based Tracking

In order to track also objects in case of fast motions and large deformations, frame to frame
correspondences are required. In this section, we consider two methods that compute 2D corre-
spondences between successive frames ¢ and ¢ + 1: optical flow and SIFT tracking. We assume
the pose parameters of the model in frame ¢ to be known. Therefore, it is known, how 3D model
points project into this frame. Finding the new positions of the projected points in frame ¢ + 1
by either optical flow or the SIFT tracker yields 2D-3D point correspondences at ¢ + 1. From
these the new pose of the object can be estimated using the technique described in Section[5.1]
Such a procedure obviously accumulates errors over time. This is due to the assumption that
the pose in the previous frame is known and is exact. As a consequence, even the smallest
estimation errors are propagated from frame to frame. Therefore it is crucial to combine motion-
based correspondences with region-based ones.

5.3.1 Optical Flow

Optical flow is the common name for the displacement field w(z) := (u(x),v(z), 1) between
two images of an image sequence I (x), where x := (z, y, t). Numerous optical flow estimation
methods can be found in the literature. Variational methods currently mark the state-of-the-art
and yield dense flow fields. Since we are interested in capturing large displacements, we further
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focus on multi-resolution methods. Building upon the method in [BBPWO04, BWO03]], we seek
the optical flow as the minimizer of

E(u,v) = fo, r(@) - 1 ([[(z +w) - I(2)]?) da
7 Jo, (@) - Ui (IVI(z +w) = VI(2)[?) do (5.17)
+a o, Yo (IVul® + Vo) da.

The energy consists of two parts. The first part states the gray value and the gradient con-
stancy assumption, both weighted relatively to each other by the parameter v = 5. This part
is usually called data term. It is weighted locally by r(x), which will be explained later. The
second term introduces the assumption of a smooth flow field. It is weighted by the param-
eter « > 0. Wy(s%) and Wy(s?) are so-called robust penalizer functions [BA96, MP96]]. In
[BBPWO4], Uy (s%) = Wy(s?) = V52 + €2 with € = 0.001. Such a penalizer allows for outliers
in the data (e.g. due to noise, specularities, or occlusions) and in the smoothness assumptions
(due to motion discontinuities). We adopt the same functions for tracking articulated objects and
choose o = 50.

In case of rigid objects, the model can be simplified by setting W5 (s?) = s2 and o = 800, which
leads to a linear term in the Euler-Lagrange equations of the smoothness term. This simplifica-
tion results in a faster implementation. It becomes possible because in contrast to [BBPWO04]
the energy is only integrated inside the object region 2;. The object region is a byproduct of
model-based tracking and beneficial as it already determines most of the relevant motion discon-
tinuities. In case of rigid objects that are far enough from the camera, it even captures all relevant
motion discontinuities. This is different for articulated objects. One could imagine, e.g., the case
of two legs next to each other where one leg partially occludes the other. The legs can move in
opposite direction, hence creating a motion discontinuity within the object region.

The model in [BBPW04] can be further extended by the explicit, local weighting r(z) of the data
term. This weighting is for integrating the result of an occlusion detection, which is described
in [BRGCQ9]]. The weights are set to

if 1
r(x):{ 0 if z occluded (5.18)

1 else.

At occluded pixels the data term is ignored and only the smoothness term determines the esti-
mated flow. This yields a smooth interpolation of the flow field in areas, where the data does not
reflect the motion of the object.

The minimizer of can be computed with a continuous optimization method in a multi-
resolution setting. After discretization of the Euler-Lagrange equations, we obtain a nonlinear
system of equations that can be solved via two nested fixed point iteration loops and a solver
for sparse linear systems. For details we refer to [BBPWO04]]. With a fast multi-grid solver, the
optical flow can be computed in real-time [BWO3]].

Since we are interested in an adaptive weighting of optical flow correspondences versus cor-
respondences from other cues, we need some measure that tells us something about the local
confidence of the computed optical flow. A standard confidence measure is the gradient mag-
nitude of the image cgraq(x) = |VI(x)| or some similar expression [BFB94]. However, this
measure does not perform well in case of contemporary, variational optical flow methods, as
pointed out in [BWO6b]. Instead, it was proposed in [BWO06b] to employ the local energy of
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variational methods as a confidence measure. We adopt this idea and use

CEnergy(x) =p (1 + e(x))_l

e(z) =0y (|I(z +w) — I(z)[?)
+y ¥ (VI (2 +w) — VI(z)]?)
+a¥y(|Vul* + |Vu|?)

(5.19)

according to the energy stated in (5.17). This confidence measure is small in areas, where the
assumptions stated in the energy functional cannot be fulfilled. Consequently, it indicates areas
where optical flow computation is difficult and not reliable. Point correspondences derived from
the optical flow are weighted by this confidence value. The factor 3 normalizes the confidence,
such that cgpergy = 1, if the optical flow computation works reasonably well. If the confidence
is larger, the correspondence obtains more influence than average, and if it is smaller, its relative
influence is decreased. Empirical evaluation resulted in 8 = 12 for Wo(s?) = s? and 3 = 3 for

Uy (s?) = /52 + €2

5.3.2 SIFT

Cc

(b) ©

Figure 5.2: From left to right: a) Matches between previous frame (squares) and current frame
(crosses). b) The outliers are removed after filtering. ¢) When a matched SIFT keypoint p does
not coincide with a projected mesh vertex, the 2D translation vector p’ — p is added to the closest
vertex (here c). For the new 2D-2D correspondence ¢ - ¢/, the 2D-3D counterpart is available.

The scale invariant feature transform and its corresponding region descriptor currently
belong to the most reliable techniques for sparse matching [MS05]. Matching is restricted to
keypoints which correspond to local extrema in scale-space. Each keypoint is described by
orientation histograms computed in its neighborhood [Low04]. Correspondences between suc-
cessive images are then established by nearest neighbor distance ratio matching where
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conflicting correspondences are deleted. We used the distance ratio threshold of 0.6. Only key-
points that belong to the object region and are not occluded are considered.

As shown in Figure the matching produces reliable point correspondences but also some
outliers that need to be eliminated. The rudest mismatches for each pair of images are removed
by discarding correspondences with a Euclidean distance that exceeds the average by a multiple.
When the average is above a threshold, we also delete corresponding features with the same
location since the match in frame ¢ 4 1 usually belongs to a static object in the background in
this case. Such pre-selection increases the inliers-to-outliers ratio, though it does not restrict the
applicability to static backgrounds, as demonstrated in Figure [5.6] After deriving the 2D-3D
correspondences, a preliminary pose is estimated and the new 3D correspondences are projected
back in order to detect the remaining outliers.

In contrast to dense optical flow where a point correspondence is available for each projected
mesh vertex, SIFT keypoints do not necessarily coincide with the projected mesh points. How-
ever, if the mesh is fine enough, we can assume the closest projected mesh point to undergo
approximately the same 2D translation between two successive images as the SIFT keypoint.
This is illustrated on the right hand side of Figure

Thanks to the outlier detection and the high overall robustness of SIFT matching, a separate
confidence measure like in case of the optical flow is not needed. The influence of SIFT corre-
spondences automatically increases with the number of successful matches. In case of poorly
structured objects, the number of these matches, and thus the influence of SIFT, will be low.

5.3.3 Overview
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Figure 5.3: Optical flow or SIFT features are used to establish correspondences between the
successive frames ¢ — 1 and ¢. Knowing the pose for frame ¢t — 1, the pose is estimated from
these correspondences. The pose is further refined by region-based matching. To this end, the
estimated pose is used for computing the shape prior ®,. After segmentation, the shapes ® and
@, are matched. The final pose is then estimated from correspondences established by motion-
based and region-based cues.

Figure [5.3] depicts an overview of the tracking system that combines region-based and motion-
based cues. While optical flow or SIFT features estimate large transformations between two
successive frames, the region-based pose estimation compensates for the errors of motion-based
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tracking. Towards this end, 2D-2D correspondences between two successive frames are estab-
lished by matching SIFT features (Section[5.3.2) or optical flow (Section[5.3.1). Since the pose
X from the previous frame is known, 3D-2D correspondences can be derived to estimate the pose
(Section[5.T). This gives a better estimate of the shape prior ®, than the pose from the previous
frame. Finally, the three steps from region-based pose estimation (Section are performed:
estimation of the contour ® (5.14)), shape matching between ®, and ®, and estimation of the
pose parameters x (5.5)). For the pose estimation, however, correspondences between 2D image
points and 3D model points are established from different cues, namely by matching the pro-
jected model to the object region in the image, by matching image points in successive frames
via optical flow, and by matching SIFT keypoints of successive frames.

5.3.4 Fusion

Correspondences from different cues can be easily combined in the least-squares framework by
considering all of them in the sum of Equation (5.3). Nonlinear optimization with the GauB-
Newton method yields the optimum pose considering all constraints in the least-squares sense,
which is related to the assumption of a Gaussian error distribution.

If there is a way to estimate the expected deviation of the matched points, for instance through
a confidence measure, this can be incorporated by means of the variance of the Gaussian dis-
tribution. The sums in (5.3 and can be replaced by weighted sums ), w;|| - ||, where w;
corresponds to the inverse variance of the Gaussian distribution. This leads to the well-known
weighted least-squares setting.

The relative influence of a certain type of correspondence, i.e. flow, SIFT, or region-based, de-
pends on the sum of all weights over each set. Obviously, there are large differences in the size of
the sets. While optical flow provides several thousand correspondences, usually only few SIFT
keypoints are detected in the object region. On the other hand, a matched SIFT keypoint tends
to be more reliable than a point correspondence established by the optical flow. The different
numbers of points can be balanced by normalizing the weights w; with the size of the respective
point set.

The main idea is to reduce the relative influence of correspondences, which probably contain
large errors. In case of the optical flow this is achieved through a confidence measure based
on the local energy, which allows weighting each correspondence individually. In case of SIFT
keypoints there is no such measure, yet the number of keypoints is a good indicator for the
appropriateness of SIFT in a certain scene. The confidence of the region-based cue is directly
integrated in the interleaved segmentation and pose estimation. In areas where the segmentation
is evident, i.e. the difference of the log-likelihoods of foreground and background is large, the
image driven part of the segmentation energy dominates the shape prior and the contour can
deviate much from the projected model. Vice-versa, if the foreground and background distribu-
tions fit almost equally well, the segmentation will stay close to the shape prior, which reflects
the pose estimated with flow and SIFT based correspondences. Hence, the confidence of the
contour-based correspondences is already reflected by the distance of the projected mesh points
to the corresponding points on the contour.

These considerations suggest the following weighting strategy. Let nc and nor denote the
number of contour- and flow-based correspondences, respectively. We take the contour-based
correspondences as reference and assign all of them wc = 1. SIFT correspondences are all
assigned the weight wgpT = 0.002-n¢. Optical flow correspondences are weighted individually
by means of the confidence measure described in Section [5.3.1] For a correspondence i with
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Figure 5.4: Combining motion- and region-based tracking allows capturing the large motion of
a tea box. From left to right: a) Object pose at frame 1. b) Object motion due to the estimated
optical flow between frame 1 and frame 2. Gray: pose from frame 1. Black: pose prediction
for frame 2. ¢) Estimated pose at frame 2 using combined motion- and region-based tracking.
d) Bad pose just using motion-based tracking. e) Bad pose just using region-based tracking.
f) Not enough distinctive SIFT features are located to allow for a proper prediction. Flow-,
region-, or SIFT-based tracking alone cannot handle this situation.

confidence c;, we assign the weight w; = ci%. For the pose prediction, where no contour-
based cues are available, the factor nc is replaced by nor, respectively.

If all cues can be extracted in an equally reliable manner, they are all weighted equally. As
soon as one of them is more reliable, its relative influence is increased. Effectively, this kind of
adaptive weighting automatically chooses the most reliable cue and ensures independence of the
sampling of the mesh. For this reason, it is possible to fix this weighting procedure and run the

method on different data preferring different cues.
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Figure 5.5: Sensitivity of the region based method on the initial pose. The diagram shows the
average error of the mesh points depending on the amount of disturbance from the correct pose.
Three key initial poses are depicted in the images.
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Figure 5.6: Four successive frames from a sequence with the camera moving and Gaussian noise
with standard deviation 60 added (140 frames, 8fps). First row: Extracted contour. Second row:
Estimated pose. Third row: Object motion due to optical flow correspondences. Gray: pose
from previous frame. Black: pose prediction at current frame. Last row: A very similar result
is obtained with the SIFT tracker.

5.3.5 Experiments

In order to demonstrate the ability of the tracking system to deal with a number of challenges, we
applied it to numerous tracking scenes. These scenes contain homogeneous as well as textured
objects, large transformations, noisy images, partial occlusions, and articulated human motion.
With the experiments we aim at showing that, due to the combination of complementary cues
and their adaptive weighting, the tracking system can handle all these scenes without the need
of manual adaptations.

Rigid objects

Figure [5.4] depicts an experiment where a tea box has been moved by about 30 pixels between
two frames including a rotation. As the transformation is quite large, the computed optical flow
vectors contain errors. This can be seen from the pose prediction in Figures [5.4] b) and d).
However, thanks to the additional region-based correspondences, the final pose result is good
(Figure 5.4 ¢)). Conversely, the pose estimation also fails if only the region-based correspon-
dences are used. This is shown in Figure[5.4]e). Figure[5.4]f) reveals that in this scene there are
not enough SIFT keypoints on the object (only one, to be precise) for tracking the tea box. This
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Figure 5.7: Top row: Frames 97, 116, and 188 of a stereo sequence used for the experiments in
Table[5.1] Bottom row: Tracking results.

noise level 0 20 | 40 | 60 | 80
region 124 115 95 |8 | 5
region+flow tracked | 115 | 115 | 75 | 5
region+SIFT tracked | 110 | 100 | 25 | 5
region+flow+SIFT || tracked | 115 | 115 | 85 | 5

Table 5.1: Sensitivity to noise in the input images. The table indicates the frame number where
tracking failed. The sequence contains 196 images. Some of them are shown in Figure[5.7]

experiment demonstrates two things. Firstly, there are scenes where none of the cues alone is
able to correctly track the object. Taking region- and motion-based cues together, on the other
hand, leads to a successful tracking. Secondly, there is clearly a difference between the usage of
correspondences from optical flow and SIFT. While the estimated flow might not be exact in dif-
ficult situations, it provides at least enough correspondences for a unique approximate solution.
SIFT correspondences are usually more reliable, but their number is sometimes not sufficient to
estimate the pose.

In order to evaluate the sensitivity of the region based pose estimation on the initialization,
we added increasing perturbations to the correct pose. This kind of experiment is also com-
monly used in the scope of active appearance models [MBO4]]. The perturbing twists were
0.016(10,10,10,0.5,0.5,0.5) " for increasing 6. The remaining average deviation of all mesh
points is depicted in Figure[5.5]together with the initial poses for three 6. Clearly, the method can
deal very well with small perturbations, and the pose estimates are still quite good with medium
perturbations. The reason for some smaller perturbation leading to inferior results than a larger
perturbation is due to different ways from the initialization to the next optimum. Already very
small structures can be the reason for a local minimum. Initializations that are too far away lead
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Figure 5.8: Tracking result for another rigid object. Two out of three camera views (rows) are
shown for four frames.

to local minima that correspond to very bad poses. For this reason, motion based cues are needed
to handle fast motion at low frame rates.

In Figure displacements between successive frames are almost of the size of the object.
Without a motion based prediction, region based pose estimation will fail to track this object.
Surprisingly, although the object is homogeneous in large parts and there is a very high amount
of noise added to the input images, multi-resolution optical flow is still able to capture its motion
by means of its coarse-scale structure. The SIFT descriptor works fine as well, though there are
only few SIFT regions on the puncher. When further decreasing the frame rate by skipping every
second image, optical flow fails as the motion is larger than the tracked structure itself. For the
SIFT tracker, the larger transformation is not a problem. The accumulation of inaccuracies is
prevented by the region-based matching. Once the projected object model covers larger parts of
the object region, the segmentation can robustly determine the exact location of the object con-
tour, thanks to the homogeneity of the object region. As a consequence, it can correct errors of
the motion-based prediction. This experiment shows that the system can deal with homogeneous
objects, even if there are large displacements and substantial degradation by noise.

Figure shows a slightly more difficult sequence, which we used to quantitatively determine
the sensitivity to noise in the input images. We added increasing amounts of noise to the im-
ages and observed the frame number when tracking failed. The results are shown in Table
Without additional noise, the combined system can track the sequence completely. The tracking
fails earlier in the sequence when the amount of noise is increased. Using the combined system,
successful tracking is possible for a larger number of frames.

We performed two further experiments with quantitative results, as depicted in Figure and
Figure [5.10] Ground truth has been provided by placing the tracked objects on a turntable and
reading the true pose from the turntable controller. The tracking curves reveal a very accurate
tracking of the objects. In case of the tea pot, the average error is only 2.3 degree. The error
increased to 4.6 degree replacing 50% of the pixel in the input images by uniform noise. In case
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Figure 5.9: Top row: Tracking results of a tea pot on a turntable. Second row: Tracking results
with 50% of the pixels in the input image replaced by a uniformly distributed random value.
Bottom: Input image with estimated contour and tracking results of a toy car on a turntable. A
quantitative error analysis is given in Figure[5.10}
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Figure 5.10: Quantitative error analysis of the sequences shown in Figure [5.9] From left to
right: a) Tea pot. Comparison of the estimated pose (blue) versus the true motion (black). The
red curve shows the result on the noisy input images. b) Toy car. Comparison of the estimated
pose (blue) versus the true motion (black).

of the car, the average error is 2 degree.

Human motion tracking

In another set of experiments, we applied the system to the tracking of articulated objects, in
particular to human motion tracking. Besides the global rigid motion, the joint angles of the
body model represent further degrees of freedom that have to be estimated.

Due to the relatively small size and fast motion of limbs, it is very likely that region-based track-
ing gets stuck in local optima and tracking fails. Hence, the predicted pose due to optical flow
and SIFT matches is particularly important for human motion tracking. This is demonstrated
by the experiment in Figure where the upper body of a person waving his arms is tracked.
Without a good pose prediction, the arm movement is clearly underestimated as the contour
extraction gets stuck in a local optimum. Optical flow and SIFT together allow for good predic-
tions. SIFT alone is not sufficient since the number of keypoints is often too small for a unique
estimate. Provided a good prediction, the region-based cues ensure a precise final pose estimate
without accumulating the errors from motion-based tracking.

The experiment in Figure [5.12] shows the outcome of a full-body outdoor running sequence.
The body model has 26 degrees of freedom and the image data was captured with four Basler
gray-scale cameras and 120 frames per second. Ground-truth data was obtained for this sequence
through parallel tracking of the person with a marker-based system. Bad marker correspondences
have been corrected manually.

Thanks to combined cues, even fast motion can be tracked, as illustrated in Figure The
image in the top left corner depicts the start pose. The second image shows the predicted motion
in the next frame using optical flow. The third image shows the tracked SIFT-features. Due
to the black body suit, not enough features are detected to allow for a proper prediction using
SIFT tracking alone. Tracking fails even with regularized equations since limb movements are
not properly predicted. The left and center image in the bottom row depict the outcome of the
combined optical flow and SIFT tracker. It is superior to the results of the separate motion
predictors. The estimate is further refined when region-based tracking is involved. Compare the
right hand of the person, for instance.
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Figure 5.11: Combining motion- and region-based tracking allows capturing fast upper body
motion. Top row: Initialization with the pose from the previous frame (left), and the estimated
pose in the new frame when combining all available cues (right). Middle row: Matched SIFT
keypoints (left). Yellow rectangles indicate keypoints in the previous frame, green crosses key-
points in the new frame. In this frame, successfully matched keypoints are available at the main
body but missing at the hands. Right: motion prediction by optical flow and SIFT. Bottom
row: The same situation with region-based cues only. Lacking a sufficiently close initialization,
contour extraction fails (left) and leads to an inaccurate pose estimation (right).
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Figure 5.12: Full body tracking in a sequence with ground truth data. Top row: Input frames
from one out of four camera views. Bottom row: Synthesized images from the tracked 3D
pose. A different viewpoint than in the input images is depicted. Further results are shown in

Figures [5.13] [5.14} [5.13] and Table[5.2]

flow only | region only | region+SIFT | region+flow | region+SIFT+flow
120 fps -(30) 4294342 | 435+£3.31 | 442+ 3.38 4.46 £+ 3.38
40 fps -(30) - (165) 4.35+3.34 | 4.31 +£3.43 4.29 £ 3.38
30 fps -(33) -(118) 4.86+£4.29 | 4.47+£3.94 4.73 £3.99
24 fps -(21) -(33) -(33) -(25) 5.83 +£4.91

Table 5.2: Comparison of cue combinations at various frame rates corresponding to the experi-
ment in Figure[5.12] The table shows the average error of the knee and elbow joint angles over
all 180 frames in degrees. The second value indicates the standard deviation. Tracking failures
are marked by ’-’ and a number that indicates the frame where tracking failed (one bad limb).

Table [5.2] shows quantitative results for the most interesting cue combinations. Clearly, the
combination of correspondences improves the robustness of tracking when the frame rate is
reduced. When tracking is successful, the results are very precise with average errors of about 5
degrees. Figure[5.13|depicts corresponding tracking curves for the elbow and knee angles. The
system with the combined cues is close to the ground truth even when the frame rate is small,
whereas tracking with the purely region-based system fails (red curves).

Tracking with purely motion-based cues always fails due to accumulation of errors. Figure[5.13]
illustrates the corresponding drift. Although the estimated optical flow is extremely precise, as
indicated by the successful tracking of the torso over 150 frames, even smallest errors accumulate
over time especially at limbs with few correspondences. Such drift can be reduced by region-
based correspondences, which are based on matching the image directly to the model and are
less sensitive to small errors in previous frames.
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Figure 5.13: Tracking diagram for the sequence in Figure The curves show the angles of
the two elbow and the two knee joints. Top: Comparison of the proposed system (blue) to the
ground truth (black). Bottom: Comparison of the combined system (blue) to the purely region-
based system (red) for a reduced frame rate of 24fps. The black curve shows again the ground
truth. The tracking failure of the single-cue system is clearly visible. See Table for average
errors.

(e) ®

Figure 5.14: Combining motion- and region-based tracking allows capturing the fast motion of a
jogging person. From left to right: a) Object pose at frame 1. b) Pose at frame 2 estimated from
optical flow correspondences only. ¢) Tracked SIFT features: not enough features are located to
ensure a proper prediction. d) Estimated prediction at frame 2 using combined optical flow and
SIFT information. Gray: pose in frame 1. Black: prediction for frame 2. e) Prediction from (d)
overlaid with the image. The outcome is much better than the result in (b). f) Final outcome for
motion- and region-based tracking.
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Figure 5.15: Illustration of the drift when only flow-based correspondences are used for tracking.
From left to right: Result at frames 1, 10, 30, and 150. The optical flow yields good results
for the first frames, which indicates its suitability for predicting the pose in successive frames.
However, errors accumulate over time and are the reason for tracking failures of the limbs.

The computation time for tracking the full body model with four camera views was around 4
minutes per frame. Tracking the upper body model with two camera views took approximately
80 seconds per frame. The rather large computation time is mainly due to the iterative region-
based tracking and the involved local region statistics including a texture feature space.

5.3.6 Summary

In this section, the combination of surface-region matching, optical flow, and SIFT tracking has
been proposed for 3D motion capture of rigid and articulated objects. The system is designed in
a way that all involved cues can incorporate their strong aspects, while weaknesses are sought
to be suppressed. This is achieved as the system adaptively weights cues according to their
reliability. This results in a very generally applicable tracking system. We have demonstrated
this by a number of experiments in very different scenarios, where we obtained stable tracking
results although the parameters of the system were not manually adapted when changing the
scene. In particular, the system is able to capture large transformations, it can track textured as
well as homogeneous objects, and it can deal with noise and partial occlusions. Furthermore, we
have demonstrated that the system can be applied to human motion tracking, even when prior
knowledge about typical human movements is missing.

5.4 Analysis-by-Synthesis Tracking

Although the combination of region- and motion-based cues performs well, it assumes that the
initial pose is known or well approximated as demonstrated in Figure[5.3] It also implies that the
system cannot recover from a significant tracking error. A natural approach to overcome these
limitations is to exploit available prior knowledge of the object. So far only the 3D shape was
used (Figures |3;13| a) and b)) and combined with motion cues that match the 2D image texture
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between successive frames (Section[5.3)). However, the 3D surface model can be extended by ac-
quiring the surface texture which usually resolves ambiguities for objects with symmetric shapes
as shown in Figure Since the estimating process relies on correspondences between some
2D features in the images and their counterparts on the 3D model, the additional information
allows extracting more reliable correspondences that makes the pose estimation more robust.
Moreover, it allows detecting the initial pose automatically.
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Figure 5.16: 3D mesh and rendered textured model used for tracking.

5.4.1 Overview
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Figure 5.17: Correspondences extracted by matching patches between the synthesized image
and the original image and correspondences between the contour of the projected 3D model and
the contour obtained by segmentation are used for pose estimation. If not enough keypoints are
detected by patch-based matching, an autoregression is performed to predict the pose for the
next frame.

The approach for pose estimation is illustrated by the flow chart in Figure Knowing the
pose of the object for frame ¢ — 1, we generate a 3D textured model in the same world coordinate
system used for the calibration of the cameras. Synthesized images of the model are obtained by
projecting the model onto the image plane according to the calibration matrix for each camera.
In a second step, the patch-based features, namely PCA-SIFT [KS04], are extracted from the
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synthesized images and from the new images of frame ¢. The features are used for establishing
correspondences between the 3D model and the 2D images for each view. For estimating the
pose, we use the least-squares approach of the previous sections. If not enough correspondences
are extracted by PCA-SIFT, the pose is predicted by an autoregression. Finally, region-based
matching is performed where the predicted pose is used as shape prior (Section [5.2)). The pose
for frame t is then estimated from correspondences obtained by patch-based and region-based
matching.

5.4.2 Analysis-by-Synthesis

Synthesis

(a) )

Figure 5.18: From left to right: a) Triangulation. b) Parameterization. ¢) Texture map. d) Tex-
tured model.

For synthesizing images, the texture of the model needs to be acquired. As in the previous
sections, we assume that a triangulated 3D model is available as shown in Figure [5.18]a), which
might be obtained by any 3D acquisition or modeling technique as discussed in Section [I.6]
Since the image domain is only 2D, a parameterization of the 3D surface is necessary. For this
purpose, the mesh is manually cut and mapped to a square where unavoidable distortions of the
triangles are reduced by a quasi-harmonic map [ZRS03], see Figure [5.18b). The images for
the texture can be either acquired directly from the tracking sequence or in a preprocessing step
by capturing the object from different viewpoints with a calibrated camera. Having images of
the object from different views, the silhouettes are extracted by background subtraction and the
pose of the model is estimated from the silhouettes [GRSO7]]. This step is described in-depth
in Section [6.2] The object is then mapped onto the squared texture map for each camera and
the visible parts are fused by multiresolution splines in order to remove seams between
triangles from different views. Invisible triangles are filled up by linear interpolation. A resulting
texture map is shown in Figure [5.18]c), which can be used to render the model in any pose. The
texture acquisition for articulated models is the same as for rigid models.

Since we do not require that the textures are extracted from the tracking sequences, the modeling
process is done only once and the model can be reused for any sequence provided that the texture
remains unchanged. In order to render the 3D model in the same coordinate system as used for
camera calibration, the calibration matrices are converted to the modelview and projection matrix
representation of OpenGL. Since OpenGL cannot handle lens distortions directly, the image
sequences are undistorted beforehand. However, the step could also be efficiently implemented
by a look-up table. In a preprocessing step, PCA-SIFT is trained for the object by building the
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patch eigenspace from the object textures. Moreover, we render some initial views of the 3D
model by rotating and store the extracted keypoints, strictly speaking the PCA-SIFT descriptors
of the keypoints, with the corresponding RBM. From the data, our system automatically detects
the pose in the first frame.

(@) (b)

Figure 5.19: Initialization. From left to right: a) Both camera views of the first frame. Best
initial view for initialization is shown in top left corner. b) Estimated pose after initialization.

Matching

Since lighting conditions between the object and its textured model are inhomogeneous, we use
local descriptors that provide robust matching under changes in viewpoint and illumination. A
comparison of local descriptors [MS0Q3]] revealed that SIFT [Low04], PCA-SIFT [KS04], and
GLOH [MSO03] perform best. The descriptors build a distinctive representation of a so-called
keypoint in an image from a patch of pixels in its neighborhood. The keypoints are localized by
an interest point detector. We use the detector proposed by Lowe [Low99] based on local 3D
extrema in the scale-space pyramid built with difference-of-Gaussian filters. It has the advantage
that it runs faster than other detectors [MS04] like the slower Harris-Affine detector [MS02]]. The
DoG representation, however, is not affine invariant. Hence, we cannot use GLOH that requires
an affine-invariant detector. Therefore, we use PCA-SIFT that reduces the dimension of the
descriptor by principal component analysis. This speeds up the matching process and produces
less outliers than SIFT but also fewer correspondences.

After the 3D model is rendered and projected onto the image plane for each camera view, the
keypoints are extracted by PCA-SIFT. The keypoints are also extracted from the captured im-
ages. The effort is reduced by bounding cubes for each component of the 3D model. Projecting
the corners of the cubes provides a 2D bounding box for each image. Since we track an ob-
ject, we can assume that the object is near the bounding box except for the first frame. Hence,
the detector is only performed on a subimage. 2D-2D correspondences are then established by
nearest neighbor distance ratio matching [MSO03]] with the additional constraint that two different
located points cannot correspond to points with the same position. Since the set of correspon-
dences contains outliers, the rudest mismatches are removed by discarding correspondences with
a Euclidean distance that exceeds the average by a multiple.

The 3D coordinate X of a 2D point x in the projected image plane of the model is obtained
as follows: Each 2D point is inside or on the border of a projected triangle of the 3D mesh
with vertices v1, va, and vs. The point can be expressed by barycentric coordinates, i.e., x =
>, @;v;. Assuming an affine transformation, the 3D point is then given by X = > . a; V;
where V; are the 3D vertices of the projections v;. This gives a better estimate for X than
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Figure 5.20: From left to right: a) Correspondences between projected model and image.
b) Displaying the points of the projected model (yellow squares) corresponding to points in the
image (green crosses). Two outliers are in the set of correspondences. ¢) After filtering only the
outliers are removed.

taking the nearest projected vertex as in Section [5.3.2] The corresponding triangle for a point
can be efficiently determined by a look-up table containing the color index and vertices for
each triangle. Afterwards, the pose is estimated from the resulting 2D-3D correspondences.
In a second filtering process, the new 3D coordinates from the estimated pose are projected
back and the last outliers are removed by thresholding the Euclidean distance between the 2D
correspondences and the reprojected counterparts.

During initialization, the keypoints from the images are matched with the keypoints extracted
from the initial views beforehand. According to the number of matches, a best initial view is
selected and the pose is estimated from the obtained correspondences as shown in Figure

Prediction

It is not straightforward to derive a formula for the velocity of a rigid body whose motion is given
by g(t), a curve parameterized by time ¢ in SE(3), since SE(3) is not Euclidean. In particular,
g ¢ SE(3)and g ¢ se(3). But by representing a rigid body motion as a screw action, the spatial
velocity can be represented by the twist of the screw, see [MLS94] for details. This allows for
motion interpolation, damping, and prediction.

For the pose prediction, an autoregression is employed that takes the global rigid body motions
P; of the last NV frames into account. For this purpose, we use a set of twists £ = log(Pl-P;ll)
representing the relative motions and we make use of the adjoint transformation to represent
a screw motion with respect to another coordinate system: If £ € se(3) is a twist given in a
coordinate frame A, then for any G € SE(3) which transforms a coordinate frame A to B, is
Gf G~ a twist with the twist coordinates given in the coordinate frame B, see [MLS94] for
details. The mapping é — Gé G~ is called the adjoint transformation associated with G.
Given a set of world positions and orientations P;, see Figure [5.21] the twists & can be used
to express the motion as local transformation in the current coordinate system Mj: Let & =
log(P2 Py 1) be the twist representing the relative motion from P; to P,. This transformation
can be expressed as local transformation in the current coordinate system M; by the adjoint
transformation associated with G = M7 P, 1. The new twist is then given by f 1= Gé 1G~1. The
advantage of the twist representation is now that the twists can be scaled by a factor 0 < \; <1
to damp the local rigid body motion, i.e., fi = G)\lfl G~!. For given \; such that diNi=1,
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Figure 5.21: Transformation of rigid body motions from prior data F; in a current world coor-
dinate system M;. A proper scaling of the twists results in a proper damping.

the predicted pose is obtained by the rigid body transformation

exp(€y) exp(Ey_1) - - - exp(£&]).

(5.20)

Figure 5.22: 4 successive frames of a rotation sequence (only one view is shown). Top row:
Pose is predicted by autoregression for lack of PCA-SIFT matches. Black: Predicted pose. Gray:
Previous pose. Middle row: Contour extracted by segmentation. Bottom row: Estimated pose
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Fusion

Although the segmentation as previously described is quite robust to clutter, shadows, reflections,
and noise, a good shape prior is essential for tracking since both matching between the contours
and the segmentation itself is prone to local optima. The predicted pose by an autoregression
usually provides a better shape prior than the estimated pose in the previous frame. In situa-
tions, however, where the object region and the background region are difficult to distinguish,
the error of the segmentation and the error of the prediction are accumulating after some time.
The shortcoming is compensated by PCA-SIFT, but it is also clear that usually not enough key-
points are available in each frame. Hence, the correspondences from contour matching and from
descriptor matching are added to one linear system for the pose estimation. Since the contour
provides more correspondences, the sums in (5.3)) and (5.3) are replaced by weighted sums as in
Section[5.3.4] Let nc denote the number of contour-based correspondences and w; the weights.
While the contour-based correspondences are taken as reference and all of them are assigned the
weight wc = 1, PCA-SIFT correspondences are all weighted by wpca—_sirr = 0.2 - nc.

—_—

Figure 5.23: Rotation sequence with a moving person. From left to right: a) Number of
matches from PCA-SIFT (dark gray). After filtering the number of matches is only slightly re-
duced (black). When the number is below a threshold, the pose is predicted by an autoregression
(gray bars). b, ¢) The rotating box is occluded by a moving person.

5.4.3 Experiments

For evaluating the performance of the analysis-by-synthesis approach, the 3D textured model
shown in Figure[5.16]is used. The textures have been acquired from a video sequence that is not
part of the evaluation sequences. The other sequences have been recorded by two synchronized
and calibrated cameras under different lighting conditions. Although the size of the images
1s 502 x 502 pixels, the object is only about 100 x 100 pixels. The initial position has been
automatically detected for each sequence as shown in Figure[5.19]

The tracked object is partially covered with two dissimilar fabrics and the printed side reflects
the light. It is placed on a chair that occludes the back of the object. The background is rich
textured and non-static. Shadows, dark patterns on the texture, and the black chair make contour
extraction difficult even for the human eye. Furthermore, a person moves and occludes the
object. These conditions make great demands on the method for pose estimation.
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Figure 5.24: Pose estimates for 10 of 570 frames. The sequence contains several difficulties
for tracking: a rich textured and non-static background, shadows, occlusions, and other moving
objects. Only one camera view is shown.

In the first sequence, the chair with the object rotates clockwise. When the back of the chair oc-
cludes the object, there are not enough distinctive interest points for pose estimation. Therefore,
the pose is predicted by an autoregression for the next frame as shown in Figure[5.22] Due to the
shape prior, the segmentation is robust to the occlusion such that the estimates are still accurate.
The number of matches from PCA-SIFT with respect to time is plotted in Figure[5.23]a). During
the sequence, the object rotates counterclockwise while the person orbits the object clockwise.
As we can see from the diagram, PCA-SIFT produces only few outliers that are removed after
the filtering. The gray bars in the diagram indicate the frames where an autoregression was per-
formed. Since the number of matches range from 1 to 77, it is clear that an approach based only
on the descriptors would fail in this situation.

Figure 5.25: Comparison with a contour-based method. From left to right: a) Pose estimates
for frames 5, 50, 90, 110. b) Result of our method at frame 110.

Pose estimates for a third sequence including rotations and translations of the object are shown in
Figure[5.24] When only the contour is used, the pose estimation is erroneous since both segmen-
tation and contour matching are distracted by local optima, see Figure [5.23)a). For comparison,
the result of our method is also given (Figure[5.25]b)).

Finally, noise on the sequence is simulated in order to obtain a quantitative error analysis. Since
the object is placed on the chair, the y-coordinate of the pose is approximately constant. Dur-
ing the sequence, however, the object shifts slightly on the chair. The peak at frame 527 in the
diagram of Figure [5.26]a) is caused by a relocation of the object. For one sequence, we added
Gaussian noise with standard deviation 35 to each color channel of a pixel. Another sequence
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was disturbed by 80 teapots that were rendered in the 3D space of the tracked object. The teapots
drop from the sky where the start positions, material properties, and velocities are random. Re-
garding the result for the undistorted sequence as some kind of ground truth, the diagram in
Figure [5.26] a) shows the robustness of our approach. While an autoregression was performed
only twice for the unmodified sequence and the average number of filtered matches per frame
from PCA-SIFT was 50.9, the numbers fell down to 27.9 and 13.1 for the teapots sequence with
132 predictions and the noisy sequence with 361 predictions.
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Figure 5.26: From left to right: a) Quantitative error analysis for a sequence with disturbances.
Black: Undisturbed sequence. Red: Gaussian noise with standard deviation 35. Blue: 80 teapots
dropping from the sky with random start position, material properties, and velocity. b) Top:
Stereo frame 527 of the noisy sequence (image details). Bottom: Two successive frames of the
teapot sequence.

5.4.4 Summary

The proposed analysis-by-synthesis approach exploits the shape and the texture of the surface.
In contrast to motion-based cues, it is robust to partial occlusions, can recover from errors, and
supports an automatic initialization. The additional region-based cue allows tracking even when
the number of features is very low, e.g. in the case of occlusion, without the need of an additional
re-initialization after some frames, when enough features are again detected [LPFO4]. Another
variant of keypoint matching, which allows real-time initialization and tracking, classifies the
best initial view by a random forest [LLF05]. Although these approaches work well for rigid
objects as we have shown, they are not suitable for articulated objects since the large number
of degrees of freedom requires a large number of keyframes. In addition, small body parts like
hands cannot be estimated by features alone. In order to obtain a robust tracking system even
for articulated objects, the ideas from Sections[5.2}[5.3] and[5.4]need to be combined in a unique
framework as it is proposed in the following section.
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5.5 Drift-free Tracking

Motion-based tracking approaches as in Section [5.3|rely on image features that are tracked over
time but the accumulation of small errors results in a drift away from the target object. In
this section, we address the drift problem for the challenging task of human motion capture
and tracking in the presence of multiple moving objects where the error accumulation becomes
even more problematic due to occlusions. To this end, we propose an analysis-by-synthesis
framework for articulated models. It combines the complementary concepts of patch-based and
region-based matching to track both structured and homogeneous body parts.

(a)

Figure 5.27: Motivation. When the pose of the target object (projected mesh) is known at
the current frame, 2D correspondences between the current frame (square) and the next frame
(cross) are often used to estimate the pose for the next frame. While this is sufficient at the
beginning when the pose is well estimated (a), small errors that accumulate over time result in
a drift away from the target (b). In the worst case, the object is completely lost (¢). The drift is
even more problematic when occlusions occur, e.g. occlusions by other objects (Figure or
self-occlusions in the case of humans (Figure [5.34).

Image features can be tracked over time by flow-based methods (Section
or by patch-based 2D tracker like KLT or interest point matching [MS03]] (Section[5.3.2).
Under the assumption that the pose is well estimated for the current frame, the 2D correspon-
dences between the current frame and the next frame can be used to estimate the 3D pose for the
next frame as illustrated in Figure[5.27]for a rigid object. The main drawback of these approaches
is the error accumulation over time resulting in a drift away from the object. To overcome this
limitation, the combination of multiple cues was proposed, e.g. optic flow and edges for face
tracking or optic flow and contour for rigid objects [BRCS06]]. In an iterative
analysis-by-synthesis approach was suggested for face tracking.

We go beyond the tracking of rigid objects and faces and propose a framework that combines
the ideas of multi-cue integration and analysis-by-synthesis for the challenging task of human
motion capture and tracking in the presence of multiple objects where drift becomes even more
problematic due to occlusions as shown in Figures [5.30] and [5.34] To recover from errors and
to detect occlusions, we propose the use of a synthesized image, which is generated with the
predicted pose of the object and a static texture, as a reference image for each frame. For both
prediction and correction by synthesis, patch-based matching is performed as outlined in Fig-
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Figure 5.28: Having estimated the pose for time ¢ — 1, the pose for the next frame is predicted
by matching patches between the images of frames ¢ — 1 and ¢. The predicted pose provides a
shape prior for the region-based matching and defines the pose of the model for synthesis. The
final pose for frame ¢ is estimated from weighted correspondences emerging from the prediction,
region-based matching, and analysis-by-synthesis, see also Figure

ure[5.28] While the illumination properties between two successive frames are similar and there-
fore a large number of matches can be provided in the prediction step (see Figure [5.29), a static
texture in the synthesis step provides correspondences that are not affected by error accumula-
tion during tracking. Since the surfaces of human body parts are not always covered by patterns,
which can be tracked well by patch-based matching, correspondences for homogeneous body
parts are obtained by region-matching where the segmentation is improved by a shape prior
from the predicted pose. In the following sections, we briefly recapitulate the cue extraction
and the pose estimation for the sake of completeness, which has been described in-depth in the
previous sections.

5.5.1 Cues
Region-based Matching

Region-based matching minimizes the difference between the projected surface of the model and
the object region extracted in the image, see Figure [5.29)b). For this purpose, 2D-2D correspon-
dences between the contour of the projected model and the segmented contour are established
by a closest point algorithm [Zha94]. Since the projected points on the contour relate to 3D
vertices of the mesh as shown in Figure[5.29)d), 3D-2D correspondences between the model and
the image can be derived.

The silhouette of the object is extracted by a level-set segmentation that divides the image into
fore- and background where the contour is given by the zero-line of a level-set function . As
proposed in [RBWO7]], the level-set function ® is the minimum of the energy functional
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(b)

Figure 5.29: From left to right: a) Correspondences between current frame (yellow square)
and next frame (blue cross). b) The extracted contour for region-based matching also provides
correspondences for homogeneous body parts like the right foot. ¢) Correspondences between
the synthesized image and the original image. d) Projection of estimated pose.
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segmentation

+ A/((I) - )% dz, (5.21)
Q

shape distance

where H is a regularized version of the step function, p; and p» are the densities of the fore- and
background modeled by local Gaussian densities. While the first term maximizes the likelihood,
the second term regulates the smoothness of the contour by parameter ©) = 2. The last term
penalizes deviations from the projected surface of the predicted pose ®, with A = 0.06.

Patch-based Matching

Patch-based matching extracts correspondences between two successive frames for prediction
and between the current image and a synthesized image for avoiding drift as outlined in Fig-
ure[5.28] The synthetic image is obtained by projecting the predicted textured model onto the
current image as shown in Figure [5.29|c). For reducing the computation effort of the keypoint
extraction [Low99], a region of interest is selected by determining the bounding box around
the projection and adding fixed safety margins that compensate for the movement. To cope
with the illumination differences between the synthetic and the current image, we apply PCA-
SIFT [KS04] as local descriptor that is trained for the object by building the patch eigenspace
from the object texture. 2D-2D correspondences are then established by nearest neighbor dis-
tance ratio matching [MS03|]] where the search is reduced to keypoints inside a local neighbor-
hood, e.g. 100 x 100 pixels, to deal with repeating patterns on the surface. Since each 2D
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keypoint = of the projected model is inside or on the border of a triangle with vertices vy, vo,
and vs, the 3D counterpart is approximated by X = . «; V; using barycentric coordinates
(o1, a2, a3).

The patch matching produces also outliers that need to be eliminated. In a first coarse filtering
step, mismatches of the torso and each limb are removed by discarding 2D-2D correspondences
with a Euclidean distance that exceed the average of the torso or limb by a multiple. After de-
riving the 3D-2D correspondences, the pose is estimated and the new 3D correspondences are
projected back. By measuring the distance between the 2D correspondences and their repro-
jected counterparts, the remaining outliers are detected.

For the patch-based matching between two successive frames, only keypoints on the projected
surface of the model are kept and the filtering thresholds for the limbs are given by predicting
the largest 2D translation of the points of each limb. For this purpose, the joint configuration is
predicted by an autoregression

Oy = a10y_1 + 4205 + a30,_3, (5.22)

where the coefficient vectors a; are computed from a training sequence. The rigid body mo-
tion 6¢ is predicted as described in Section By approximating each limb with a cuboid,
the maximal translation can be efficiently calculated for each view. Since the projected surface
depends on the previous estimated pose, parts of the correspondences might belong to the back-
ground as demonstrated in Figure Hence, corresponding features of the torso or of a limb
with the same location are deleted if the average is above a threshold. An inaccurate pose can
also yield a wrong limb association of a keypoint when self-occlusions occur. The confidence of
a correspondence is therefore significantly reduced if neighboring pixels of the keypoint belong
to two unconnected limbs. Filtered 2D-2D correspondences are shown in Figures[5.29]a) and c).

5.5.2 Pose Estimation

For estimating the pose, we seek for the transformation y = (6¢, ©) that minimizes the error of
extracted 3D-2D correspondences denoted by pairs (X, x;) of homogeneous coordinates with
weights w;. According to Section[5.1] this is modeled by the weighted least squares problem:

2

argmin% Z w; |[IT | exp (95) H exp (9% (j)ébki (j)> X; | xn; —myll . (5.23)
X i j=1 9

The sought transformation is obtained iteratively by solving for each iteration step the linear
system

w1A1 wlbl

A b
BEl BV et (5.24)
wyp A, wyby

which is derived by linearizing the exponentials similar to Equation (5.6)).

Tracking

After the prediction, the final pose is estimated from correspondences that are extracted by patch-
based and region-based matching as outlined in Figure Since the number of correspon-
dences from the contour varies according to scale, shape, and triangulation of the object, we
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weight the summands in Equation (5.23)) such that the influence between patches and silhouette
is independent of the model.

We denote the set of correspondences from the original images, the synthetic image, and the
contour by C,, C, and C,, respectively. The invariance is obtained by setting the weights for
the equations for C, and Cj in relation to Cl:

_ e
Gl

W we=1, ws= Fw,. (5.25)
While the influence of the image-based patches and the contour is controlled by « independent
of the number of correspondences, the weight w; reflects the confidence in the matched patches
between the synthesized and original image that increases with the number of matches |Cy|
relative to |C,|. Since illumination differences between the two images entail that |C;| is less
than |C,|, 5 compensates for the difference, cf. Figures a) and c). For the experiments, we
set « = 0.2 and 8 = 10.0.

To avoid that the system of linear equations (5.24) becomes under-determined for small and
homogeneous body parts, we add a low weighted regularization term that penalizes the deviation
of a joint angle 6; from the predicted pose &) :

105 = (5 - 0)) (5.26)

for each joint j, where 9~j is the previously estimated absolute joint angle. The parameter -y is
set relative to the number of contour correspondences to achieve a constant weighting for each
frame. In practice, we use v = 0.02 - |C,|.

Self-intersections are prevented by learning the physical constraints of the human skeleton from
training data ©* where the probability of a pose Dpose 18 estimated by a Parzen-Rosenblatt estima-
tor with Gaussian kernels over a small set of skeleton configurations, see Section[d.2.1] In the lo-
cal optimization setting, this can be integrated by minimizing the negative logarithm [BRKCO06]:

Epose = - ln(ppose(@))- (5.27)

Using a gradient descent with step size 7, one obtains for each joint j an additional equation

N ok—o|? 7]
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that is added to the system of linear equations (5.24). In our experiments, the parameters
7=0.1250% and § = 0.08 - |C,| yielded stable results. Since the dependency between the
joints of the head, the upper, and the lower body is low, the sample size is reduced by splitting
Ppose Up into three independent probabilities nggg, ppobe , and p;{;ggg’“, respectively. Indeed, we

use only 200 samples of the CMU motion database [CMUOS].

59j:5(éj+ratéj) with 9,0, = (5.28)

Occlusion

Since patch-based matching between two successive frames is prone to occlusions, it requires
the removal of correspondences not belonging to the target, see Figure a). In our analysis-
by-synthesis framework, occluded patches are detected by comparing the original image with the
synthesized image. For this purpose, the patches are mapped into the CIELab color space that
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Figure 5.30: From left to right. Row 1: a) Most features belong to the occluding object (frame
44). The bear (target) is moving from left to right and the kangaroo from right to left. b)
Probability of an occlusion in the shown view for a sequence with 150 frames. Row 2: ¢) The
occlusion is correctly detected (frame 36). d) After the occlusion, the probability drops below
the threshold 0.15 and the object is still correctly tracked (frame 52). Row 3: Frame 44. e)
Almost all wrong matches are removed. f) Estimate after removing wrong matches. g) Estimate
without occlusion handling.
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mimics the human perception of color differences. To calculate the cross-correlation of color
images [SE99], we represent each pixel with Lab color values as quaternion by Li + aj + bk. A
correspondence is then labeled as occluded if the difference between the mean of the patch on the
original image P° = {p{,...,p2} and the patch on the synthesized image P* = {pj,...,p}}
is large or if the normalized cross correlation

> 97|
VS B S

is below a given threshold, where p{ = p? — % >k p¢ and p? denotes the conjugate. An example
for eliminating occluded patches is shown in Figures a) and e).

NCC = (5.29)

(a) (b)

Figure 5.31: Occlusions are detected by recognizing changes of the projected surfaces. From
left to right. a) The scene contains two moving objects captured by two cameras. The target
object (blue) is so far not occluded by the unknown object (red). b) Since the target is now
occluded in the right camera view, the visible area of the target is much smaller than in the
previous frame. The ratio of the covered areas between the left and the right image plane has
also changed.

To make the removal of patches more efficient, it is only performed when occlusions are detected
for a camera view which is illustrated in Figure When the target becomes occluded, the
visible area of the projected surface gets smaller. By observing changes of the covered area for
one view and the ratio between all views, occlusions can be detected. Since the visible areas of
the projections cannot be measured, we use the number of matches as indicator, i.e. the difference
of the absolute and relative number of matches between two successive frames for each view v:

Ary, |Cot| — ot (5.30)
v ' Co'
= | l,t . uﬂll. (5.31)
Zu |CO ‘ Zu ’CO |

While these numbers indicate the beginning of an occlusion, the occluded area is measured by
the number of occluded patches | C| relative to all matches |C2™|. Based on these observations,
we propose a recursive model for the probability of an occlusion at time ¢:

|Coce vt vty | 2 ppm1 1
—f(A)— f(A” —puiTt — — 5.32
|Cg,t’ f( abs) f( rel) + 5pocc 9’ ( )

v,t

pOCC:




5.5 Drift-free Tracking 67

where pi is truncated to the interval [0,1] and f(z) = =z if x < —0.2 else zero. The function
f ensures that only significant changes of at least 20% are taken into account. Using this model,
the detection and removal of occluded patches is only performed when the probability is higher
than 0.15, marked as the dashed line in Figure [5.30]b).
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Figure 5.32: Comparison of the results with and without occlusion handling for a sequence
containing no occlusions (170 frames). From left to right: a) Deviation of the x-coordinate.
b) The frame (122) with the largest deviation between occlusion handling (yellow) and without
detecting occlusions (red). ¢) Two additional sequences with occlusions. Top: Object is occluded
by a human. Frames 35 and 42 are shown. Botfom: Smurf and bear are thrown in opposite
directions. Frames 35 and 38 are shown.

Initialization

Unsupervised initialization is important for applications since an initial pose is typically not
given. Since neither a predicted pose nor a shape prior is available, we estimate the pose from
the textured model assuming that the object is observable. To this end, we preliminarily render
some initial views by rotating the textured object with a fixed joint configuration, e.g. the same
as used for the texture acquisition, extract the features, and store them together with the mean
values of the patches P* and the corresponding pose parameters. For initialization, the extracted
keypoints for the first frame are matched with the database and the best initial view is selected for
estimating the pose. The obtained correspondences with mean values ]5Z-f and ]55 are weighted

by ]Pif — P?|72 for stabilizing the estimation.

5.5.3 Experiments

For evaluating the performance of our approach, we captured several scenes with different ob-
jects by 3-5 synchronized and calibrated cameras with 25 frames per second and resolution of
1004 x 1004 pixels. The 3D models were acquired by a 3D scan and the images for the texture
acquisition were taken from a sequence where lighting conditions and camera positions differed
from the test sequences.

Row 1 of Figure [5.34] shows some results for a sequence with a stuffed bear tracked using a
rigid model. The bear with non-trivial shape is tossed by a human — the second moving object
— and rotates in the air by more than 180 degrees. The scene contains background clutter and
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Figure 5.33: Comparison. Row 1: Estimated y-coordinate of the bear for the sequence shown
in row 1 of Figure [5.34] The approaches that rely only on multi-cue integration cannot handle
the drift. Row 2: Frame 298. From left to right: a) Region-based matching with optical
flow [BRCSO06]. b) Region-based matching with PCA-SIFT. ¢) Our approach estimates the pose
without drift.

is captured by 3 cameras. The occlusion detection is demonstrated in Figure [5.30] The stuffed
kangaroo moves from right to left and occludes the stuffed bear moving from left to right such
that the occluded target and the occluding object are moving at the same time. The occlusion
between the frames 36 and 52 is correctly recognized and the pose is accurately estimated during
the entire sequence whereas the tracking fails without an occlusion handling as shown in row 3
of Figure [5.30] Since the occlusion detection produces also false positives, e.g. for a rotation
away from the camera, we measured the impact of the occlusion handling for another sequence
without occlusions. In Figure [5.32] a), the absolute deviations of the estimates with occlusion
handling from the estimates without detecting occlusions are plotted for the x-coordinate. The
image next to the diagram shows that the induced error is small. Additional results for sequences
with occlusions are shown in Figure [5.32]c).

To compare our method with multi-cue approaches that were proposed for rigid objects, we used
the sequence corresponding to row 1 of Figure[5.34]and plotted the estimates for the y-coordinate
in Figure[5.33] We applied the same level-set segmentation for all methods to make a fair com-
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Figure 5.34: Estimates for three different sequences. Row 1: The bear is tossed and rotates
(360 frames). One of three views for frames 60, 115, 180, 235, and 315. Row 2: Complex and
fast movements of the legs including many self-occlusions (400 frames). One of four views for
frames 45, 90, 135, 180, 225, 270, 315, and 360. Row 3, 4: Full human body walking in a circle
with clutter (205 frames). Two of five views for frames 35, 70, 105, 140, and 175. 3D views of
the objects are shown in Figure [5.35]

parison. While the approaches that combine region-based matching with optical flow [BRCS06]
or patch-based matching cannot prevent an accumulation of estimation errors over time, our
method tracks the stuffed bear accurately over the entire sequence. It demonstrates that our
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Figure 5.35: The objects from Figure [5.34] are inserted into virtual scenes.

framework solves the drift problem better than approaches that rely only on multi-cue integra-
tion.

The lower part of a human body was tracked using an articulated model with 18 DOF. As one
can observe from the images with the projected meshes of the estimates in row 2 of Figure[5.34]
the sequence recorded with 4 cameras is very challenging for a tracker. The movement is fast
and the velocity and the direction change rapidly. In addition, self-occlusions occur since the
legs are frequently crossed. We also tracked a full human body using an articulated model with
30 DOF. In rows 3 and 4 of Figure[5.34] estimates for 2 of 5 views are shown. The sequence with
a human walking in a circle contains several difficulties. Self-occlusions occur since the arms
are close to the body and the segmentation is hindered by clutter — particularly due to cables and
metallic pipes —, shadows, and the similarity between the dark color of the sports suit and the
background. Some body parts like the hands are furthermore small and homogeneous yielding
only few correspondences from patch-based matching.
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Figure 5.36: Quantitative error analysis for subject 5S4 of HumanEva-1II. Estimates for frames
80, 160, 240, and 320. The frames 298 — 335 are neglected for the error analysis since the ground
truth is corrupted for these frames.

For a quantitative error analysis, we applied our approach to the HumanEva—1T dataset
and measured the absolute 3D tracking error. The available model is not perfect since it does
not contain the clothing of the subject S4 wearing a white T-shirt and blue jeans. The texture
was acquired from the first frame and the available silhouettes were treated as an additional
channel for the segmentation. Even though the surface of the object is rather homogeneous,
we achieve accurate estimates as shown in Figure [5.36] Since the set-up and movement of the
sequence, namely walking in a circle, is similar to the one used in [BBO6], we compare the
results in Table[5.3] Our implementation requires 7.6 seconds per image which is faster than the
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90 seconds reported in [BB0OG].

Our approach | RoAM body model [BBO6]]
error (mm) | 36.16 = 9.12 > 60

Table 5.3: Our framework performs significantly better than a statistical appearance model for
human motion capture.

5.5.4 Summary

In this section, we have presented a model-based tracking framework for solving the drift-
problem for rigid and articulated objects. An occlusion detection, which evaluates the probability
of an occlusion, observes significant changes of the visible area of the projected surface during
the sequence and initiates recognition of occluded patches by comparing the original image with
a synthesized image, if it is necessary. Since the synthesized image also provides accurate corre-
spondences, an accumulation of estimation errors is prevented. By combining the complemen-
tary concepts of region and patch-based matching, both structured and homogeneous body parts
can be tracked. A comparison with other model-based approaches for rigid objects has revealed
that the proposed method handles the drift problem better. Our experiments have demonstrated
that our framework is not restricted to a single rigid object but tackles the drift problem also for
multiple moving objects and humans in challenging scenes containing fast movements, occlu-
sions, and clutter. Although our framework benefits from objects with structured surfaces and
accurate 3D models, a quantitative error analysis for the HumanEva—IT dataset has shown that
we still achieve accurate results when these assumptions are not completely satisfied. Indeed,
the tracking error is significantly lower than the one that is obtained by a statistical appearance
model for human motion capture. Furthermore, the proposed framework can be applied to chal-
lenging real-world problems as we demonstrate in the following section where crash test video
analysis is used as an example.

5.6 Crash Test Video Analysis

The analysis of crash test videos is an important task for the automotive industry in order to
improve the passive safety components of cars. In particular, the motion estimation of crash test
dummies helps to improve the protection of occupants and pedestrians. The standard techniques
for crash analysis use photogrammetric markers that provide only sparse 3D measurements,
which do not allow the estimation of the head orientation.

Here we address motion capture of rigid body parts in crash test videos where we concentrate on
the head — one of the most sensitive body parts in traffic accidents. As shown in Figure a),
this is very challenging since the head covers only a small area of the image and large parts
are occluded by the airbag. In addition, shadows and background clutter make it difficult to
distinguish the target object from the background. To this end, we propose our model-based
approach that estimates the absolute 3D rotation and position of the object from multiple views
independently of photogrammetric markers. In order to make the estimation robust to occlusions,
reference images are synthesized using a 3D model that contains the geometry and the texture
of the object. Since our approach further combines region-based and patch-based matching,
reliable estimates are obtained even for small body parts as demonstrated in Figure
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(b)

Figure 5.37: From left to right: a) Estimating the pose of the dummy’s head from crash test
videos is very challenging. The target object is relatively small and partially occluded by the
airbag. Furthermore, background clutter and the car’s shadow make it difficult to distinguish the
head from the background. b) Estimated pose of the dummy’s head. The 3D surface model is
projected onto the image.

Tracking of small objects for crash video analysis without a surface model has also been inves-
tigated in [GBPQ6], where the relative transformation is reconstructed from a 3D point cloud
that is tracked using KLT and stereo depth data. In contrast to model-based approaches,
point clouds do not provide all relevant information like depth of penetration or absolute head
orientation.

5.6.1 Implementation
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Figure 5.38: . From left to right: a) Correspondences between current frame (square) and
next frame (cross). b) Estimated contour. ¢) Synthesized image. d) Correspondences between
synthesized image (square) and original image (cross).

The 3D surface model of a crash test dummy is readily available as most dummies are manu-
factured according to ISO standards. The texture is often not provided but it can be acquired by
projecting the images from the calibrated cameras on the object’s surface using the technique
described in and Section [6.2]to align the 3D model to the images. The tracking system
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is the same as described in Section[5.5] The used cues are illustrated in Figure [5.38]

5.6.2 Experiments

150

100

50

Depth of penetration (mm)

(€9 (b ®

Figure 5.39: Rows 1, 2: The head crashes onto the engine hood. Estimates for frames 5, 25, 45,
65, 85, and 105 are shown (from top left to bottom right). The pose of the head is well estimated
for the entire sequence. Row 3: Virtual reconstruction of the crash showing the 3D surface
model of the head and of the engine hood. From left to right: g) Frame 5. h) Frame 25. The
head penetrates the engine hood. i) Depth of penetration. The black curve shows the distance of
the head to the engine hood (dashed line).

The first experiment investigates the dynamics of a pedestrian head crashing onto the engine
hood, see Figure[5.39] The sequence has been captured at 1000 Hz by two calibrated cameras
with 512 x 384 pixel resolution. For segmentation, the images have been converted to the CIELab
color space that mimics the human perception of color differences. Since we have registered the
engine hood as shown in row 3 of Figure [5.39] the depth of penetration can be measured from
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Figure 5.40: Three frames of the EuroNCAP offset crash sequence. The car jumps and moves
laterally due to the offset barrier. The head is occluded by more than 50% at the moment of the
deepest airbag penetration.
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Figure 5.41: From left to right: a) 3D trajectory of the head. b) 3D tracking error of the head.
The ground truth is obtained from a marker-based system. Note that the object is about 10m
away from the camera.

the estimated head pose. In this case, the head penetrates 49.1mm into the engine compartment.
This information is relevant for crash test analysis since severe head injuries might be caused by
crashing into the solid engine block. Note that a standard silhouette-based approach would not
be able to estimate the rotation due to the symmetric shape of the object whereas our approach
provides good results for the entire sequence.

For the second experiment, the head of a dummy is tracked during a EuroNCAP offset crash
where the car drives into an aluminum barrier with 40% overlap as shown in Figure m Due
to the barrier, the car jumps and moves laterally. Although the sequence was captured at 1000
Hz by 3 cameras with 1504 x 1128 pixel resolution, the head covers only 70 x 70 pixels, i.e.,
less than 0.3% of the image pixels. In addition, the head is occluded by more than 50% at
the moment of the deepest airbag penetration and the segmentation is hindered by shadows and
background clutter. Nevertheless, Figure [5.43|demonstrates that the head pose is well estimated
by our model-based approach during the crash. The trajectory in Figure [5.41]reflects the upward
and lateral movement of the car away from the camera due to the offset barrier.

For a quantitative error analysis, we have compared the results with a marker-based system using
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Figure 5.42: Comparison with a marker-based system and an acceleration sensor. The model-
based approach provides accurate estimates for velocity and acceleration. From left to right:
a) Velocity (x-axis). b) Acceleration (x-axis).

photogrammetric markers. The 3D tracking error is obtained by the Euclidean distance between
the estimated position and the true position of the 5-dot marker on the left hand side of the
dummy’s head. The results are plotted in Figure [5.41] where the average error is 37mm with
standard deviation of 15mm. For computing the velocity and the acceleration of the head, the
trajectories from the marker-based and the model-based method are slightly smoothed, as it is
common for crash test analysis. Figure shows that the velocity and the acceleration are well
approximated by our approach. A comparison with an acceleration sensor attached to the head
further reveals that the deceleration is similar to the estimates of our approach. For the offset
crash sequence, our current implementation requires 6 seconds per frame on a consumer PC.

Finally, we remark that our approach estimates all six degrees of freedom of dummy body parts
like the head in contrast to conventional marker-based systems. This opens up new opportunities
for analyzing pedestrian crashes where many biomechanical effects are not fully understood.

5.7 Summary

Local optimization can solve human motion capture accurately but it cannot recover from errors.
Hence, cues are required that guide the local optimization to the true pose. Furthermore, they
need to be robust to occlusions, illumination changes, and clutter and they need to be reliable
for homogeneous and structured surfaces. Since none of the typical cues for motion capture
like silhouettes, edges, color, motion, and texture meets the demands, a multi-cue integration is
necessary for tracking complex objects like humans. For instance, the region-based approach,
Section works well for homogeneous objects but it requires many iterations until conver-
gence, which makes the approach very expensive. Particularly for large transformations from
frame to frame, the segmentation and consequently the pose estimation usually get stuck in a
local optimum. Another problem is ambiguous solutions for symmetric objects. Hence, we
have extended the approach with motion cues in Section Motion-cues are complementary
to silhouettes since they perform better on sufficiently structured objects. Furthermore, they can
handle large transformations between successive frames, so that the number of required itera-
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Figure 5.43: Estimated pose of the dummy’s head for frames 7, 22, 37, 52, 67, 82, 97, 112, 127,
142, 157, 172, 187, 202, and 217 (from top left to bottom right).



5.7 Summary 77

tions for optimization is reduced. Since the impact of a cue should be large in situations when its
extraction is reliable, and small, if the information is likely to be erroneous, we have proposed
an adaptive weighting scheme that combines the complementary cues. We have also compared
dense and sparse features, namely dense optical flow and local descriptors. As local descriptors,
we have used the popular SIFT features but they could also be replaced by other features like
SURF [BETGOS]|] or DAISY [TLFOS|]. The highest accuracy and robustness has been achieved
by using sparse and dense features at the same time. Although both are motion cues, they have
different strength. While the estimated optical flow might not be exact in difficult situations, it
provides at least enough correspondences for a unique approximate solution. SIFT correspon-
dences are usually more reliable, but their number is sometimes not sufficient to estimate the
pose. Instead of computing the flow independently from the local descriptors, one could also
use the SIFT correspondences as prior for the energy function (5.17). This, however, would
increase the influence of outliers from patch-based matching on the estimated pose since the
outliers misguide the flow computation.

Even though the combination of surface-region matching, optical flow, and SIFT tracking pro-
vides precise estimates for rigid and articulated objects with homogeneous and structured sur-
faces, it does not solve the drift problem. Since motion cues rely on image features that are
tracked over time, the accumulation of small errors results in a drift away from the target ob-
ject that cannot be compensated by the region-based features. Hence, we have addressed the
drift problem for human motion capture and tracking in the presence of multiple moving ob-
jects where the error accumulation becomes even more problematic due to occlusions. To this
end, we have proposed in Section [5.5] an analysis-by-synthesis framework for articulated mod-
els relying on a combination of region-based and motion-based cues. A comparison with other
model-based approaches for rigid objects has revealed that the proposed method handles the
drift problem better. Our experiments have demonstrated that our framework is not restricted to
a single rigid object but tackles the drift problem also for multiple moving objects and humans
in challenging scenes containing fast movements, occlusions, and clutter. Furthermore, the pro-
posed framework can be applied to challenging real-world problems as we have demonstrated
in Section [5.6| where crash test video analysis is used as an example. In general, one could also
use several motion cues for the analysis-by-synthesis framework to get a better performance, but
computation of local descriptors and optical flow for each frame is still very expensive in spite
of efficient implementations of optical flow [BWOS5] or SIFT [SFPGO07]. Hence, we have used
only local descriptors since the constancy assumptions of the optical flow are clearly violated
between the original and the synthesized image.

There are still several limitations of the analysis-by-synthesis framework. Drift is only prevented
as long as there are enough correspondences between the synthesized and the original image.
This means that the approach assumes that there is enough texture information to establish these
correspondences. However, even in the worst case where no correspondences are available, the
method still behaves as the approach presented in Section[5.3] In general, the method benefits
from high resolution images whereas the framerate is less important since large transformations
are captured by patch-based matching. Since high-definition cameras are already widely used in
contrast to high-speed cameras, assuming a high image resolution is not very restrictive. Another
limitation is given by the clothing. Although the approach does not require tight-fitting apparel, it
cannot handle arbitrary deformable surfaces or wide apparel like skirts. Since the skeleton-based
surface deformation is only an approximation of the real surface deformation, the accuracy of
the correspondences between the textured surface and the original image depends on the quality
of the approximation. Furthermore, changes of the illumination are implicitly handled by the
robustness of the used features. For handling illumination changes that exceed the abilities of
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the features, the textured model needs to be extended such that the lighting environment is also
taken into account [LSLEOS| [Y WPO6].

In order to estimate the human pose precisely and accurately, local optimization requires strong
cues. Since local optimization itself is very fast, the extraction of the cues dominates the com-
puting time. However, when the sources for feature extraction are limited, only weak cues are
available. This might also occur due to low contrast or low size of the object despite high-
resolution images. Without strong cues, however, local optima become more critical and need
to be resolved by global optimization methods. Another global optimization problem is the
initialization of model-based tracking approaches where the pose cannot be predicted from the
previous frame. The initialization problem occurs also for texture acquisition which is needed for
the analysis-by-synthesis framework. Although static 3D scan devices equipped with cameras or
photogrammetric reconstruction techniques can acquire shape and texture, it is more convenient
to acquire the texture directly from the video stream since the surface color is likely to change
from sequence to sequence in contrast to the human body shape. Therefore, there is a need for
global optimization techniques that meet the demands of human pose estimation and tracking.



6

Global Optimization

While local optimization and filtering approaches have been widely employed for human motion
capture as discussed in Section [2.3] global optimization techniques are hardly used for pose
estimation due to the high computational cost of standard approaches. For instance, the method
proposed in [CMCT06] relies on fast simulated annealing and requires hours to estimate a single
pose. On the contrary, local optimization requires an initialization near the global optimum for
each frame. As we have seen in Chapter [5] this can be achieved by an analysis-by-synthesis
framework under the assumption that enough texture information is available. In the context of
initialization, texture acquisition, or low contrast videos, however, this assumption is usually not
satisfied. Hence, there is a need for a global optimization approach that solves the human motion
capture problem more efficiently than standard techniques.

To this end, we introduce in Section a global optimization method based on an interacting
particle system [Mor0O4] that overcomes the dilemma of local optima and that is suitable for
the optimization problems as they arise in human motion capturing. In contrast to many other
optimization algorithms, a distribution instead of a single value is approximated by a particle
representation similar to particle filters [DEGO1]. This property is beneficial, particularly for
tracking where the right parameters are not always exact at the global optimum depending on the
image features that are used. Besides a discussion of the asymptotic behavior, we also provide
an exhaustive parameter evaluation and two examples, namely a standard global optimization
problem and a naive human motion capture approach. More advanced extensions for full-body
human pose estimation and tracking are discussed in Sections and

The method is capable of estimating the human pose without initial information, which is a chal-
lenging optimization problem in a high dimensional space and is essential for initialization and
texture acquisition. Furthermore, we propose a tracking framework that is based on this opti-
mization technique to achieve both the robustness of filtering strategies and a remarkable accu-
racy. The latter is demonstrated by a quantitative error analysis that includes the HumanEva-1I1T
benchmark [SBO6] and a comparison with several optimization and particle filtering approaches.

6.1 Interacting Simulated Annealing
6.1.1 Interacting Particle Systems

A popular global optimization method inspired by statistical mechanics is known as simulated
annealing [[GG84, IKJV83|]. Similar to our approach, a function V' > 0 interpreted as energy is
minimized by means of an unnormalized Boltzmann-Gibbs measure that is defined in terms of
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V' and an inverse temperature 5 > 0 by

g(dz) = exp (=B V (z)) M(dx), (6.1)

where A is the Lebesgue measure. This measure has the property that the probability mass
concentrates at the global minimum of V as § — oc.

The key idea behind simulated annealing is taking a random walk through the search space while
[ is successively increased. The probability of accepting a new value in the space is given by the
Boltzmann-Gibbs distribution. While values with less energy than the current value are accepted
with probability one, the probability that values with higher energy are accepted decreases as 3
increases. Other related approaches are fast simulated annealing [SH87|| using a Cauchy-Lorentz
distribution and generalized simulated annealing [[TS96] based on Tsallis statistics.

Interacting particle systems [Mor04] approximate a distribution of interest by a finite number of
weighted random variables X () called particles. Provided that the weights 1Y) are normalized
such that > I1() = 1, the set of weighted particles determines a random probability measure by

Z 1965, (6.2)
=1

Depending on the weighting function and the distribution of the particles, the measure con-
verges to a distribution 7 as n tends to infinity. When the particles are identically independently
distributed according to 1 and uniformly weighted, i.e. II() = 1 /n, the convergence follows
directly from the law of large numbers [Bau96].
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Figure 6.1: Operation of an interacting particle system. After weighting the particles (black
circles), the particles are resampled and diffused (gray circles).

Interacting particle systems are mostly known in computer vision as particle filter [DFGO1]]
where they are applied for solving non-linear, non-Gaussian filtering problems as described in
Section [3.4] However, these systems also apply for trapping analysis, evolutionary algorithms,
statistics [Mor04l], and optimization as we demonstrate in this chapter. They usually consist of
two steps as illustrated in Figure [6.1] During a selection step, the particles are weighted accord-
ing to a weighting function and then resampled with respect to their weights, where particles
with a great weight generate more offspring than particles with lower weight. In a second step,
the particles mutate or are diffused. Since a particle filter is only a special case of an interacting
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particle system, we use the more general terms “Selection” and “Mutation” for the two steps
instead of “Updating” and “Prediction”, which have been used in Figure[3.2]

6.1.2 Interaction and Annealing

Simulated annealing approaches are designed for global optimization, i.e. for searching the
global optimum in the entire search space. Since they are not capable of focusing the search
on some regions of interest in dependency on the previous visited values, they are not suitable
for tasks in human motion capturing. Our approach, in contrast, is based on an interacting par-
ticle system that uses Boltzmann-Gibbs measures (6.I) similar to simulated annealing. This
combination ensures not only the annealing property as we will show, but also exploits the dis-
tribution of the particles in the search space as measure for the uncertainty in an estimate. The
latter allows an automatic adaption of the search on regions of interest during the optimization
process. The principle of the annealing effect is illustrated in Figure[6.2]
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Figure 6.2: Illustration of the annealing effect with three runs. Due to annealing, the particles
migrate towards the global maximum without getting stuck in the local maximum.

A first attempt to fuse interaction and annealing strategies for human motion capturing has be-
come known as annealed particle filter [DROS]. Even though the heuristic is not based on a
mathematical background, it already indicates the potential of such combination. Indeed, the an-
nealed particle filter can be regarded as a special case of interacting simulated annealing where
the particles are predicted for each frame by a stochastic process, see Section [6.1.5]

6.1.3 Notations

The notations introduced in Section [3.4.1] are repeated for the reader’s convenience. We always
regard F as a subspace of RY, and let B(F) denote its Borel o-algebra. B(FE) denotes the set
of bounded measurable functions, J, is the Dirac measure concentrated in x € E, || - ||2 is the
Euclidean norm, and || - ||, denotes the supremum norm. Let f € B(E), 1 be a measure on F,
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and let K be a Markov kernel on . We write
/ F@) uldz),  (p, K)(B) = / K(z, B) u(dz) for B € B(E).
E

Furthermore, U[0, 1] denotes the uniform distribution on the interval [0, 1] and

osc(p) := sup {lp(z) — o(y)[}- (6.3)
ryel

is an upper bound for the oscillations of f.

6.1.4 Feynman-Kac Model

Let (Xt)ten, be an E-valued Markov process with family of transition kernels (K;);en, and
initial distribution 779. We denote by P, the distribution of the Markov process, i.e. for ¢ € Ny,

P770 (d(IL’(), Tlyeo- ,xt)) = Kt_l(a;t_l, dl’t) . K()(:IZ(), da;l) no(dl'o),

and by E, [-] the expectation with respect to P,,,. The sequence of distributions (7;)¢cn, on E

defined for any ¢ € B(E) and t € Ny as
) exp( Zﬁs X, )] |

is called the Feynman-Kac model associated with the pair (exp(—0; V'), K).
The Feynman-Kac model as defined above satisfies the recursion relation

(", ©)
(e, 1)°

(e, 0) = (v, ) = Epy |

N1 = (We(ne), Ke), (6.4)

where the Boltzmann-Gibbs transformation VU, is defined by

Ey, [exp (— Zi;%) Bs V(Xs)ﬂ
Eyy [exp (= X0 85 V(X,))]

The particle approximation of the flow depends on a chosen family of Markov transition
kernels (K¢, )en, satisfying the compatibility condition

(We () Ke) = (e, Ky )

A family (K, )ien, of kernels is not uniquely determined by these conditions.
As in [Mor04, Chapter 2.5.3], we choose

Wy () (dye) =

exp (=B Vi(yr)) ne(dye).

Ky, = S K, (6.5)
where

St (e, dyr) = e exp (=0 Vixt)) 0z, (dyr)
+ (1 — et exp (=6t Vi(xr))) e () (dyr), (6.6)

with ¢, > 0 and € |lexp(—03; V||, < 1. The parameters €; may depend on the current distribu-
tion ;.
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6.1.5 Interacting Simulated Annealing

Similar to simulated annealing, one can define an annealing scheme 0 < 3y < 01 < ... < (¢
in order to search for the global minimum of an energy function V. Under some conditions
that will be stated later, the flow of the Feynman-Kac distribution becomes concentrated in the
region of global minima of V' as ¢ goes to infinity. Since it is not possible to sample from the
distribution directly, the flow is approximated by a particle set as it is done by a particle filter.
We call the algorithm for the flow approximation interacting simulated annealing (1S A).

Algorithm

The particle approximation for the Feynman-Kac model is completely described by the Equa-
tion (6.5). The particle system is initialized by n identically, independently distributed
random variables Xéz) with common law 7y determining the random probability measure

Ny =i, 0 e /n. Since K, can be regarded as the composition of a pair of selection
0

and mutation Markov kernels, we split the transitions into the following two steps

Selection Mutation
n ~n n
Tt Uz Mi4-1»

where
1 — 1 «
n._ - ) R w
m= E Oyn M= E 05 -
=1 =1

During the selection step each particle Xt(i) evolves according to the Markov transition kernel
St (X _.). That means X" is accepted with probability e; exp(—3 V(X\")), and we set

Vt(i) = Xt(i). Otherwise, Xt(i) is randomly selected with distribution

§o_eRCAVET)
(-4 V(X)) K

The mutation step consists in letting each selected particle Xt(l) evolve according to the Markov
transition kernel K (X t(l) ,)-

There are several ways to choose the parameter ¢, of the selection kernel (6.6)) that defines the
resampling procedure of the algorithm, cf. [Mor04]. If

e =0 Vt, (6.7)
the selection can be done by multinomial resampling. Provided tha
n > sup (exp(F; osc(V)),
t

another selection kernel is given by

1
) = e (A

(6.8)

'The inequality satisfies the condition €, [|exp(—@3; V)|| ., < 1 for Equation .
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Algorithm 2 Interacting Simulated Annealing Algorithm

Requires: parameters (€;):en,, number of particles n, initial distribution 7, energy function V/,
annealing scheme (/3;).en, and transitions (K3)¢en,

1. Initialization

e Sample :céi) from ng for all ¢

2. Selection

e Set 7 — exp(—p3; V(xgl))) for all ¢
e For ¢ from 1 to n:

Sample x from U0, 1]
Ifk < Gtﬂ'(i) then
* Set i’gi) — xy)
Else
(%) ()

* Setx; ' « x;”’ with probability )

> h=1 w(®)
3. Mutation

e Sample x&zl from Kt(a':y), -) for all 7 and go to step 2

In this case, the expression €;7(%) in Algorithrn is replaced by 7(?) />y 7(k). A third kernel
is determined by

1
inf{y €R : n;({x € E : exp(=4; V(2)) >y}) =0}

er(ne) == (6.9)

yielding the expression 7@ /max; <<, 7(F) instead of e,7(9.
Pierre del Moral showed in [Mor04, Chapter 9.4] that for any ¢ € Ny and ¢ € B(F) the sequence
of random variables

V(g ) = (e 9)

converges in law to a Gaussian random variable T when the selection kernel (6.6) is used to
approximate the flow (6.4). Moreover, it turns out that when (6.8)) is chosen, the variance of W
is strictly smaller than in the case with ¢; = 0.

We remark that the annealed particle filter [DROS] relies on interacting simulated annealing with
e; = 0. The operation of the method is illustrated by

n  Prediction .p ISA n
yr Mt41 Mtt1- (6.10)

The IS A is initialized by the predicted particles )A(t(i)l and performs M times the selection and
mutation steps. Afterwards the particles Xf_?l are obtained by an additional selection. This
shows that the annealed particle filter uses a simulated annealing principle to locate the global
minimum of a function V' at each time step. However, the original algorithm in [DRO5]] contains
two aspects that are not supported by interacting simulated annealing. First, the method uses a
crossover operator for each mutation step, which makes the analysis difficult since the mutation

kernels K; depend then on the set of particles. Second, it does not perform annealing in the
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classical sense where the temperature is monotonically decreased, but relies on the fluctuating
survival rate of the particles. This entails that divergence can be observed when the temperature
increases in order to ensure a fixed survival rate. It typically occurs when the mutation kernels
spread the particles broadly, i.e. when the global optimum is expected to be far away from the
initialization. Hence, the original annealed particle filter cannot be used for global optimization
and pose initialization, but the idea is preserved by the modification (6.10) where convergence
can be proved.

Convergence

This section discusses the asymptotic behavior of the interacting simulated annealing algorithm.
For this purpose, we introduce some definitions in accordance with [Mor0O4]] and [Gid93].

Definition 6.1.1. The Dobrushin contraction coefficient of a kernel K on E is defined by

B(K):= sup  suwp |K(a1, B)— K2 B)|. 6.11)
z1,22€E BEB(E)

Furthermore, 3(K) € [0,1] and 5(K1 K3) < B(K1) B(K2).

When the kernel M is a composition of several mixing Markov kernels (3.29), i.e.
M = K;Kgsy ... Ky, and each kernel K, satisfies the mixing condition for some €y, the Do-
brushin contraction coefficient can be estimated by 3(M) < [}._.(1 — &)

The asymptotic behavior of the interacting simulated annealing algorithm is affected by the
convergence of the flow of the Feynman-Kac distribution (6.4) to the region of global minima of
V' as t tends to infinity and by the convergence of the particle approximation to the Feynman-Kac
distribution at each time step ¢ as the number of particles n tends to infinity.

Convergence of the flow We suppose that K; = K is a Markov kernel satisfying the
mixing condition (3.29) for an ¢ € (0,1) and osc(V) < co. A time mesh is defined by

t(n) :=n(1+ lc(e)]) c(e) := (1 —1In(g/2))/e* forn € Ny. (6.12)

Let 0 < By < B1 ... be an annealing scheme such that 3; = (,,41) is constant in the interval
(t(n),t(n + 1)]. Furthermore, we denote by 7}; the Feynman-Kac distribution after the selection
step, i.e. 7y = W4(n;). According to [Mor04, Proposition 6.3.2], we have

Theorem 6.1.2. Letb € (0,1) and By(y41) = (n + 1)b. Then for each § > 0
lim 7y (V > Vi +9) =0,

where V, = sup{v > 0; V > v a.e.}.

The rate of convergence is d/n(1 =% where d is increasing with respect to b and ¢(¢) but does not
depend on n as given in [Mor04, Theorem 6.3.1]. This theorem establishes that the flow of the
Feynman-Kac distribution 7; becomes concentrated in the region of global minima as t — +oc0.
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Convergence of the particle approximation Del Moral established the following con-
vergence theorem [Mor(04, Theorem 7.4.4].

Theorem 6.1.3. For any ¢ € B(E),

E,, H<77tn+1790> - (77t+1780>H < 2%\/(%(@ (1 + erﬂ(Ms)> ,
s=0

where

t
rs = exp <OSC(V) Z@) ,
=S
My, = KiKgi1...Ky,
for0 < s <t

Assuming that the kernels K satisfy the mixing condition with €4, we get a rough estimate for
the number of particles

doscle)? (| < SRR 2
n> osgi;p (1 + Z {exp (osc(V) Zﬂr> H(l — €k)}) (6.13)

s=0 r=s k=s

needed to achieve a mean error less than a given § > 0.
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Figure 6.3: Impact of the mixing condition satisfied for €; = €. From left to right: a) Parameter

c(e) of the time mesh (6.12). b) Rough estimate for the number of particles needed to achieve a
mean error less than § = 0.1.

Optimal transition kernel The mixing condition is not only essential for the convergence
result of the flow as stated in Theorem [6.1.2] but also influences the time mesh by the parameter
e. In view of Equation (6.12)), kernels with € close to 1 are preferable, e.g. Gaussian kernels on
a bounded set with a very high variance. The right hand side of can also be minimized if
Markov kernels K are chosen such that the mixing condition is satisfied for a €5 close to 1, as
shown in Figure [6.3] However, we have to consider two facts. First, the inequality in Theorem
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[6.1.3]provides an upper bound of the accumulated error of the particle approximation up to time
t + 1. It is clear that the accumulation of the error is reduced when the particles are highly
diffused, but it also means that the information carried by the particles from the previous time
steps is mostly lost by the mutation. Second, we cannot sample from the measure 7); directly,
instead we approximate it by n particles. Now the following problem arises. The mass of the
measure concentrates on a small region of £ on one hand and, on the other hand, the particles are
spread over E if ¢ is large. As aresult, we get a degenerated system where the weights of most of
the particles are zero. Consequently, the global minima are estimated inaccurately, particularly
for small n. If we choose a kernel with small € in contrast, the convergence rate of the flow is
very slow. Since neither of them is suitable in practice, we suggest a dynamic variance scheme
instead of a fixed kernel K.

It can be implemented by Gaussian kernels K; with covariance matrices ¥; proportional to the
sample covariance after resampling. That is, for a constant ¢ > 0,

c G i i
o= <p1+ 2(@ )~ ) (2 — Mt)T> SR in g (6.14)

=1

where I denotes the identity matrix and p is a small positive constant that ensures that the covari-
ance does not become singular. The elements off the diagonal are usually set to zero, in order to
reduce computation time.

Optimal parameters The computation cost of the interacting simulated annealing algorithm
with n particles and 7" annealing runs is O(nr), where

np:=n-T. (6.15)

While more particles give a better particle approximation of the Feynman-Kac distribution, the
flow becomes more concentrated in the region of global minima as the number of annealing runs
increases. Therefore, finding the optimal values is a trade-off between the convergence of the
flow and the convergence of the particle approximation provided that nr is fixed.

Another important parameter of the algorithm is the annealing scheme. The scheme given in
Theorem [6.1.2] ensures convergence for any energy function V' — even for the worst one in the
sense of optimization — as long as osc(V') < oo, but it is too slow for most applications, as it is
the case for simulated annealing. In our experiments the schemes

By =In(t+0b) forsomeb > 1 (logarithmic), (6.16)
B =(t+1)" forsomebe (0,1)  (polynomial) (6.17)

performed well. Note that in contrast to the time mesh (6.12) the schemes are not anymore
constant on a time interval.

In the following section, two examples are discussed that demonstrate settings that perform well,
in particular for human motion capturing. A thorough evaluation of the various parameters on
synthetic data is provided in Appendix
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Figure 6.4: Ackley function. Unique global minimum at (0, 0) with several local minima around
it.

6.1.6 Examples

Global Optimization

The Ackley function

f(x) =—=20exp | —0.2

on R? is a widely used multimodal test function for global optimization algorithms. As one can
see from Figure the function has a global minimum at (0, 0) that is surrounded by several
local minima. The problem consists of finding the global minimum in a bounded subspace
E c R? with an error less than a given § > 0 where the initial distribution is the uniform
distribution on E.

01 02 03 04 05 06 07 08 09
b

() (b)

Figure 6.5: Average time steps needed to find the global minimum with an error less than 103
with respect to the parameters b and c.
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In our experiments, the maximal number of time steps are limited by 999 and we set £ =
[~4,4] x [~4,4] and § = 1073. The interacting simulated annealing algorithm is stopped
when the Euclidean distance between the global minimum and its estimate is less than ¢ or
when the limit of time steps is exceeded. All simulations have been repeated 50 times and the
average number of time steps needed by /.S A has been used for evaluating the performance of
the algorithm. Depending on the chosen selection kernel (6.7)), (6.8), and (6.9), we write 1.S A1,
1S Ago, and 1S Ags, respectively.

Using a polynomial annealing scheme (6.17), we have evaluated the average time steps needed
by ISAg; with 50 particles to find the global minimum of the Ackley function. The results
with respect to the parameter of the annealing scheme, b € [0.1,0.999], and the parameter of
the dynamic variance scheme, ¢ € [0.1, 3], are given in Figure The algorithm performs best
with a fast increasing annealing scheme, i.e. b > 0.9, and with c in the range 0.5 — 1.0. The plots
in Figure [6.5] also reveal that the annealing scheme has greater impact on the performance than
the factor c. When the annealing scheme increases slowly, i.e. b < 0.2, the global minimum has
not actually been located within the given limit for all 50 simulations.

Ackley Ackley with noise
I1SAs 15Ago 1SAgs 1SAs 1S5Ago 1S5Ags
b 0.993 0.987 0.984 0.25 0.35 0.27
c 0.8 0.7 0.7 0.7 0.7 0.9
t 14.34 15.14 14.58 7.36 7.54 7.5

Table 6.1: Parameters b and ¢ with lowest average time ¢ for different selection kernels.

The best results with parameters b and ¢ for ISAgq, IS Ago, and 1.S Ags are listed in Table
The optimal parameters for the three selection kernels are quite similar and the differences of the
average time steps are marginal.
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Figure 6.6: From left to right: a) Average time steps needed to find the global minimum with
respect to number of particles. b) Computation cost.

In a second experiment, we have fixed the parameters b and ¢, where we have used the values
from Table [6.1] and have varied the number of particles in the range from 4 to 200 with step
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size 2. The results for I.S Ag; are shown in Figure While the average of time steps declines
rapidly for n < 20, it is hardly reduced for n > 40. Hence, n; and consequently the computation
cost are lowest in the range 20 — 40. This shows that a minimum number of particles are required
to achieve a success rate of 100%, i.e., the limit has not been exceeded for all simulations. In this
example, the success rate has been 100% for n > 10. Furthermore, it indicates that the average
of time steps is significantly higher for n less than the optimal number of particles. The results
for ISAg1, ISAgs, and 1.S Ags are quite similar. The best results are listed in Table

Ackley Ackley with noise
ISAs I1S5Ag9 I1S5Ags I1S5Ag; 15Ags 1S5Ags3
n 30 30 28 50 50 26
t 224 20.3 21.54 7.36 7.54 12.54
ny 672 609 603.12 368 377 326.04

Table 6.2: Number of particles with lowest average computation cost for different selection
kernels.

The ability of dealing with noisy energy functions is one of the strength of /.SA as we will
demonstrate. This property is very useful for applications where the measurement of the energy
of a particle is distorted by noise. On the left hand side of Figure the Ackley function is
distorted by Gaussian noise with standard deviation 0.5, i.e.,

fw(z) := max {0, f(z) + W}, W ~ N(0,0.5%).

As one can see, the noise deforms the shape of the function and changes the region of global
minima. In our experiments, 1.5 A has been stopped when the true global minimum at (0, 0) has
been found with an accuracy of § = 0.01. Note that ¢ is larger than in the experiment without
noise.

For evaluating the parameters b and ¢, we set n = 50. As shown on the right hand side of
Figure the best results are obtained by annealing schemes with b € [0.22,0.26] and ¢ €
[0.6,0.9]. In contrast to the undistorted Ackley function, annealing schemes that increase slowly
have performed better than the fast one. Indeed, the success rate has dropped below 100% for
b > 0.5. The reason is obvious from the left hand side of Figure Due to the noise, the
particles are more easily distracted and a fast annealing scheme diminishes the possibility of
escaping from the local minima. The optimal parameters for the dynamic variance scheme are
hardly affected by the noise.

The best parameters for [SAgq, IS Ago, and IS Ags are listed in the Tables and[6.2] Except
for 1.5 Ags, the optimal number of particles is higher than it is the case for the simulations without
noise. The minimal number of particles to achieve a success rate of 100% has also increased, e.g.
28 for 1.5 Ag1. We remark that /.S Ags has required the least number of particles for a complete
success rate, namely 4 for the undistorted energy function and 22 in the noisy case.

We finish this section by illustrating two examples of energy functions where the dynamic vari-
ance schemes might not be suitable. On the left hand side of Figure[6.8] an energy function with
shape similar to the Ackley function is drawn. The dynamic variance schemes perform well for
this type of function with a unique global minimum and several local minima around it. Due
to the scheme, the search focuses on the region near the global minimum after some time steps.
The second function, see Figure [6.8]b), has several, widely separated global minima yielding a
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Figure 6.7: From left to right: a) Ackley function distorted by Gaussian noise with standard
deviation 0.5. b) Average time steps needed to find the global minimum with an error less than
10~2 with respect to the parameters b and c.

high variance of the particles even in the case that the particles are near to the global minima.
Moreover, when the region of global minima is regarded as a sum of Dirac measures, the mean is
not essentially a global minimum. In the last example shown on the right hand side of Figure
the global minimum is a small peak far away from a broad basin with a local minimum. When
all particles fall into the basin, the dynamic variance schemes focus the search on the region near
the local minimum and it takes a long time to discover the global minimum.

(a) (b) (©

Figure 6.8: Different cases of energy functions. From left to right: a) Optimal for dynamic
variance schemes. A unique global minimum with several local minima around it. b) Several
global minima that are widely separated. This yields a high variance even in the case that the
particles are near to the global minima. ¢) The global minimum is a small peak far away from
a broad basin. When all particles fall into the basin, the dynamic variance schemes focus the
search on the basin.

The first case, however, where the dynamic variance schemes perform well, is most relevant for
optimization problems arising in the field of computer vision. One application is human motion
capturing which we will discuss in the next section.

Human Motion Capture

In our second experiment, we apply the interacting simulated annealing algorithm to model-
based 3D tracking of the lower part of a human body, see Figure [6.9)a). This means that each
particle represents the 3D rigid body motion and the joint angles, also called the pose, using the
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Figure 6.9: From left to right: a) Original image. b) Silhouette. ¢) Estimated pose. d) 3D
model.

representation introduced in Section [3.1] The mesh model illustrated in Figure [6.9)d) has 18
degrees of freedom, namely 6 for the rigid body motion and 12 for the joint angles of the hip,
knees, and feet. Although a markerless motion capture system is discussed, markers are also
attached to the target object in order to provide a quantitative comparison with a commercial
marker-based system.

. &

17 ] |

#h :
N 08l
06+
‘ : 04+
s %\ — - ‘ 02+
’ e 02

0 20 40 60 00 100 120 140 160 100
() (b)

Figure 6.10: From left to right: a) Results for a walking sequence captured by four cameras
(200 frames). b) The joint angles of the right and left knee in comparison with a marker-based
system.

Using the extracted silhouette as shown in Figure b), one can define an energy function V'
which measures the difference between the silhouette and an estimated pose. The pose that fits
the silhouette best takes the global minimum of the energy function, which is searched by IS A.
The estimated pose projected onto the image plane is displayed in Figure[6.9]c). This is a very
naive approach since the local optimization (Section[5.1) is actually replaced by global optimiza-
tion to minimize the non-linear least squares problem (5.3). Correspondences are established by
region-based matching (Section [5.2)) and the pose is predicted for the next frame by an autore-
gression (Section[5.4.2). In addition, the learned probability of a static pose ppose (Section[d.2.1)
is incorporated to stabilize the pose estimation. Altogether, the energy function V' of a particle
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Figure 6.11: From top left to bottom right: Weighted particles at t = 0, 1, 2, 4, 8, and 14 of
IS A. Particles with a higher weight are brighter and particles with a lower weight are darker.
The particles converge to the pose with the lowest energy as ¢ increases.
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(a) Z-coordinate. (b) Hip. (c) Knee. (d) Foot.

Figure 6.12: Variance of the particles during I.SA. The scaled standard deviations for the z-
coordinate of the position and for three joint angles are given. The variances decrease with an
increasing number of annealing steps.

x is defined by
!
1 .
V(:E) = 7 Z 67‘7‘5(377 7’)2 -n ln(ppose(x)), (618)
i=1

where [ is the number of correspondences and errg is the error of a correspondence (5.2). The
pose prior term is weighted by n = 8.

Results For evaluation, we have tracked the lower part of a human body using four calibrated
and synchronized cameras. The walking sequence has been simultaneously captured by a com-
mercial marker-based system allowing a quantitative error analysis. The training data
used for learning py,.se consists of 480 samples that have been obtained from walking sequences.
The data has been captured by the commercial marker-based system before recording the test
sequence, which is not part of the training data.

The global optimization algorithm IS A performs well for the sequence consisting of 200 frames
using a polynomial annealing scheme with b = 0.7, a dynamic variance scheme with ¢ = 0.3,
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Figure 6.13: a) Energy of estimate for walking sequence (200 frames). b) Error of estimate (left
and right knee).

and the selection kernel (6.8). Results are given in Figure where the estimated knee-joint
angles are compared with the ground-truth from the marker-based system.

Figure 6.14: Estimates for a sequence distorted by 70% random pixel noise. One view of frames
35, 65, 95, 125, 155, and 185 is shown (from top left to bottom right).

The convergence of the particles towards the pose with the lowest energy is illustrated for one
frame in Figure [6.11] Moreover, it shows that the variance of the particles decreases with an
increasing number of annealing steps. This can also be seen from Figure[6.12] where the standard
deviations for four parameters, which are scaled by c, are plotted. While the variances of the hip-
joint and the knee-joint decline rapidly, the variance of the ankle increases for the first iterations
before it decreases. This behavior results from the kinematic chain of the legs. Since the ankle
is the last joint in the chain, the energy for a correct ankle is only low when also the previous
joints of the chain are well estimated.
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On the right hand side of Figure [6.13] the energy of the estimate during tracking is plotted. We
have also plotted the root-mean-square error of the estimated knee-angles for comparison where
the results from the marker-based system are used as ground truth with an accuracy of 3 degrees.
For n = 250 and 7" = 15, an overall root-mean-square error of 2.74 degrees is achieved. The
error is still below 3 degrees with 375 particles and T' = 7, i.e. np = 2625. With this setting,
15 A requires 7 — 8 seconds for approximately 3900 correspondences that are established in the
4 images of one frame. The whole system including segmentation, takes 61 seconds for one
frame. For comparison, the iterative method discussed in Section [5.2] takes 59 seconds with an
error of 2.4 degrees.

However, we have to remark that for this sequence the local optimization performs very well
since the motion is simple and slow. As we have already mentioned, replacing local optimization
by global optimization is very naive since the correspondences are still extracted locally. More
challenging sequences and advanced pose estimation frameworks are discussed in Sections [6.2]
and [6.3] Nevertheless, it demonstrates that 7S A can keep up even in situations that are perfect
for local optimization methods.

Figure 6.15: Estimates for a sequence with occlusions by 35 rectangles with random size, color,
and position. One view of frames 35, 65, 95, 125, 155, and 185 is shown (from top left to bottom
right).

Figures [6.14] and [6.15] show the robustness in the presence of noise and occlusions. For the first
sequence, each frame has been independently distorted by 70% pixel noise, i.e., each pixel value
has been replaced with probability 0.7 by a value uniformly sampled from the interval [0, 255].
The second sequence has been distorted by occluding rectangles of random size, position, and
gray value, where the edge lengths are in the range from 1 to 40. The knee angles are plotted in
Figure [6.16] The root mean-square errors are 2.97 degrees, 4.51 degrees, and 5.21 degrees for
50% noise, 70% noise, and 35 occluding rectangles, respectively.
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Figure 6.16: a) Random pixel noise. b) Occlusions by random rectangles.

6.2 Pose Initialization

Finding the 3D position and rotation of a rigid object in a set of images from calibrated cameras
without any initial information is a difficult optimization problem in a 6-dimensional space.
The task becomes even more challenging for articulated objects where the dimensionality of the
search space is much higher, e.g., a coarse model of a human skeleton has already 24 degrees of
freedom yielding a 30-dimensional space. Although the initial pose is essential for many state-
of-the-art model-based tracking algorithm as discussed in Section relatively little attention
has been paid to the initialization of rigid and articulated models. A manual initialization is
usually required, which is time demanding and assumes some expertise on the model and on the
world coordinate system. Texture-based [LPFO4, [LLEOS|] and analysis-by-synthesis approaches
(Sections [5.4] and [5.5)) are an exception that use the surface texture for initialization. Apart
from the fact that they require structured surfaces for self-initialization, the texture needs to be
registered to the model beforehand, i.e., a manual initialization is done for the texture acquisition
during preprocessing.

(a) () (©

Figure 6.17: From left to right: a) 3D model of object. b) Potential bounded subsets of the
search space. ¢) Projection of the mesh. The pose is correctly estimated.
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Our approach for solving the initialization problem estimates the pose of rigid and articulated
objects by minimizing an energy function based only on the silhouette information. Although
we are not restricted to silhouettes, the object region has the advantage that it is an appearance
independent feature that can be easily extracted from a single frame, e.g. by background sub-
traction. Since an initial guess is not available, local optimization algorithm like iterative closest
point (ICP) [BM92, Zha94], see also Section [5.1] are not suitable for this task. For finding the
exact pose, we use the particle-based global optimization interacting simulated annealing (ISA)
that has been introduced in Section [6.1.5] In order to deal with multiple objects, we extend the
algorithm by clustering the particles with respect to previously detected bounded subsets of the
search space.

6.2.1 Global Optimization

In contrast to particle filter that estimate the posterior distribution for a sequence of images,
we apply ISA for estimating the global optimum in still images where no initial information is
available. For this purpose, the steps Selection and Mutation of Algorithm [2] are iterated until
the global minimum of V' is well approximated. During the selection, the particles are weighted
according to a given energy function V' where greater weight is given to particles with a lower
energy. The weights associated to the particles refer to the probability that a particle is selected
for the next step. We used the parameter ¢, = 1/> ", 7(k) for selection since it has slightly
better convergence properties than €; = 0, see Section If a particle is not accepted with
probability €;7(7, a new particle is selected from all particles, e.g. by multinomial sampling.
The selection process removes particles with a high energy while particles with a low energy
are reproduced each time they are selected. An overview of various resampling schemes can be
found in [DCMO3]]. In the second step, the selected particles are distributed according to Markov
kernels K specified by a modified dynamic variance scheme, which we propose in Section|(6.2.2

Figure 6.18: Particles at ¢ = 0,5,10,15, and 19 for ISA. Particles with a higher weight are
brighter and particles with a lower weight are darker. The particles converge to the pose with
the lowest energy as ¢ increases. Most left: Equally weighted particles after initialization. Most
right: Estimate after 20 iterations.

While the annealing scheme prevents the particles from getting stuck in local minima, the dy-
namic variance scheme focuses the search around selected particles. When ¢ increases, only
particles with low energy are selected and the search is concentrated on a small region, see also
Figure Indeed, Theorem [6.1.2]states that ISA approximates a distribution 7; that becomes
concentrated in the region of global minima of V' as ¢ tends to infinity provided that the anneal-
ing scheme (3; increases slow enough and the search space is bounded. In our experiments, a
polynomial scheme, i.e.

By = (t+1)° forsomeb € (0,1), (6.19)
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performed well with b = 0.7.

6.2.2 Clustered Optimization
Initial Subsets

Having a binary image for each camera view, where pixels that belong to the foreground are
set to 1 else to 0, the pixels are first clustered with respect to the 8-neighbor connectivity. In
order to make the system more robust to noise, clusters covering only a very small area are
discarded. In the next step, the 4 corners of the bounding box of each cluster are determined and
the projection ray for each corner is calculated. The projection rays are represented as Pliicker
lines [Sto91]], i.e., the 3D line is determined by a normalized vector n and a moment m such
that z X n = m for all points = on the line. Provided that two projection rays from different
views are not parallel, the midpoint p of the shortest line segment between the two rays /; and
l2 is unique and can be easily calculated. If the minimum distance between /; and [, is below a
threshold, p is regarded as a corner of a convex polyhedron. After 8 corners of the polyhedron
are detected for two clusters from two different views, the bounding cube is calculated as shown
in Figure b). In the case of more than two available camera views, each pair of images —
starting with the views containing the most clusters — is checked until a polyhedron is found. The
corners are similarly refined by calculating the midpoint of the shortest line segment between a
ray from another view and a corner of a polyhedron. The resulting bounding cubes provide the
initial bounded subsets of the search space. We remark that the algorithm is not very sensitive to
the thresholds as long as the searched object is inside a bounding cube. This can be achieved by
using very conservative thresholds.

Particles

Since we know the 3D model, the pose is determined by a vector in Rt i.e., each parti-
cle is a 6 4+ m-dimensional random vector where m is the number of joints. The rigid body
motion M is represented by the axis-angle representation given by the 6D vector (fw, t) with
w = (w1, ws,ws) and ||w||2 = 1. The mappings from fw to a rotation matrix R and vice versa
can be efficiently computed by the Rodriguez formula [MLS94] and are denoted by exp(6w)
and log(R), see Section

Since ISA approximates a distribution by a finite set of particles, we take the first moment of
the distribution 7, as estimate of the pose, i.e., the mean of a set of rotations (9 weighted by
7@ js required. To this end, the geodesic on the Riemannian manifold determined by the set of
3D rotations is computed according to Equation (3.5)). The variance and the normal density on a
Riemannian manifold can also be approximated, cf. [Pen06]. Since, however, the variance is only
used for diffusing the particles, a very accurate approximation is not needed. Hence, the variance
of a set of rotations r; is calculated in the Euclidean space R3. Instead of taking the mean as
estimate, the density could also be estimated from the set of particles by kernel smoothing in
order to take the peak of the density function as estimate. However, kernel smoothing is more
expensive than calculating the first moment of a density and it also needs to be performed in the
space of 3D rotations.
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Initialization

Due to multiple objects as shown in Figure each particle belongs to a certain cluster C'
given by the bounding cubes and denoted by 2(*C). At the beginning, a small number of particles
are generated with different orientations located in the center of the cube for each cluster. The
complete set of particles is initialized by randomly assigning each particle the values of one of the
generated particles. Afterwards, each particle is independently diffused by a normal distribution
with mean z(»©) and a diagonal covariance matrix with fixed entries except for the translation
vector t where the standard deviations are given by the edge lengths of the cube divided by 6
such that over 99.5% of the particles are inside the cube.

Mutation

The dynamic variance scheme for the mutation step is implemented by cluster dependent Gaus-

sian kernels Kt(c) with covariance matrices ch)

of each cluster:

proportional to the sampling covariance matrix

c d 6o iC 1 & Gc
= );:m pI+ > (@ — ) @ — )™ | e =i S a9, (6.20)
i=1 i=1

i€C ieC

where |C'| is the number of particles in cluster C' and p is a small positive constant that ensures
that the covariance does not become singular. In practice, we set d = 0.4 and compute only a
sparse covariance matrix, see also Section[6.2.3] Samples from a multivariate normal distribution
N (1, %) are drawn via a Cholesky decomposition ¥ = AA”i.e., 2 = i+ Az where z is drawn
from NV (0, ).

Selection

Since each particle defines the pose of the model, the fitness of a particle = € R6™™ can be
evaluated by the difference between the original image and the template image that is the pro-
jected surface of the model. For this purpose, we apply a signed Euclidean distance transforma-
tion [FHO4] on the silhouette image I, and on the template 7',(x) for each view v. The energy
function is defined by V' (z) := ¢ 37, V,(x) with

T

V@) = g S o) = L)+ g 3 LG - Tl 62D

pETY () pEI

where I,(p) and T,(x,p) are the pixel values for a pixel p and the sets of pixels inside the
silhouettes are denoted by I and T9(z). The normalization constant o = 0.1 ensures that V/
is approximately in the range between 0 and 10, which is suitable for the selected annealing
scheme.

The resampling step is cluster independent, i.e., the particles migrate to the most attractive cluster
where the particles have more weight and give more offspring. At the end, there are no particles
left where the silhouettes do not fit the model, see Figure c).
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Figure 6.19: From left to right: a) Estimated pose without noise. The error is less than 1mm
(median). b) Silhouettes are randomly distorted by 500 white and 500 black circles. ¢) Median
estimate with error less than 4cm.

6.2.3 Human Bodies

While for rigid bodies correlations between the parameters are neglected due to computational
efficiency, correlations between connected joints in the human skeleton are incorporated. That is,
correlations of the joints that belong to the same skeleton branch, e.g. the left leg, are calculated
in the dynamic variance scheme (6.20) while correlations with joints to other branches are set to
Zero.

In order to focus the search on poses with higher probabilities, prior knowledge is incorporated
into the energy function as soft constraint. The probability of a pose ppose is estimated by a
Parzen-Rosenblatt estimator with Gaussian kernels (4.2)) over a set of subsamples from different
motions from the CMU motion database [CMUOS|]. Since the dependency between the joints
of the upper body and the joints of the lower body is low, the sample size can be reduced by
splitting ppose up into two independent probabilities pybhe . and ploe”, respectively. Hence, the
energy function is extended by

a T
Vi) ==Y Vi(@) = 3 In (ppe @)ples (@) 6.22)
v=1

where n = 2.0 regulates the influence of the prior. Moreover, the mean and the variance of the
joints in the training data are used to initialize the particles. To get rid of a biased error from the
prior, the final pose is refined locally by ICP (Section that is initialized by the estimate of
ISA.

6.2.4 Results

For the error analysis, synthetic images with silhouettes of the bear have been generated by
projecting the model onto 3 different views. The error has been measured by the Euclidean
distance between the estimated 3D position and the exact position of the joints. Each simulation
was repeated 25 times and the average errors for different numbers of particles and iterations
are plotted in Figure The estimates for 200 particles and 30 iterations are very accurate
with a median error less than 1mm, see Figure a). The influence of distorted silhouettes
is simulated by randomly drawing, first, a fixed number of white circles and then black circles.
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Figure 6.20: Average error of the estimates for different numbers of iterations and 200 particles
(a) and for different numbers of particles and 25 iterations (b). 200 particles and 25 iterations
are sufficient for rigid bodies.

Holes, dilatation, and erosion are typically for background subtraction and change the outcome
of the Euclidean distance transform. The diagrams in Figure[6.20]show that our method performs
also well for distorted silhouettes. In the case of 500 white and 500 black circles, the error of the
median estimate shown in Figure [6.19]is still less than 4cm.

Figure 6.21: Estimates for a real scene. 3 views were segmented for the bear and 4 views for
the human (only one is shown). Most left: Silhouettes from background subtraction.



6.2 Pose Initialization 102

The performance for a human body with 30 DOF has been tested by generating synthetic images
with silhouettes for 12 single poses from a sequence of the CMU database that has not been
used for the prior. The estimates are given in Figure The average error of the joints for
400 particles and 40 iterations is 1.05°. Results for a real scene with background subtraction
are shown in Figure The method has also been used to initialize most of the sequences
presented in this thesis and to acquire the texture for the objects shown in Section [5.5] For
images of size 1004 x 1004 pixels, the computation cost is given by number of views X number
of iterations X number of particles x 0.0346 seconds. When the signed Euclidean distance
transform is replaced by a Chamfer distance transform [Bor86], the computation time can be
reduced by 66% to 0.0117 seconds. An additional speed-up by a factor of 20 has been observed
when the evaluation of the energy is performed on a GPU.

Figure 6.22: Estimates for 12 poses from a motion sequence from the CMU database. The
estimated poses of the human model are projected onto the silhouette images. Each row shows
one of the three views.
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6.2.5 Summary

In this section, we have proposed an accurate and robust approach, which relies on a global
optimization method with clustered particles, for estimating the 3D pose of rigid and articulated
objects with up to 30 DOF. It does not require any initial information about position or orientation
of the object and solves the initial problem as it occurs for tracking and texture acquisition. The
experiments have demonstrated that the correct pose is estimated even when multiple objects
appear. It could also be extended to the case when the object is not visible by rejecting estimates
with a high energy. In general, our method can be easily modified for certain applications, e.g.,
by including prior as we have done for humans. Other possibilities are multi-cue integration
and exploitation of a hierarchical structure. These features are, however, object specific and not
suitable for a general solution.

6.3 Pose Tracking

In the previous section, the experiments have shown that global stochastic optimization per-
forms well for pose estimation on still images. Although it is possible to apply the clustered
optimization to each frame independently in order to estimate the poses for a whole sequence,
this approach is very inefficient since the knowledge from the previous frame is not used. An-
other naive approach for human motion capture that uses the framework from Chapter [5] and
replaces the local optimization by global optimization does not outperform local optimization as
shown in Section [6.1.6] Hence, we propose a novel tracking framework that embeds interact-
ing simulated annealing and we compare it with several other optimization and particle filtering
approaches. Generally speaking, we now address the question “Is human motion capture a fil-
tering or an optimization problem?” from Section[I.5.2] To this end, we briefly recapitulate the
advantages and disadvantages of filtering and optimization approaches.

Filtering methods are known to be robust and can recover from errors since they can model
noise and resolve ambiguities over time. Particularly, particle filters are popular due to the
multimodality of the solution since they approximate a distribution instead of a single value.
Furthermore, they do not require linearity of the involved model like the Kalman filter. However,
the available convergence results assume that the underlying stochastic processes are known —
which in practice is rarely the case. Finding the right models for human motion tracking —
both for the dynamics and for the likelihood — is very difficult and so far unsolved. Instead, the
weakness of the models is often handled by overestimating the noise yielding a poor performance
in high dimensional spaces as discussed in Chapter @ Energy minimization approaches are
usually more flexible with regard to the underlying model. However, local optimization suffers
from local optima and usually cannot recover from errors. This has the effect that tracking fails
when there are not strong enough cues to compensate for the drift as discussed in Chapter [5
Since ISA approximates a distribution rather than a single value, similar to a particle filter, it
inherits the advantages of filtering like multimodality and robustness to some extent. However,
instead of approximating the posterior distribution, the distribution of interest concentrates its
mass around the global optima as illustrated in Figure[6.23] Hence, we avoid the modeling prob-
lem of filtering approaches where the types of the involved distributions affect the posterior, and
thus the outcome. Whereas for global optimization, the shape of the energy function is unimpor-
tant as long as the true state is close to the global optimum, which simplifies the modeling task
as illustrated in Figure [I.3] Indeed, our experiments reveal a better accuracy of our framework
than filtering approaches and more robustness than local optimization.
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Figure 6.23: From left to right: a) Energy function V' with global minimum at zero. b) 7;. ¢)
The mass of 7, concentrates around the global minimum as ¢ increases. For a limited number of
iterations, 7; is multimodal.

We make use of the larger flexibility in the modeling by introducing an energy function that
relies on silhouettes and color, as well as some prior information on physical constraints. In
contrast to other works, which regard the appearance of the human for each view as independent,
we estimate a statistical appearance model of the 3D surfaces of individual body parts using
histogram representations. This makes the model more robust to 3D rotations than comparable
2D models as they are used, e.g., in [BBO6].

(a) (b) (© (@

Figure 6.24: From left to right: a, b) Two successive frames of a multi-view video sequence
with low contrast, rapidly changing illumination, and people in the background. ¢) A human
specific mutation operator spreads particles in the search space. d, e) The pose is accurately
estimated by global stochastic optimization. The cyan dots are estimates for the markers that
were used for a quantitative error analysis.

A quantitative error analysis is performed to compare our approach with several optimization
and particle filtering approaches. Our framework features automatic initialization and provides
accurate estimates even in the case of video sequences with low contrast and challenging illu-
mination, see Figure [6.24] Since neither excessive preprocessing nor strong assumptions are
required, except a 3D model, it is a very general solution to human motion capture.

6.3.1 Pose Estimation by Global Optimization

Similar to Section [6.2} the weighting, selection, and mutation operation of Algorithm [2] are
iterated 7" times, see Figure[6.25]a)-c). Finally, an estimate for the pose is obtained by the mean
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(b) (© (@) ©)

Figure 6.25: The set of particles. From left to right: a) Weighting. Particles with higher weights
are brighter. b) Selection. ¢) Mutation. d) Template image T, (z). €) Silhouette image I,,.

(a)

&= [np(x)do.
Weighting. Assuming that a set of particles (:pf))i:L_,n exists, each particle is weighted by the
Boltzmann-Gibbs measure

7@ — exp (—ﬁt 1% (@“)) , (6.23)

where 3; = (t 4+ 1)® with b = 0.7 is an annealing scheme that increases monotonically. After
normalizing the weights such that ) 7 =1, the weight indicates the probability that a particle
is selected for the next step.

Selection. The particles are accepted with probability 7@ / maxy, 7 i.e. the particle with the
highest weight is always accepted. In order to leave the number of particles constant, the set of
particles is completed by stratified resampling [DCMO5|] with acceptance probabilities (W(i))i.
Due to the selection operation, similar particles with high weights are contained several times in
the new set whereas particles with low weights might disappear completely. Since after this first
stage only m < n particles are selected, additional n — m particles are drawn in a second stage,
replacing those from the old set. This selection step corresponds to 1.5 A g3 with selection kernel
(6.9) that has performed slightly better on the Ackley test function than the other kernels .S Ag;
and IS Ags, see Table[6.2]

Mutation. In order to explore the search space, the particles are spread out according to a
Gaussian K; whose covariance matrix is the sampling covariance matrix

Q " ;
Zp = _21 (PI + Z;(:c,ﬁ ) (@) — ut)T> : (6.24)

scaled by ay; = 0.4, where 1 is the average, [ the identity matrix, and p a small positive constant
that ensures that the covariance does not become singular. The computational cost is reduced by
using a sparse matrix that takes only correlations of joints into account that belong to the same
skeleton branch. In general, the Gaussian distribution can be replaced by any distribution that
satisfies the mixing condition to ensure the convergence on a bounded search space.

Energy Function

The energy of a particle x is calculated by

V(x) = v Viin(w) + 7 Vapp(z) + v Vpnys (@), (6.25)



6.3 Pose Tracking 106

where the parameters v, 7, and v control the influence of the three terms, namely silhouettes,
appearance, and physical constraints.

Silhouettes. As in Section a template image T),(x) is generated by projecting the surface
of the human model that is translated, rotated, and deformed according to the particle x, see
Figure d). The inconsistent areas between a silhouette image I, and the template 7),(x) are
measured for each view v by

b
2|7 ()]

3 |Tv<x,p>—fv<p>|+2|}0|Zuv(p)—n(x,p), (6.26)

pETY (2) pell

Vu(x) =

where I,,(p) and T, (z,p) are the pixel values for a pixel p and the sets of pixels inside the
silhouettes are denoted by Y and T (z). Since pixels that are far away from the silhouette should
be penalized more severely, a Chamfer distance transform [Bor86]] is previously applied to I, as
shown in Figure e). In the optimal case, the Chamfer distance transform is also applied to
the template 7', (), but this would be very expensive since the transform needs to be computed
for each particle. Hence, we use only a constant value where pixels inside the silhouette are set
to 0, as it is the case for the distance transform, and pixels outside the silhouette have a constant
‘distance’ to compensate for the differences between the error of the first and the second term of
Equation (6.26). In our experiments, we have found that a value of 8 is a proper compensation
factor. The energy term Vg, is finally defined as the average error of all views.

Appearance. Our approach for integrating color information is motivated by 2D segmentation
where the separation of foreground pixels from the background relies on region statistics as
discussed in Section[3.3] Since we know the 3D model, we combine the pixel information from
all views to model the statistics of different body parts rather than their separate projections to
the images. For efficiency reasons, we assume the image channels u, to be uncorrelated. Hence,
the joint probability density function for a body part s can be written as

Ps (u) = Hps,c(uc)- (6.27)

Cc

Instead of assuming a certain family of distribution functions, we approximate the probabilities
Ds,c in a more general manner by normalized histograms H (5:¢) where we fixed the number of
bins to K = 64. The updating of the appearance model during tracking is explained in Sec-
tion

In order to measure deviations of the appearance of a particle x from the appearance model given
by H (%), the particle’s appearance H (5:¢) (z) is estimated by sampling from all views. For this
purpose, the triangles of the human model are used to encode the body parts of the projected
surface as shown in Figure [6.26a). Hence, a pixel p that belongs to a body part s contributes
for each channel . to the histogram H(:0) (z). For histogram comparison, we choose the Bhat-
tacharya distance since it is also stable for empty bins in contrast to x? or KLD [PBRT99]. The
total deviation is then measured according to by

C K
Varn(®) = 325 D (1 SRV <x)) : (6.28)
s c=1 k=1

where the weights w; reflect the size of the body parts and are determined during initialization,
see Section

Since the distinctiveness of the appearance model depends on the used image channels, the im-
ages are preprocessed to get a better image representation than the raw image data. We achieved
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good results with the CIELab color space that mimics the human perception of color differences.
Since the L-channel is very sensitive to illumination changes, we used only the a- and b-channel.
For small body parts like the hands where the sample sizes are rather small, image noise becomes
an important issue. In order to reduce noise without smoothing over the edges that separate body
parts, we apply the edge-enhancing diffusivity function [BRDWO03]]

9 1

with ¢ = 0.001 and p = 1.5, where the smoothing is efficiently implemented by the AOS
scheme [WRVOS]].

Physical Constraints. Since human motion is subject to physical restrictions like anatomical
constraints and self-intersections, the search can be focused on poses with higher probabilities
by adding a soft constraint to the energy function. To this end, the probability of a skeleton
deformation py,se is estimated from a set of training samples y; taken from the CMU motion
database [CMUOS] as in Section[6.2.3] Since self-intersections between the head, the upper body,
and the lower body rarely occur, the sample size L can be reduced by regarding the probabilities

head ,upper lower

for the three body parts, denoted by Ppose » Ppose s and Ppose s @S uncorrelated. The probability
for a body part is approximated by a Parzen-Rosenblatt estimator with a Gaussian kernel K (4.2):

1 —
ppose(x) = m Z K <:U hyl> s (6.30)

l

where the d-dimensional vectors x and y; contain only the joints for the body part. The band-
width A is given by the maximum second nearest neighbor distance between all training samples.
Finally, we used less than 200 samples from different motions for modeling the physical con-
straints by

1 ea upper ower
Vo (@) = =5 In (ppecd (@)ppte” (@)psee” (@) (6:31)

6.3.2 Tracking

For tracking, the pose estimation is embedded in a framework that takes advantage of temporal
coherence of sequential data. An outline of the tracking system is given in Figure [6.26]b). For
the first frame, the pose is detected automatically and the appearance model is initialized. Before
estimating the pose via ISA, the particles are spread in the search space. After the optimization,
the appearance model is updated.

Initialization

For finding the initial pose, ISA searches for the global minimum of the energy function defined
in Equation @I) where only the terms V;;, and V), are used since the appearance of the
model is unknown a priori. To this end, the search space is bounded by a cube that is determined
by the silhouettes as described in Section [6.2]

After the pose & is estimated for the first frame, the histograms H(*°) are generated by sam-
pling from the images as described in Section [6.3.1] During sampling, the range of each fea-
ture channel is also determined and divided into uniform bins. Furthermore, the weights w; in
Equation (6.28)) are given by the sample size for each body part s after normalizing such that

dosws = 1.
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Figure 6.26: From left to right: a) Human model with 2000 triangles. The triangles encode
the body parts. b) Outline of the tracking system. While the particle set (xil))i represents the
distribution of the solution, the mean Z; provides a single estimate for the pose. The pose for the
next frame :vffld is predicted by Gaussian process regression (GPR) and an additional mutation
operator spreads the particles in the search space. The pose is then estimated by stochastic
optimization (ISA). The system is closed in the sense that any uncertainty that arises from the
prediction and estimation is preserved in terms of fold and (xgl)z ¢) Prediction of a joint
angle by GPR. Predicted Gaussian distribution with ¢ and 0. d) Mutation operator. The left

branch (red) is reconstructed from the right branch (blue) by mirroring the first joint.

Mutation

After estimating the pose 2, the particles xii) congregate around the global optima for frame ¢.
Since this set is not well distributed for estimating the pose in the next frame, a mutation step
spreads the particles in the search space. For this purpose, a 3rd order autoregression is used to
predict the pose from the previous estimates, i.e. :Effld = f(&.3) where we denote the last three
estimates by Z.3 = (&, Z¢—1,%1—2). The function f can be learned online from the history of

estimates given by the equations
Zp—py1 = f(T4—p3) for r=1...R. (6.32)

The regression is implemented by Gaussian processes [WR90] that fit very well in our framework

since the prediction is given by a Gaussian distribution with mean 2" and covariance matrix

t+1
Effld, see Figure ¢). To simplify matters, we briefly summarize only the one-dimensional

prediction by Gaussian processes where the set of training data is given by

ig = (f1-13, ., 3—r3). and f(2R) = (f(Z1—13)s-- ., f(@1—r3))". (6.33)

The predictive distribution for the last three estimates 4.3 is obtained by the conditional Gaussian
distribution p(&41|%w3, LR, f(£r)) with mean and variance

2 = k(23, 2r) K f(2R), (6.34)

(0715? = k(&u3, Bt3) — k@3, 2r) 'K k(@13, 2R). (6.35)
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The covariance matrix for the training data K is modeled by the general covariance function

ajir (Brj — dej)”

| =

2

k;(jrz?n jjSZ?)) =ao€exp | —

j=0

2

+) a4 de R+ OhpiseOrss (6.36)
j=0
where the hyperparameters a; and JTQLOZ- se are learned offline by minimizing the log likelihood
as proposed in [WR96]. For learning, we have used the sequences shown in rows 2-4 of Fig-
ure Due to computational efficiency, all parameters of the search space are assumed to be
independent which yields a one-dimensional prediction for each degree of freedom.

Since the dynamics are learned online, the prediction adapts to the current motion but it also
might be corrupted by tracking errors in the past. Hence, we shift only 40% of the particles
according to mffld, another 40% is kept as it is, and 20% are mutated. The mutation is motivated
by evolutionary algorithms where a larger variety among a population helps to recover from
errors. We propose a human specific mutation operator that is useful when only one of two legs
or arms is well estimated due to occlusions. In order to reconstruct its counterpart, we imitate
the behavior of humans to use their arms or legs to balance. For this purpose, the first joint of
the kinematic branch is mirrored while the other joint angles remain unchanged as illustrated in
Figure[6.26]d). Even though the mutated particles will be mostly rejected after the first iterations
of the optimization, they support the tracker in recovering from errors. Finally, all particles are
propagated by a zero-mean Gaussian distribution with covariance matrix proportional to Effld.
The prediction by Gaussian process regression has two advantages. When the movement is
fast or the frame rate is low, wffld guides some particles towards the next potential pose such
that fewer iterations are required for optimization. More important, however, is 277" which
spreads the particles in the search space before optimization. Without the prediction, it would be
necessary to set Ef_ﬁd manually but the optimal values depend on the motion and the frame rate.
GPR provides this information where the variance becomes larger for fast motions or a reduced
frame rate. Note that we do not require a first order Markov process for the transitions as it is
usually assumed for filtering approaches. In our experiments, we have observed that a 3rd order
autoregression performs well for human motion whereas models with higher order improve only

marginally the prediction.

Estimation

Having a well distributed set of particles, the pose is estimated by interacting simulated annealing
as described in Section [6.3.1] Since many applications expect a single estimate for each frame,
the weighted mean ;1 is returned as estimate.

Update

After estimation, the covariance matrices for the regression are updated in Equations (6.34)
and li by adding #441 to the history of estimates. Furthermore, the histograms H (5:) are
adapted to the changing appearance. First, a normalized histogram H (>¢) is generated for &
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Figure 6.27: Tracking errors with respect to various parameters for sequences Marial and
Maria2. From left to right: a) Weight for appearance term V,,,. b) Speed of adaption. c¢)
Number of particles. d) Number of iterations.

by sampling from all views. The update for bin k£ is then given by

1— M R 4 xnr® pse)
k k
(1 = A\)ME) + A\M ()

(6.37)

where M) and M) are the sample sizes for the body part s to generate H and H, respectively.
The parameter A controls the speed of adaptation and the consideration of the sample sizes avoids
that the statistics are distorted by a small number of samples, e.g. due to self-occlusions.

6.3.3 Experiments

The first two rows of Figure show estimates for the sequences Marial and MariaZ2.
Both sequences were captured by 5 synchronized and calibrated cameras with resolution of
640 x 480 pixels and 50 fps. They contain a walking person in a natural environment with
people in the background, low contrast, motion blur, and challenging illumination changes as
shown in Figure[6.24] In Maria2, the walking person additionally swings her arms. The human
model is a low-resolution model of a 3D scan that consists of 2000 triangles. For a quantitative
error analysis, circular markers with a diameter of approximately 5 pixels were attached to the
forearms and lower legs and were tracked manually.

In order to register the 2D markers to the 3D model as accurate as possible, the first frame of each
sequence was manually segmented. After estimating the pose for the first frame as described in
Section [6.3.2] the nearest vertices of the projected mesh were used as 3D coordinates for the
markers as illustrated by the cyan dots in Figure The tracking error is then measured by
the average 2D distance between the ground truth and the projected markers.

In our experiments, we fixed the parameters ¥ = 2.0 and v = 2.0 in Equation (6.25) and we
evaluated how sensitive our approach is with respect to the appearance parameters 7 and A as
plotted in Figure Unless otherwise stated, we used 7 = 40, A = 0.3, 200 particles, and
15 iterations. The diagrams show clearly that the sequence MariaZ2 is more challenging for
tracking due to the dynamic movement of the arms. The resulting motion blur in the images
affects the appearance of the arm and explains the increase of the error for large values of 7 in
contrast to the Marial sequence. Good values for both sequences are in a broad range from 30
to 50. The optimal value for the speed of adaption A\ depends on the environment. Figure [6.27
b), however, shows that the error is not very sensitive to the chosen value as long as the adaption
is not too fast. The optimal numbers of particles and iterations are trade-offs between accuracy
and computation cost. Figures ¢) and d) show a significant decrease of the error until 100
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Figure 6.28: A quantitative comparison with a particle filter (PF), local optimization (ICP),
annealed particle filter (APF), and fast simulated annealing (FSA). Estimates for frame 94 or 18
of Maria2 are shown for PF, ICP, APF, and FSA (from left to right). The estimates for ISA are
given in row 2 of Figure[6.29] While our approach tracks the sequence without significant errors,
the other approaches fail to estimate the barely visible right arm or swap the legs. Rightmost:
The annealing approaches FSA and ISA perform best. For sequence Maria?2, the error obtained
by ISA increases only slightly and is significant lower than for APF and FSA, cf. Table[6.3]

particles and 15 iterations yielding a computation time of 4 seconds per image. More particles
or iterations improve the results only marginally.

For comparison with filtering and optimization, we applied a standard particle filter (PF), an
iterative closest point approach (ICP) [BM92]], annealed particle filtering (APF) [DROS, and
fast simulated annealing (FSA) [CMC™T06] to the sequences. The same energy model was used.
For the PF, we employed the weighting function (6.23) with 3, = 1. This is similar to the
assumption that the likelihood is proportional to a product of normal densities. The particles
are predicted as described in Section [6.3.2] without using the mutation operator since it is not
supported by a filtering framework, i.e. 50% of the particles are shifted according to the predicted
mean and the remaining 50% are directly selected. The number of particles and iterations was
set to 3000 for PF and FSA, respectively, which yields the same computational effort as APF and
ISA with 200 particles and 15 iterations. The results are plotted in Figure[6.28] The annealing
approaches clearly outperform the local optimization and filtering methods. While the huge error
of the PF indicates the weakness of the likelihood and dynamics, ICP gets stuck in local optima.
FSA provides similar results as ISA for Marial, however, the error significantly increases for
Maria2 whereas our approach performs well for both sequences, see Table [6.3] Since FSA
cannot handle ambiguities, it lacks the robustness of ISA. The error for each frame is given in

row 4 of Figure[6.29]

error(pix) PF ICP APF FSA ISA
Marial A=0.2 | 14.09+ 9.95 6.81 4+ 3.45 | 6.96 £2.74 | 4.56 £1.28 | 4.40 +1.26
Maria2 A=10.3 | 33.96 £16.55 | 16.33 £12.88 | 8.40£4.98 | 7.71 +4.69 | 5.09 4+ 1.43

Table 6.3: Average error and standard deviation. For Maria2, the error is reduced by 39% and
34% compared to APF and FSA, respectively.

We also applied our approach to the dataset HumanEva-II [SB0O6] to measure the absolute
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Figure 6.29: Error analysis. Row 1: Estimates for frames 45, 68, 91, 114, and 137 of Marial.
Row 2: Estimates for frames 18, 37, 56, 75, and 94 of Maria?2. Row 3: Estimates for frames
80, 160, 240, 320, and 400 for subject S4 of HumanEva—-II. Row 4: p) Marial. The simu-
lated annealing approaches FSA and ISA perform best. q) MariaZ2. Only ISA is able to track
the sequence without significant errors. r) 3D tracking error for subject S4 obtained by our

approach. The frames 298 — 335 are neglected since the ground truth is corrupted for these
frames.
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3D tracking error. The available model is not perfect since it does not contain the clothing
of the subject S4. Since the lighting conditions are controlled, we set A = 0. Nevertheless,
we achieve accurate estimates with 250 particles as shown in row 3 of Figure Since the
set-up and movement of the sequence, namely walking in a circle, is similar to the ones used
in [BBO6, XLO7]], we compare the results in Table Even though these two approaches use
body models with truncated cones, the comparison clearly indicates the superior accuracy of
our tracking framework. We also compared ISA to the analysis-by-synthesis framework from
Section [5.5] Since this approach relies on texture information, it benefits from the attached
markers. Nevertheless, the standard deviations shown in Table[6.4]indicate a better performance
of the global optimization. On the sequences Marial and Maria2, the analysis-by-synthesis
framework behaves like a standard ICP approach since there are not enough correspondences
between the synthesized and the original image due to the low contrast. This shows that local
optimization approaches like ICP only work well when strong cues are available. In practice,
the analysis-by-synthesis framework is the method of choice for high resolution video footage
whereas global optimization should be used for medium resolution videos (VGA or less).

ISA APF [BB0O6] | RBPF [XLO7] | Drift-free (ICP)
error (mm) | 35.02 £ 5.73 > 60 51.66 — 148.67 | 36.16 £9.12

Table 6.4: The comparison with other tracking approaches based on annealed or Rao-
Blackwellised particle filter reveals that our framework performs significantly better. The stan-
dard deviation of the estimates is also significantly lower than the one obtained by the analysis-
by-synthesis framework (Section [5.5).

6.4 Summary

We have shown that global stochastic optimization is a promising alternative to existing filter-
ing and local optimization approaches for markerless human motion capture. It not only solves
the difficult initialization problem (Section that is relevant for texture acquisition as well,
but also applies to pose tracking (Section [6.3) where stable results are achieved with a remark-
able accuracy. Indeed, a quantitative comparison with several optimization and particle filtering
approaches has revealed that our tracking framework gives significantly better results even for
challenging scenes where the silhouette information is unreliable. Since the framework is easy
to implement and requires neither excessive preprocessing nor strong assumptions, it is a very
general solution to human motion tracking that can be specialized further.

The experiments demonstrate that regarding human motion capture as optimization problem
avoids the modeling problem of filtering approaches as discussed in Section As long as
the problem cannot be well approximated by the Equations (2.1)) and (2.2)), filtering approaches
perform poorly for this task. We have also illustrated in Figure [4.1] that image noise is not
particularly critical for model-based human motion capture. This has been supported by our
experiments where accurate results have been achieved by global optimization despite significant
errors in the silhouettes. Hence, human motion capture with skeleton-based shape model can be
very well modeled as optimization problem.

Local optimization may perform better than global optimization for sequences where local op-
tima are not critical - but this requires high resolution image data where strong cues can be
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extracted. Apart from that, global optimization is the method of choice where interacting simu-
lated annealing takes a leading role. Since ISA approximates a distribution instead of a single
value, it has several advantages for pose tracking in comparison to standard optimization tech-
niques. The optimization can be initialized with a large set of hypotheses, up to one hypothesis
for each particle. This is exploited by the mutation step between two frames (Section
and helps to recover from large errors or ambiguities as they occur for a small number of cam-
eras. Furthermore, the system outlined in Figure [6.26| preserves the uncertainty that arises from
the prediction and optimization and takes it into account for the next frame. This increases the
robustness and efficiency of the approach compared to other techniques like fast simulated an-
nealing as we have demonstrated in our experiments. The approach might also be applied to
other problems where filtering or local optimization perform poorly.

Although global stochastic optimization performs very well compared to local optimization and
filtering approaches, there are still some limitations that need to be mentioned. When the esti-
mates are observed over time, some jitter is noticeable which is typical for stochastic approaches
like ISA that sample from a distribution of interest. Variations between estimates of two frames
might also occur, when the tracker recovers from an ambiguity in the previous frame. Moreover,
Figures ¢) and d) indicate that ISA provides estimates close to the global optimum in rea-
sonable time, but more precise estimates are only achieved at a very high cost. Hence, one might
consider using local optimization to increase the accuracy and filtering to reduce the noise as it
will be discussed in the following section. Since local approaches are preferable on high quality
footage and global approaches on medium or low quality data, it would be more convenient to
have a hybrid approach that handles both scenarios instead of manually switching between local
and global optimization depending on the data. Furthermore, we have to consider that the opti-
mization fits the surface model to the image data. This means that not only the image data has an
impact on the accuracy but also the human body model. Aside from the accuracy of the surface
model, the used deformation with a standard skeleton (Figure[I.2]d)) imposes limitations on the
accuracy since it only approximates the surface deformation. While the artifacts are relatively
small for tight cloth, wide apparel like skirts might introduce significant errors that need to be
handled.



7

High-Performance Tracking Systems

While the previous chapters treat filtering approaches, local optimization, and global optimiza-
tion separately to evaluate the performance of the various strategies, this chapter focuses on
high-performance tracking systems for human motion capture. Since none of the approaches
proposed in Chapters [ [5] and [6] provides a perfect solution to human motion capture, we
propose to combine the basic ideas of the three concepts to overcome the limitations that are
inherent within each approach. Since global stochastic optimization has been shown to be su-
perior to other approaches, interacting simulated annealing is an essential part of the systems.
Section [7.1]introduces a multi-layer framework that extends the approach from Section [6.3] to
benefit from optimization and filtering. While the first layer relies on ISA and some weak prior
information on physical constraints, the second layer refines the estimates by filtering and local
optimization such that the accuracy is increased and ambiguities are resolved over time without
imposing restrictions on the dynamics. The system is developed for motion analysis scenarios
with noisy silhouette data and is rigorously evaluated on the HumanEva—II benchmark [SBO6].
Section[7.2)addresses the problem of non-rigid surface deformations, e.g. caused by tissue or gar-
ment. The system recovers not only the movement of the skeleton, but also the possibly non-rigid
temporal deformation of the 3D surface. While large scale deformations or fast movements are
captured by the skeleton pose and approximate surface skinning, true small scale deformations
or non-rigid garment motion are captured by fitting the surface to the silhouette. In order to
perform global optimization efficiently on high quality footage, the tree structure of the skeleton
is exploited to split the optimization problem into a local one and a lower dimensional global
one.

7.1 Multi-layer Framework

The strategies for model-based pose estimation can be classified into global optimization, filter-
ing, and local optimization as in Section[2.3] Since all these strategies have some drawbacks, we
propose a multi-layer framework that employs the basic ideas of all three concepts.

Global Optimization Since stochastic global optimization (Chapter|[6)) searches for the glob-
ally best solution, it is also suitable for initialization of model-based approaches. Its ability to
recover from errors and its precise estimates satisfy the requirements for the first layer where
robustness and accuracy are essential. However, when the estimates are observed over time,
some jitter is noticeable which is typical for stochastic approaches like ISA that sample from a
distribution of interest. Variations between estimates of two frames might also occur when the
tracker recovers from an ambiguity in the previous frame. Moreover, while stochastic global op-
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timization provides estimates close to the global optimum in reasonable time, the ratio between
accuracy and computation cost is unsatisfactory when more precise estimates are required, as we
will show.

Filtering/Smoothing Filtering approaches (Chapter [4) estimate the unknown true state x;
from some noisy observations y;. The filtering problem is typically solved by Kalman filter-
ing [Kal60] or particle filtering [DFGO1]] where it is assumed that the underlying stochastic
processes

Tip1 = i (@) +vp, (7.1)
ye = hy (o) +wy (7.2)

with noise v; and w; are known. Even though filtering approaches exploit temporal coherence,
handle noise, and are able to recover from errors, they are usually too imprecise for motion
analysis in high dimensional spaces. Since accurate models for f; and h, are rarely available, the
model’s weakness is compensated by overestimating the noise vectors v; and w; at the expense
of poor performance.

Local Optimization Local optimization (Chapter[3) provides very accurate results provided
that the state vector is initialized near the global optimum. Since it searches only for the lo-
cally best solution, it usually cannot recover from errors and requires an initialization. Without
additional prior information, the tracking often fails in case of fast motions and ambiguities.

Multi-layer The idea of several layers has been used for tracking-by-detection ap-
proaches [EDLEFQ7,IREZ07] that rely on a learned template model. Since the detection is usually
limited to canonical poses like lateral walking, the human poses are only detected on a subset of
frames. A second step is therefore required to interpolate or track between the detected frames.
While the tracking is usually done offline since the detected poses are used to learn a subject
specific appearance model, our framework processes the image data online or with a very short
delay.

7.1.1 Overview

In this section, we propose a model-based approach for 3D human motion capture that meets
important needs of motion analysis since it does not rely on prior knowledge of the dynamics. In
order to increase the accuracy and resolve ambiguities over time without imposing restrictions on
the dynamics, we introduce a multi-layer framework that combines global optimization, filtering,
and local optimization. While the first layer relies on global stochastic optimization, the second
layer refines the estimates by filtering and local optimization as outlined in Figure

For the first layer, the images are processed and silhouettes are extracted (Section [7.1.2). In-
teracting simulated annealing initializes the tracker and estimates the pose for each frame by
minimizing an image-based energy function that relies on silhouettes and color, as well as some
weak prior on physical constraints (Section[7.1.3). Although the first layer provides a robust and
relatively accurate estimate of the human pose in the current frame, the estimate is still corrupted
by noise due to sampling and the unsteady quality of the image features. Besides the missing
temporal consistency, some bias might have been introduced by the weak prior.
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Figure 7.1: A multi-layer framework for tracking. While the first layer based on global stochas-
tic optimization provides robust and relatively accurate estimates, the second layer increases the
accuracy and reduces jitter and potential bias from the first layer with a short delay d.

The second layer refines the estimate with a short delay of d > 0 frames, where the estimate is
filtered or smoothed (Section[7.1.4). Although the smoothing reduces the jitter from the stochas-
tic global optimization by introducing temporal consistency, it improves only slightly the accu-
racy of the estimate. The latter is achieved by local optimization and segmentation where the
smoothed estimate for frame ¢ —d serves as initial pose for optimization and as shape prior for the
level-set segmentation (Section [7.1.5). The additional local segmentation improves the quality
of the silhouettes of the first layer, which are obtained by global segmentation like background
subtraction and often contain severe artifacts like shadows and holes. Since both segmentation
and local optimization are initialized by good estimates from the first layer for each frame, an
error accumulation due to the shape prior is prevented. We show that the second layer consisting
of smoothing, local optimization, and local segmentation not only increases the accuracy, but
also reduces jitter and potential bias from the first layer.

Indeed, our experimental evaluation in Section demonstrates the improvements of the
multi-layer framework in comparison to an increased number of iterations and samples for
global optimization. It further comprises a quantitative error analysis using the HumanEva-11T
dataset [[SBO6], where we also compare interacting simulated annealing with particle filtering,
annealed particle filtering, and local optimization.

7.1.2 Image processing

In our multi-layer framework, global and local optimization are applied to the same images, see
Figure Hence, the images need to be processed once such that they are suitable for the
appearance model used for global optimization (Section and the level-set segmentation
in the second layer (Section [7.1.5). Both for segmentation and the appearance model, good
results are obtained with the CIELab color space that mimics the human perception of color
differences. In order to reduce noise without smoothing over the edges that separate body parts
and background, we apply the edge-enhancing diffusivity function [BRDWO3|]
1

g(|Vul?) = N (7.3)
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with ¢ = 0.001 and p = 1.5, where the smoothing is efficiently implemented by the AOS
scheme [WRVOS]].

7.1.3 Global Optimization

The first layer of our tracking framework relies on the approach introduced in Section[6.3] where
the pose % is obtained by searching for the global minimum of an energy function V' > 0. Dur-
ing tracking the solution is represented by the set of particles (:cgl))l as outlined in Figure a).
Since the particles approximate a distribution, uncertainties from the pose estimation are prop-
agated to the next frame making the estimation robust to ambiguities. An additional mutation
operator between two frames spreads the particles in the search space where the predicted pose
mffld and its confidence Effld are taken into account. The initial pose is also determined by ISA.
Since the first layer is described in-depth in Section|6.3} we briefly mention relevant aspects and

modifications for the multi-layer framework.
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Figure 7.2: Left: a) Outline of the first layer. While the particle set (a:gl))i represents the
distribution of the solution, the mean &; provides a single estimate for the pose. The pose for the
next frame mffld is predicted by Gaussian process regression (GPR) and an additional mutation
operator spreads the particles in the search space. The pose is then estimated by stochastic
optimization (ISA). Right: Two mutation operators. b) The left branch (red) and the right
branch (blue) are swapped. ¢) The left branch (red) is reconstructed from the right branch (blue)

by mirroring the first joint.

Mutation As in Section a mutation module spreads the particles in the search space af-
ter the prediction by Gaussian process regression (GPR). However, we introduce an additional
mutation operator that increases the variety among the particles in order to recover faster from
errors. Hence, we shift 40% of the particles according to xffld, another 30% is kept as it is,
and 30% are mutated. We propose two human specific mutation operators as illustrated in Fig-
ures[7.2]b) and c). The first swaps two kinematic branches like the left and the right leg and helps
to recover from ambiguous silhouettes which often occur when the legs are next to each other.
The second is useful when only one of two legs or arms is well estimated due to occlusions.
In order to reconstruct its counterpart, we imitate the behavior of humans to use their arms or
legs to balance. For this purpose, the first joint of the kinematic branch is mirrored while the
other joint angles remain unchanged. Even though the mutated particles will be mostly rejected
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after the first iterations of the optimization, they support the tracker in recovering from errors.

Finally, all particles are propagated by a zero-mean Gaussian distribution with covariance matrix
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Figure 7.3: Impact of learning the motion model online. From left to right: a) To simulate
the effect of a fast movement, only every 4th frame is used, i.e., the framerate of the camera is
reduced from 60 fps to 15 fps. Since the dynamics are learned online, it takes some frames until
good estimates for xffld and Eﬁeld are obtained. When the number of iterations for ISA remains
unchanged, the error increases for the first frames. After the motion model is learned, the error is
comparable to the 60 Hz sequence. b) Estimated pose for frame 3 of the 15 Hz sequence (frame
10). c¢) After 5 frames at 15 Hz (frame 18), the motion model is learned and the pose is well

estimated.

Prediction Since the dynamics are learned online, the prediction adapts to the current motion
but it also might be corrupted by tracking errors in the past. Particularly at the beginning, when
not enough training samples are available, the prediction is usually poor. This is illustrated in
Figure[7.3|where the error is higher for the first frames when the framerate is reduced. After a few
frames, however, the motion model is learned and the error is comparable to the sequence with
standard framerate. This shows that learning the motion online has the advantage that changes
in motion or framerate can be handled without additional offline learning, parameter tuning, or
large training data sets.

Energy As energy function for global optimization, we use
V(z) = v Van(x) + 7 Vapp(x) + v Vphys (), (7.4)

where the parameters v, 7, and v control the influence of the three terms, namely silhouettes,
appearance, and physical constraints that are explained in Section [6.3.1] Some of the used fea-
tures are shown in Figure [7.4] Throughout this paper, we use the parameters v = 2, 7 = 40, and
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(a) (b) (© (d

Figure 7.4: From left to right: a) Template image T),(x). b) Silhouette image I,. ¢) Smoothed
a-channel. d) Smoothed b-channel.

v = 2 that work well according to the evaluation in Section [6.3.3] In general, the appearance
model needs to be updated during tracking as discussed in Section [6.3.2] However, when the
lighting conditions are controlled as it is the case for the HumanEva-IT dataset, an update is
not necessary. We also want to emphasize that the term V), might still introduce some bias
even though it is only a weak prior. Indeed, we will show that the bias can be reduced by the
second layer.

(b) ©)

Figure 7.5: Initialization. From left to right: a) The search space is bounded by a cube. b)
The initial set of particles is randomly distributed around the center of the cube. ¢) The pose is
correctly initialized after 35 iterations.
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Initialization The initial pose is obtained as in Section[6.3] where ISA searches for the global
minimum of the energy function defined in Equation @ using only the terms V5, and Vipys
since the appearance of the model is unknown a priori. First, the search space is bounded by
a cube that is determined by the silhouettes as described in Section [6.2] The particles are then
randomly distributed around the center of the cube and optimized by ISA, see Figure After
the pose I is estimated for the first frame, the appearance model is initialized as described in
Section

7.1.4 Smoothing
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Figure 7.6: Impact of smoothing. From left to right: a) The smoothing reduces the jitter from
global stochastic optimization. b) The absolute tracking error of the second layer with respect to
the introduced delay d (Frames 2 — 821 of sequence S4). The best result is achieved with a delay
of only 5 frames. This corresponds to a delay of 83ms for a sequence with 60 fps. For d = 0,
the estimates are filtered without delay.

Using the noisy mean estimates &; from global optimization as observations instead of images,
the filtering problem specified by Equations and is simplified such that h; becomes
the identity map. In addition, for considering the solutions of many frames for smoothing and
not only a single one, we formulate the filtering as a regression problem.

As outlined in Figure[7.1] the second layer refines the estimates Z; from global optimization with
a short delay of d > 0 frames by means of local optimization, as described later in Section[7.1.5]
This yields more precise estimates x;. Furthermore, we propose to couple regression and local
optimization. Having R estimates

Tt—Rs- s Lt—d—1, jt—cb cee jta (75)

we seek the function f that provides a smoothed version for frame ¢ —d, i.e. xf’_”;“h = f(t —d).
Since the refined values x; should have more impact in the regression than the values &;, we add
a binary indicator variable ¢; as additional dimension to the input space. ¢; = 1 indicates that the
estimate has been already refined. The regressor f(t, ;) is then learned from the data

Ty = f(t—r,1) for r=R...d—1 (7.6)
Zp—p = f(t—r,0) for r=d...0. (7.7)
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Similar to the prediction in Section|7.1.3] we apply Gaussian process regression. Let t := (¢, ;)

andtr := (t — R,...,t)T. The smoothed estimate is then given by the mean
" =k ((t—d, 1) tr) K f (tr), (7.8)
where the covariance matrix K is modeled by
_ 1 2 . .2
k(t —r,t— S) =ag €xp _5 ai (’I" - 5) + az (thr - thS)
+ OpoiscOrs. (7.9)

The hyperparameters are learned offline as explained in Section[6.3.2] Since the correlation de-
pends only on the temporal distance but not on the current value of ¢, K~! needs to be calculated
only once for a fixed number of training data R. Basically, the regression comes down to lin-
ear filtering with an asymmetric filter mask and the weights being learned from training data.
Figure[7.6]shows the impact of d where we use R = 10 + d.

In general, a Kalman or particle filter could also be used for smoothing. However, the param-
eters need to be learned as well and we have not observed a significant improvement when the
smoothing is performed with only a short delay.

7.1.5 Local Optimization

After smoothing, the accuracy of the estimated pose is increased by local optimization. Since the
silhouettes from background subtraction often contain severe artifacts like shadows and holes,
we improve the quality of the silhouettes by local segmentation before optimizing the pose, see
Figure The smoothed pose xfTC‘l’Oth serves both as shape prior for the segmentation and as
initial estimate for local optimization. For reader’s convenience, we briefly recapitulate the used
local optimization and segmentation that are described in detail in Sections and[5.2]

Local Segmentation

The silhouette of the human is extracted by a level-set segmentation that divides the image into
fore- and background where the contour is given by the zero-line of a level-set function ®. As
proposed in [RBWO7I], the level-set function ® is the minimum of the energy functional

E(q)):—/QH(<I>)lnp1+(1—H(<I>))lnp2dx
— &) de :
+19/Q VH ()| dx+)\/Q(<I> )2 dz, (7.10)

where H is a regularized version of the Heaviside step function. The probability densities of
the fore- and background, p; and p», are modeled by local Gaussian densities @I) using the
color channels L, a, and b that are assumed to be independent as in (6.27). While the first term
maximizes the likelihood, the second term, weighted by the fixed parameter ¢ = 2, regulates
the smoothness of the contour. The last term penalizes deviations from the projected surface
of the smoothed pose xfﬁf"th given as level-set function @, , where the influence of the
shape prior is controlled by the parameter A = 0.08. For minimizing (7.10), local optimization

is performed with gradient

Vo
Op® = H'(® (l ]2+19d’ <>>—|—2)\<I> - o 7.11
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and @, as initial estimate. In contrast to the region-based matching approach in Section @,
segmentation and pose estimation are not iterated. Since a good estimate for the pose is already
available, the shape prior @, is determined by ZI:deOOth and remains unchanged for a frame.

Pose Estimation

(a) (b) (© (@

Figure 7.7: From left to right: a) Silhouette from background subtraction. b) Estimate from
global optimization. ¢) Silhouette from level-set segmentation. d) Improved estimate by local
optimization. The right and left arms are better estimated.

The pose :U;?Tdmth is finally refined by the iterated closest point (ICP) approach introduced in
Section To this end, 2D-2D correspondences between the zero-level of ® and @X(xfT£°th)
are established by a closest point algorithm [Zha94]]. Since the points on the contour of the
projected surface of xdeo"th relate to 3D vertices of the mesh, 3D-2D correspondences between
the model and the image can be derived. According to ICP, the pose estimation is performed
iteratively where the set of correspondences is updated after each optimization until the pose
converges to a local minimum.

For estimating the pose, we seek for the relative transformation that minimizes the error of
given 3D-2D correspondences denoted by pairs (X, z;) of homogeneous coordinates. As in
Section the rigid body motion is modeled as twist: M = exp(&é ). A joint j is modeled as
zero-pitch screw around a given axis, i.e., the joint motion depends only on the rotation angle 0;.
Hence, a transformation of a point X; on the limb £; influenced by n;, joints is given by

Xi = M(OM(0,, ). M0 ))Xi (7.12)

g, (N,
7 K3

where the mapping ¢, represents the order of the joints in the kinematic chain. Since each 2D
point z; defines a projection ray that can be represented as Pliicker line L; = (n;, m;) [Sto91],
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the error of a pair (X/, z;) is given by the norm of the perpendicular vector between the line L;
and the point X/
L (X7) x ni — mi2, (7.13)

(2

where II denotes the projection from homogeneous coordinates to non-homogeneous coordi-
nates. Using the Taylor approximation exp(@é )~ 1+ 0<, where I denotes the identity matrix,
Equation can be linearized. Hence, the sought transformation is obtained by solving the
linear least squares problem

2
ng,

1 . .
arg)r(nin 5 Z II I+ 9§ + Z 0”%(])&’%(]) Xi | xng —myl| (7.14)

Jj=1 9

i.e. by solving a system of linear equations.
In order to penalize strong deviations from xfm(;"th

_ and to avoid an underdetermined system, we
extend the linear system by an additional equation

ad; = a (57" — ;) (7.15)

for each joint j, where 9~j is the previously estimated absolute joint angle. The parameter « is
set relative to the number of correspondences to achieve a constant weighting for each frame. In
practice, we use @« = 0.2 - [{(Xj,z;);}|- Since the local optimization provides only a relative
transformation, the refined pose z;_g4 is obtained by applying the relative transformation to the
previously estimated pose. We remark that the particular choice of the parameters for local
segmentation and optimization influences only marginally the results of the second layer. The
values therefore remain fixed in our experiments.

7.1.6 Experiments

For an experimental evaluation of the proposed multi-layer framework, we use the
HumanEva-I1 dataset [SBO6] that contains two sequences that were captured by 4 calibrated
cameras with resolution of 656 x 490 pixels and 60 fps. The ground truth has been obtained by
a marker-based motion capture system that was synchronized with the cameras. The sequences
show two different subjects S2 and S4 performing the motions walking, jogging, and balanc-
ing. We use the 3D surface mesh model that is available for subject S4 and does not contain
the clothing. Both sequences S2 and S4 are tracked with this model although the mesh model
does not fit subject S2 as shown in Figure Furthermore, we reduced the number of tri-
angles to 5000 and added a skeleton with 28 degrees of freedom to the mesh. Since not all 20
points of the 3D pose from the marker-based system relate to joints of our mesh, we have used
the first frame of each sequence to register the 3D markers of the ground-truth to our mesh. In
Figure the registered markers are shown by red dots and the joint locations by blue dots.
For computing the 2D and 3D error, we take the joint locations of the model, if they are avail-
able. Otherwise we use the registered markers. Since the joint locations of subject S4 do not fit
subject S2, we have used only the registered markers for S2. In order to register the 3D markers
as accurately as possible to the model, we have manually segmented the first frame and esti-
mated the initial pose as described in Section We remark that not only the tracking and
initialization contribute to the overall error, but also the registration and the marker-based system
introduce some errors. Hence, the reported errors should be regarded only as upper bounds that
allow comparison of different approaches. The experiments are split into two sections. While
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the first section compares filtering approaches to optimization approaches and complements the
evaluation in Section [6.3.3] the second section demonstrates the performance of the proposed
multi-layer framework.

200 400 600 800
t

(a) (b) PF (c) ICP (d) APF (e) ISA

Figure 7.8: From left to right: a) Absolute 3D errors for frames 2 — 821 of sequence S4.
While the estimates of the particle filter (PF) are imprecise, local optimization (ICP) gets stuck
in local minima. The annealed particle filter (APF) contains two severe errors (> 100mm)
around frames 440 and 590 yielding a large standard deviation, see Table[7.1} Global stochastic
optimization (ISA) performs very well for the entire sequence. b-e) Estimates for frame 580 by
PF, ICP, APF, and ISA. ICP fails to track the right arm and the legs are disarranged by the APF.

Optimization vs. Filtering

We have compared interacting simulated annealing (ISA) to local optimization (ICP), a standard
particle filter (PF) [DFGO1]], a variant of the smart particle filter (PFICP) [BKMGO07], and the
annealed particle filter (APF) [DROS]. The comparison is performed on the first 820 frames
of sequence S4 using the absolute 3D error as measurement [[SBO6]. Since the ground truth is
corrupted for the frames 298 — 335, these frames are neglected in the error analysis. For local
optimization, we apply the iterative closest point approach described in Section [7.1.3]to the sil-
houettes obtained by background subtraction, where the prior on physical constraints (6.31)) is
integrated according to (5.28). ISA, PE, and APF use the same energy model defined in Sec-
tion|7.1.3| For the particle filter, we employ the weighting function (6.23) with G; = 1. This is
similar to the assumption that the likelihood is proportional to a product of normal densities. The
particles are predicted as described in Section [6.3.2] without using the mutation operator since
it is not supported by a filtering framework, i.e., 50% of the particles are shifted according to
the predicted mean and the remaining 50% are directly selected. While ISA and APF are exe-
cuted with 250 particles and 15 iterations, which are called layers for APF, we set the number of
particles to 3750 for the particle filter to obtain the same computational cost. Though the smart
particle filter as proposed in [BKMGO7] uses stochastic meta descent (SMD) [[Sch99] for local
optimization, any local optimization like ICP can be used in principle. Since our ICP imple-
mentation is slower than SMD, we use 16 particles for PFICP to achieve the same computation
time as PF according to [BKMGO7]. Since neither PF, APF, PFICP, nor ICP are suitable for
initialization, the initial pose is provided by ISA.
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The errors are plotted in Figures a) and[7.9)a). It shows that the global stochastic optimiza-
tion approach clearly outperforms the local optimization and the particle filter. While ICP gets
stuck in local minima, the estimates of PF are imprecise. The annealed particle filter performs
better than the standard particle filter but it still produces two severe errors. This is reflected
in the standard deviation for APF given in Table which is large in comparison to ISA that
performs very well for the entire sequence. The result that APF performs better than PF seems to

error (mm,) PF ICP | PFICP | APF | ISA
avg 104.61 | 63.86 | 69.70 | 44.15 | 38.58
std dev 40.77 | 27.07 | 24.75 | 15.39 | 6.54

Table 7.1: Averages and standard deviations of the absolute tracking error for frames 2 — 821
of sequence S4. ISA shows clearly the best results where the standard deviation is significantly
lower than for APF.

contradict the comparison in [BSBOS|] where only slightly better results were obtained by APF.
The outcome of APF, however, depends strongly on the parameter for adaptive diffusion [DROS]
which was not implemented in the previous comparison. The errors for two different settings,
namely 0.4 (APF*) and 0.2 (APF), are plotted in Figure a). PFICP does not necessary im-
prove ICP where the best result has been achieved with a very large window size for estimating
the correction factor. Approaches like PFICP are in general relatively inefficient since the ad-
ditional optimization step limits the number of particles such that a good approximation of a
distribution is infeasible. Furthermore, a lot of computation time is wasted when the particles
migrate to the same local minimum.

The performance of APF and ISA on a very fast sequence has been evaluated by reducing the
framerate from 60 fps to 15 fps. For the comparison shown in Figure b), the parameters for
both algorithms are unchanged. While ISA performs very well for 60 Hz and 15 Hz, the error
for APF increases by more than 30% when the speed is quadrupled. It might be that the result of
APF can be improved by optimizing the parameter for adaptive diffusion on 15 Hz but it is clear
that the faster the motion is the more important global optimization becomes.

Although the optimal numbers of particles and iterations for ISA are trade-offs between accuracy
and computation cost, Figure[7.10] shows that large numbers of iterations and particles improve
the estimates only marginally. Indeed, the error drops until 200 particles and 15 iterations,
however after 30 iterations the absolute error is still 36.75mm. For comparison, an error of
38.58mm is obtained by 15 iterations. This indicates that ISA provides estimates near the global
optimum in reasonable time, but when more precise estimates are required the ratio between
accuracy and computation cost is unsatisfactory.

Multi-layer

For evaluating the performance of the proposed multi-layer framework, the absolute 3D tracking
errors are measured for the entire sequence S4 that consists of 1257 frames. Figure[7.11] shows
that the second layer increases the accuracy of the estimates from the first layer, where 250
particles and 15 iterations are used for ISA and the second layer refines the estimates with a
delay of 5 frames. In particular, the largest error around frame 380 is significantly reduced by
the second layer. This is reflected by the results given in Table where the average error is
reduced by 15.9% and the standard deviation by 22.4%. The second layer clearly provides more
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Figure 7.9: Comparison between filtering and optimization approaches. From left to right:
a) Global stochastic optimization (ISA) provides the best estimates whereas the standard parti-
cle filter (PF) and local optimization (ICP) perform poorly. The annealed particle filter (APF)
performs better than a combination of particle filtering with local optimization (PFICP) provided
that the parameter for adaptive diffusion is well chosen. Otherwise, the error for APF becomes
very large. The detailed errors with standard deviations are listed in Table b) The effect
of a very fast movement is simulated by using only every 4th frame of sequence S4 (frames
2 — 821). This corresponds to a walking and running sequence recorded with 15 fps. While the
error increases slightly by 4.68% to 40.39mm for ISA, the error for APF rises to 57.63mm by
30.5%.
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Figure 7.10: Absolute tracking error of global optimization for frames 2 — 821 of sequence S4.
Large numbers of iterations and particles improve the estimates only marginally. From left to
right: a) Error with respect to the number of particles using 15 iterations. b) Error with respect
to the number of iterations using 250 particles.
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precise estimates, which cannot be achieved by an increased number of particles and iterations
in reasonable time; see Figure [7.10] Our current implementation requires 76 seconds per frame
for the first layer and 48 seconds per frame for the second layer on a standard computer whereas
ISA with 30 iterations would require 152 seconds per frame.

The errors and quantiles for individual joints are provided in Figure The quantiles show
that most joints, particularly the knees, are very well estimated. It also reveals that the limb ex-
tremities, namely wrists and ankles, are more difficult to track since hands and feet are relatively
small body parts. The lower quantiles indicate the registration errors of the joint positions, par-
ticularly of the ankles. Since the distances between the upper and lower quantiles for the wrists
and ankles are similar, the larger error of the ankles might be explained by the registration error.

error (mm,) | Layerl | L1+Smooth | L1+LocOpt | L1+Layer2
avg 38.07 35.58 33.23 32.01
std dev 5.84 5.09 5.08 4.53

Table 7.2: Averages and standard deviations of the absolute tracking error for the complete
sequence S4 (frames 2 — 1258). The error of the first layer using only global optimization is sig-
nificantly reduced by the second layer. Clearly, a coupling of smoothing and local optimization
provides more precise results than each of them alone.
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Figure 7.11: From left to right: a) Absolute tracking error for the sequence S4 (frames 2 —
1258). The second layer reduces jitter and increases the accuracy of the estimates from the first
layer. In particular, the largest error around frame 380 is significantly reduced by the second
layer. b) A comparison of the average errors for the complete sequences S2 and S4 shows the
improvements of our multi-layer framework. The detailed errors with standard deviations are

given in Tables[7.2]and

We have also evaluated the impact of coupling local optimization and smoothing for the second
layer, which performs better than each of these steps alone. This is shown in Figure [7.11] Ta-
bles [7.2] and [7.3] reveal that the accuracy is primarily increased by local optimization whereas
smoothing reduces the jitter, as indicated by the decreased standard deviation. The best results
for the second layer were achieved with a short delay of 5 frames as plotted in Figure [7.6] b).
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Figure 7.12: Average errors and 0.025-quantiles for individual joints obtained by the multi-layer
framework on the entire sequence S4. While the knees are very well estimated, the error bars for
the limb extremities such as wrists and ankles are larger than for other joints. The quantiles of
the ankles indicate that the ankle joints are not well registered.

Even without delay, the error is slightly reduced compared to applying only local optimization.
The computation times are listed in Table For convenience, we also provide the error of the
second layer in Table [/.5|when a particle filter approach is used as first layer.

error (mm) | Layerl | L1+Smooth | L1+LocOpt | L1+Layer2
avg 43.82 41.44 39.20 37.53
std dev 10.65 9.67 10.05 9.00

Table 7.3: Averages and standard deviations of the absolute tracking error for the complete
sequence S2 (frames 1 — 1202).

Layerl | L1+Smooth | L1+LocOpt | L1+Layer2

sec/frame 76 76 124 124

Table 7.4: Overall computation time on a standard PC for a frame with 4 images.

We further applied the multi-layer framework to sequence S2 that consists of 1202 frames. Since
we use the 3D surface mesh model of subject S4, the model does not fit subject S2, see Fig-
ure Nevertheless, competitive results are obtained even though the error is larger by 6mm
than for sequence S4, see Tables[7.2]and[7.3] The increase of the error seems to be mainly caused
by the wrong model since the camera setting and movement are very similar to S4. Particularly,
the elbow joints of the model are at the wrong position which causes problems when the elbows
are angled. This indicates that our approach would also work with a generic surface model like
the SCAPE model [ASK ™05, BSB™07|]. However, it also reveals that the quality of the surface
mesh has a significant impact on the accuracy of the estimates.
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error (mm) | PF+L2 | PFICP+L12 | APF+L1L2 | ISA +L2
avg 82.70 58.38 37.26 32.49
std dev 43.77 25.32 14.67 5.21

Table 7.5: Averages and standard deviations of the absolute tracking error for frames 2 — 821
of sequence S4. The second layer (L2) improves the results for all sampling approaches. The
results without the second layer are given in Table

head (degree)

(a) (b) Layer 1 (c) Layer 2

Figure 7.13: Biased estimates. From left to right: a) When the physical constraints are modeled
by a strong prior, the estimates are biased towards the training data. For this example, only joint
samples around zero have been used. Since the second layer does not make use of the prior, the
bias is reduced. b) Biased estimate of the head by the first layer. ¢) The estimate of the second
layer better fits the image data.

The influence of a strong prior is demonstrated in Figure[7.13] To this end, we learned the phys-
ical constraints of the head movement only by joint samples around zero. While the estimates
from the first layer are biased towards the training data and do not fit the image data, the second
layer reduces the bias since it does not rely on the prior. We emphasize that the bias is not com-
pletely removed, since the second layer is initialized by the estimates of the first layer, but the
example shows that the estimates of our multi-layer framework better fit the image data.

In order to allow comparison to other approaches that have not been mentioned in this section,
we provide various error metrics for the sequences S2 and S4 in Tables and Each se-
quence is split into three sets, where the first set contains only the walking motion, the second the
walking and jogging motion, and the third set the entire sequence consisting of walking, jogging,
and balancing. The average errors and standard deviations are given for global stochastic opti-
mization (one layer) and the multi-layer framework (two layers). The 2D errors are computed
for cameras C1 and C2. The relative error is computed with respect to the pelvis joint. For a
detailed description on the error metrics, we refer to [SBO6|]. We remark that the relative error
is higher than the absolute error. This indicates that the marker for the pelvis joint has not been
accurately registered to the surface mesh model. In addition, some estimated human body poses
of the multi-layer framework are shown in Figures and
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Figure 7.14: Estimates for subject S2. Note that the arms of the surface mesh model are too
short, since the model of subject S4 has been used for tracking (top left). From top left to
bottom right: The meshes of the estimates are projected on the images of camera C1 for frames
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, and 1200.

7.1.7 Summary

In this section, we have compared optimization and filtering approaches for model-based human
motion capture that do not rely on prior knowledge on the dynamics. A quantitative error analy-
sis has revealed that interacting simulated annealing provides significantly better estimates than
an iterative closest point approach, a standard particle filter, a variant of the smart particle filter,
or the annealed particle filter. While ISA provides robust and relatively accurate estimates of
the human pose, an even higher precision is only achieved at the expense of high computational
cost. To address this problem, we have introduced a multi-layer framework that combines the
advantages of global stochastic optimization, local optimization, and filtering. While the first
layer relies on ISA, the second layer refines the estimates where filtering and local optimization
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Figure 7.15: Estimates for subject S4. From top left to bottom right: The meshes of the
estimates are projected on the images of camera C2 for frames 100, 200, 300, 400, 500, 600,
700, 800, 900, 1000, 1100, and 1200.

are coupled. The second layer not only increases the accuracy, but also reduces jitter and poten-
tial bias from the first layer. The latter is an important issue particularly in medical applications.
In practice, the two layers can be run in parallel such that the processing time is not increased.
An additional speed-up by a factor of 12 — 20 has been observed for the first layer when the
evaluation of the energy is performed on a GPU.

Since the described approach is based on a fixed surface model, its general applicability has
some limitations. Although good results are obtained even with a wrong surface model, we
have demonstrated that the quality of the surface mesh has an impact on the accuracy of the
estimates. A solution to be investigated is to adapt a generic human model to the image data.
The framework could also be combined with motion priors, which might be useful in monocular
scenarios. The multi-layer framework is appealing in this case, since the motion priors would
reduce the search space for ISA and the second layer would be necessary to reduce the bias
introduced by the priors.
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7.2 Skeleton Tracking and Surface Estimation

The human motion capture approaches discussed so far use a skeleton-based deformation to
approximate the surface deformations. Ideally, one expects to both estimate an articulated rigid-
body skeleton that explains the overall motion of the character, as well as the potentially non-
rigid deformation of the surface, e.g. caused by tissue or garment. On the one end of the spec-
trum, many current automatic approaches track only a skeleton model which poses strong re-
strictions on the subject, like tight clothing. Since garment motion, for instance, is non-rigid and
rarely aligned with the motion of the underlying articulated body, these algorithms often dramat-
ically fail if the subject wears wide clothing like a dress. On the other end of the spectrum, there
are methods which capture a faithfully deforming 3D surface of the subject, but do not provide
an underlying skeleton.

In contrast, our approach captures both skeletal motion as well as an accurately deforming sur-
face of an animal or human by fitting a body model to multi-view image data. Our body model
is a combination of a bone skeleton with joints, as well as a surface whose deformation is only
loosely coupled with the skeleton motion. We can accurately capture both detailed surface de-
formations and motion of wide apparel, which are essential for realistic character animations.
At the same time, the skeleton provides a low-dimensional motion parameterization which fa-
cilitates tracking of fast movements. Our captured performances can be easily edited and used
in animation frameworks typical for games and movies, which are almost exclusively skeleton-
based.

Figure 7.16: Our approach captures the motion of animals and humans accurately even in the
case of rapid movements and wide apparel. The images show three examples of estimated sur-
faces that are superimposed on the images.

Finally, our approach exceeds the performance of related methods from the literature since both
accurate skeleton and surface motion are found fully-automatically. This is achieved by the
following properties:

e Our approach recovers the movement of the skeleton and the temporal deformation of the
3D surface in an interleaved manner. To find the body pose in the current frame, we first
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optimize the skeletal pose and use simple approximate skinning to deform the detailed
surface of the previous time step into the current time step. Once converged, the fine
surface deformation at the current time step is computed without limiting the deformation
to comply with the skeleton. This improves also the skeleton estimation and avoids errors
caused by wide apparel since the refined surface model of the previous frame provides a
good approximation of the surface at the current frame.

o Since skeleton-based pose estimation is more constrained than surface estimation, our ap-
proach is less sensitive to silhouette noise than comparable visual hull approaches and runs
even on medium quality multi-view sequences like the HumanEva benchmark [SB0O6].
The reliability and accuracy of our approach is demonstrated on 12 sequences that consist
of over 5000 frames with 9 different subjects (including a dog) performing a wide range
of motions and wearing a variety of clothing.

e Since local optimization methods get stuck in local minima and cannot recover from er-
rors, they cannot track challenging sequences without manual interaction. In order to over-
come the limitations of local optimization, we exploit the tree structure of the skeleton to
split the optimization problem into a local and a lower dimensional global optimization
problem.

The optimization scheme is motivated by the observation that local optimization is efficient
and accurately tracks most frames of a sequence. However, it fails completely in some frames
where the motion is fast or the silhouettes are noisy. The error often starts at a certain limb
or branch of the skeleton and is propagated through the kinematic chain over time until the
target is irrevocably lost. Our approach interferes before the error spreads. It detects misaligned
limbs after local optimization and re-estimates the affected branch by global optimization. Since
global optimization is only performed for few frames and for a lower dimensional search space,
the approach is suitable for large data sets and high dimensional skeleton models with over 35
degrees of freedom.

7.2.1 Beyond Articulated Models

Since articulated models are not very realistic models of the human body, implicit surfaces based
on metaballs [PFO3], shape-from-silhouette model acquisition [CBKOJ], or the learned SCAPE
body model [ASK ™05, BSB™07]] have been proposed. While these approaches model the human
body without clothing, Balan and Black [BBOS|] have used SCAPE to estimate the human body
underneath clothes from a set of images. Tracking humans wearing more general apparel has
been addressed in [RKPT07] where a physical model of the cloth is assumed to be known.

In contrast to skeleton-based approaches, 3D surface estimation methods are able to capture
time-varying geometry in detail. Many approaches like [SHO3),[VZBHOS]| rely on the visual hull
but suffer from topology changes that occur frequently in shape-from-silhouette reconstructions.
Mesh-based tracking approaches as proposed in [ATSS07] and [AST™08|| provide frame-to-
frame correspondences with a consistent topology. Fitting a mesh model to silhouettes and
stereo, however, requires a large amount of correspondences to optimize the high dimensional
parameter space of a 3D mesh. This, in turn, makes them more demanding on processing time
and image quality than skeleton-based methods.

Our approach is most similar to the work of Vlasic et al. [VBMPOS] where a two-pass approach
has been proposed. In the first pass, a skeleton is geometrically fit into the visual hull for each
frame. The second pass deforms a template model according to the estimated skeleton and
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refines the template to fit the silhouettes. Despite of visual appealing results, a considerable
amount of manual interaction is required, namely up to every 20th frame, to correct the errors
of the skeleton estimation. The errors are caused by fitting the skeleton to the visual hull via
local optimization without taking a complete surface model or texture information into account.
Moreover, their visual hull approach is sensitive to silhouette errors. In contrast, our local-global
optimization makes for a fully-automatic approach that also works on data of poor image quality.

7.2.2 Overview

(b) Segmented images (c) Estimated 3D Model

(d) Estimated skeleton (e) Deformed surface (f) Estimated surface

Figure 7.17: Having an articulated template model (a) and silhouettes (b) from several views,
our methods tracks the skeleton and estimates the time-varying surface consistently without
supervision by the user (¢). Using the estimated surface of the previous frame, the pose of the
skeleton (d) is optimized such that the deformed surface (e) fits the image data. Since skeleton-
based pose estimation is not able to capture garment motion (e), the surface is refined to fit the
silhouettes (f).

The performance of an animal or human is captured by synchronized and calibrated cameras
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and the silhouettes are typically extracted by background subtraction or chroma-keying. Our
body model comprises of two components, a 3D triangle mesh surface model M with 3D vertex
locations X; and an underlying bone skeleton as shown in Figure a). We assume that a 3D
surface model M of the tracked subject in a static pose is available. It might be acquired by a
static full-body laser scan, by shape-from-silhouette methods, or from a human shape database as
SCAPE. In our experiments, we demonstrate results for all three cases, but would like to note that
model acquisition is outside of the scope of this work as discussed in Section A kinematic
skeleton is then inserted into the 3D mesh. In our case, an object-specific skeleton with usually
around 36 degrees-of-freedom is generated by manually marking the joint positions. Thereafter,
weights wy, ; are automatically computed for each X;, which describe the association of X; with
each bone k£ [BPO7|]. The weights allow us to do skinning, i.e. a simple approximation of non-
linear surface deformation based on the skeleton pose. Weighted skinning is used to interpolate
the joint transformations on a per-vertex-basis. We use quaternion blend skinning [KCvOOQ7/]
which produces less artifacts than linear blend skinning methods.

An outline of the processing pipeline is given in Figure Starting with the estimated mesh
and skeleton from the previous frame, the skeleton pose is optimized as described in Sec-
tion such that the projection of the deformed surface fits the image data in a globally
optimal way (Figure d)). Since this step only captures deformations that can be approx-
imated by articulated surface skinning (Figure e)), subsequently the non-rigid surface is
refined as described in Section[7.2.4] (Figure[7.17]f)). The estimated refined surface and skeleton
pose serve as initialization for the next frame to be tracked.

7.2.3 Skeleton-based Pose Estimation

Since local pose optimization is prone to errors and global pose optimization in high dimensional
spaces is expensive, our method estimates poses in two phases. The first phase searches for
the nearest local minimum of an energy functional that assesses the model-to-image alignment
based on silhouettes and texture features. To this end, the whole articulated skeleton is optimized
locally. Subsequently, misaligned bones are detected by evaluating the energy E of each rigid
body part. When the energy exceeds a given threshold, the affected limb is labeled as misaligned.
In addition, the preceding limb in the kinematic chain is also labeled when the joint between the
limbs has less than three degrees of freedom (e.g. knee or elbow). For instance, a wrong estimate
of the shank might be caused by a rotation error along the axis of the thigh. Then the labeling
process is continued such that all bones until the end of the branch are labeled as illustrated in
Figure Thereafter, the labeled bones are re-estimated by global optimization.

Local Optimization

The articulated pose is represented by a set of twists 6; é j as in Section ﬂ A transformation of
a vertex X;, which is associated with bone k; and influenced by ny, out of totally /V joints, is
given by

TXXi = exp (95) exXp <9Lki(1)£“%(1)) ... eXp (eLkz(nkz)é\Lkz(nkz)) XZ' (7.16)

where the mapping ¢, represents the order of the joints in the kinematic chain. Since the joint
motion depends only on the joint angle ¢, the state of a kinematic chain is defined by a parameter
vector x := (A€, ©) € R? that consists of the six parameters for the global twist 95 and the joint
angles © := (01,...,0n).
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(a) (b) () ()]

Figure 7.18: Although local optimization is prone to errors, often only a single branch of the
kinematic chain is affected (a). This reduces the computational burden for global optimization
since it can be performed in a lower dimensional subspace to correct the estimation error (b).
After detecting misaligned limbs (red circle), the kinematic chain is traversed (red arrows) to
label bones and associated joints that have to be globally optimized (c,d).

For estimating the parameters Y, a sufficient set of point correspondences between the 3D model
X; and the current frame x; is needed. For the local optimization, we rely on silhouette contours
and texture as in Section [5.5] Contour correspondences are established between the projected
surface and the image silhouette by searching for closest points between the respective contours.
Texture correspondences between two frames are obtained by matching SIFT features [Low04].
In both cases, the 2D correspondences are associated with a projected model vertex X; yielding
the 3D-2D correspondences (X, x;). In the contour case, x; is the point on the image contour
closest to the projected vertex location in the current frame. In the texture case, x; is the 2D
location in the current frame that is associated with the same SIFT feature as the projected vertex
X in the previous frame. Since each 2D point x; defines a projection ray that can be represented
as Pliicker line L; = (n;, m;) [Sto91]], the error of a pair (7} X;, z;) is given by the norm of the
perpendicular vector between the line L; and the transformed point 7, X;:

T (T X;) x ng —mi,, (7.17)

where II denotes the projection from homogeneous coordinates to non-homogeneous coordi-
nates. Using Equations and (7.17)), one obtains the weighted least squares problem

o1
arg)r(nln 3 zi:wi | (T V5) x ni — ’mz”; (7.18)

that can be solved iteratively and linearized by using the Taylor approximation exp(6€) ~ I +06&,
where I denotes the identity matrix, as in Section [5.5.2] In order to stabilize the optimization,
the linear system is regularized by

805 =5 (6; - 05). (7.19)

where éj is the predicted angle from a linear 3rd order autoregression (5.22), 0; is the previ-
ously estimated absolute joint angle, and [ is a small constant. The pose x represented by all



7.2 Skeleton Tracking and Surface Estimation 139

9]~ can be regarded as a conservative prediction for the current frame. Since the optimization
regards the limbs as rigid structures, the mesh is updated between the iterations by quaternion
blending [KCvOO07] to approximate smooth surface deformation.

While contour correspondences are all weighted equally with wz»C = 1, the texture correspon-
dences have higher weights wiT during the first iteration since they can handle large displace-
ments. For the first iteration, we set the weights such that 3", w] = oY, w{ with a = 2.0,
i.e. the impact of the texture features is twice as high as the contour correspondences. After
the first iteration, the solution already converges to the nearest local minimum such that the tex-
ture features can be down-weighted by o = 0.1. In addition, obvious outliers are discarded by
thresholding the re-projection error of the texture correspondences similar to Section[5.5.1]
After the local optimization has converged to a solution Y, the error for each limb is evaluated
individually. Since each correspondence is associated with one limb k, the limb-specific energy

is obtained by
1
Ee(X) =70 D IL(TX3) % ni —mil3, (7.20)

where only contour correspondences are used and K = |{i; k; = k}|. If at least one limb exceeds
the predefined upper bound of the energy function, the second phase of the optimization, global
optimization, is initiated.

Global Optimization

After labeling the joints of the misaligned limbs as illustrated in Figure[7.18] the parameter space
of the skeleton pose R? is projected onto a lower dimensional search space P(y) — Y € R™
with m < d by keeping the parameters of the non-labeled joints fixed. In order to find the
optimal solution for y, we minimize the energy

argmin { Es(P~(X)) + v Er(X)} - (7.21)
X

While the first term measures the silhouette consistency between the projected surface and the
image, the second term penalizes strong deviations from the predicted pose and serves as a weak
smoothness prior weighted by v = 0.01.
The silhouette functional Es(P~1(x)) is a modification of the Hamming distance. Using the
inverse mapping x = P~!(¥) as new pose, the surface model is deformed by quaternion blend
skinning and projected onto the image plane for each camera view c. As in Section the
consistency error for a single view is obtained by the pixel-wise differences between the pro-
jected surface S¥ () in model pose x and the binary silhouette image S:

1
area(S.)

BS00 = ey 3 IS200(0) = S:0) + SU18:@) — SE0@], (7.2

where the sums with respect to p and q are only computed over the silhouette areas of S¥ () and
Se, respectively. In order to penalize pixel mismatches that are far away from the silhouette, a
Chamfer distance transform is previously applied to the silhouette image. The silhouette term
Eg is finally the average of E over all views.

The second term of the energy function (7.21]) introduces a smoothness constraint by penalizing
deviations from the predicted pose x in the lower dimensional space:

Er(X) = [lx — P()|3. (7.23)
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Since we seek for the globally optimal solution for y € R™, we use the particle-based global
optimization from Chapter [6] The method is appropriate to our optimization scheme since the
computational effort can be adapted to the dimensions of the search space and the optimization
can be initiated with several hypotheses. In our setting, each particle represents a single vector
X in the search space that can be mapped to a skeleton pose by the inverse projection P~1,
The computational effort depends on two parameters, namely the number of iterations and the
number of particles. While the latter needs to be scaled with the search space, the number of
iterations can be fixed. In our experiments, we have used 15 iterations and 20 * m particles
with a maximum of 300 particles. These limits are necessary to have an upper bound for the
computation time per frame. Furthermore, the optimization is performed on the whole search
space when more than 50% of the joints are affected. It usually happens when the torso rotation
is not well estimated by the local optimization which is, however, rarely the case.

The initial set of particles is constructed from two hypotheses, the pose after the local optimiza-
tion and the predicted pose. To this end, we uniformly interpolate between the two poses and
diffuse the particles by a Gaussian kernel.

7.2.4 Surface Estimation

Since quaternion blend skinning is based on the overly simplistic assumption that the surface
deformation is explained only in terms of an underlying skeleton, the positions of all vertices
need to be refined to fit the image data better as illustrated in Figures e) and f). To this end,
we abandon the coupling of vertices to underlying bones and refine the surface by an algorithm
that is related to the techniques used by de Aguiar et al. [AST08] and Vlasic et al. [VBMPOS].
We also use a Laplacian deformation framework (see [BSO8|] for a comprehensive overview) to
move the silhouette rim vertices of our mesh (vertices that should project onto the silhouette
contour in one camera) towards the corresponding silhouette contours of our images. In contrast
to previous work, we do not formulate deformation constraints in 3D, i.e., we do not require
contour vertices on the model M to move towards specific 3D points found via reprojection.
Instead, we constrain the projection of the vertices to lie on 2D positions on the image silhouette
boundary. This makes the linear system to be solved for the refined surface more complex, as we
have to solve for all three dimensions concurrently rather than sequentially, as is possible in the
previous works. But on the other hand this gives the deformation further degrees of freedom to
adapt to our constraints in the best way possible. We reconstructed the refined surface by solving
the least-squares system

arg)l(nin {ILX =55 + || Csur X — gsull3} - (7.24)

Here, L is the cotangent Laplacian matrix and § are the differential coordinates of our current
mesh with vertices X [BSOS8]. The second term in our energy function defines the silhouette
constraints and their weighting factor . Matrix Cy;; and vector gg;; are assembled from individ-
ual constraints that take the following form: Given the 3 x 4 projection matrix M€ of a camera c
split into its translation vector 7 and the remaining 3 x 3 transformation N°¢, the target screen
space coordinates z; = (x;y, T ), and the 3D position X; of a vertex on the 3D silhouette rim
of M, we can express a silhouette alignment constraint using two linear equations:

(N — 2 uN$)X; = =T + 2, T§

(7.25)
(NS — 2, N$) X = —T5 + 23,15
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Figure 7.19: Left: Visual comparison of our approach with [ASTT08]. a) Input image.
b) Tracked surface mesh from [ASTT08]. ¢) Tracked surface mesh with lower resolution ob-
tained by our method. While [ASTT08] handles loose clothes better, our approach estimates the
human pose more reliably. Rightmost: d) Comparison of our optimization scheme with local
optimization. The bars show the average error and standard deviation of the joint positions of the
skeleton for the S4 sequence of the HumanEva—ITI benchmark. The three sets cover the frames
2 — 350 (walking), 2 — 700 (walking+jogging), and 2 — 1258 (walking+jogging+balancing).
While our approach recovers accurately the joint positions over the whole sequence, the error
for local optimization is significantly larger.

Here the subscripts of /V; and T; correspond to the respective rows of the matrix or entry of the
vector. These equations force the vertex to lie somewhere on the ray going through the camera’s
center of projection and the pixel position ;. Since the error of this constraint is depth-dependent
and thus not linear in the image plane, we weight each constraint such that the error is 1 for a
single pixel difference at the original vertex position.

Enforcing too high weights for our constraints may lead to an over-adaptation in presence of
inaccurate silhouettes. We therefore perform several iterations of the deformation, using lower
weights. As the silhouette rim points may change after a deformation, we have to recalculate
them following each deformation. In all our experiments, we performed 8 iterations and used
weights of o = 0.5.

The estimation for the next frame is then initiated with the estimated skeleton and an adapted
surface model which is obtained by a linear vertex interpolation between the mesh from skeleton-
pose estimation X and the refined mesh X", i.e. X!t = AX"" 4 (1 — \)X . In general,
a small value A = 0.1 is sufficient and enforces mesh consistency.

We finally remark that the surface estimation uses 2D constraints while the skeleton-based pose
estimation (Section uses 3D constraints. In both cases 3D constraints can be computed
faster, but 2D constraints are more accurate. We therefore resort to 3D constraints during
skeleton-based pose estimation which only produces an approximate pose and surface estimate,
but use 2D constraints during refinement where accuracy matters.

7.2.5 Experiments

For a quantitative and qualitative evaluation of our approach, we have recorded new se-
quences and used public available datasets for a comparison to the related methods [AST08]
and [VBMPOS]|. Altogether, we demonstrate the reliability and accuracy of our method on 12 se-
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Sequence Frames | Views | Model | %DOF
Handstand 401 8 Scan 3.3%
Wheel 281 8 Scan 0.2%
Dance 574 8 Scan 4.0%
Skirt 721 8 Scan 0.2%
Dog 60 8 Scan | 98.3%
Lock [SHO3| 250 8 S-£-S 33.9%
Capoeiral [ASTT08] 499 8 Scan 3.4%
Capoeira2 [ASTT08]] 269 8 Scan | 11.8%
Jazz Dance [[ASTT08] 359 8 Scan | 43.8%
Skirtl [ASTT08]| 437 8 Scan 7.2%
Skirt2 [ASTT08]] 430 8 Scan 6.5%
HuEvall S4 [SB06] 1258 4 SCAPE | 79.3%

Table 7.8: Sequences used for evaluation. The first 5 sequences are newly recorded. The other
sequences are public available datasets. The sequences cover a wide range of motion, apparel,
subjects, and recording settings. The last column gives the average dimensionality of the search
space for the global optimization in percentage of the full search space.

quences with 9 different subjects. An overview of the sequences is given in Table The num-
ber of available camera views ranges from 4 to 8 cameras and the 3D surface models have been
acquired by a static full body laser scan, by a shape-from-silhouette method, or by the SCAPE
model. While our newly recorded sequences have been captured with 40Hz at 100421004 pixel
resolution, the other sequences are recorded with the settings: 25Hz and 192021080 pixel res-
olution [SHO3], 25Hz and 100421004 pixel resolution [AST™08]], or 60Hz and 6562490 pixel
resolution [SBOG6]. Despite of the different recording settings, the sequences cover various chal-
lenging movements from rapid capoeira moves over dancing sequences to a handstand where
visual hull approaches are usually prone to topology changes. Furthermore, we have addressed
scale issues by capturing the motion of a small dog and wide apparel by three skirt sequences
where skeleton-based approaches usually fail. The last column in Table gives the achieved
dimensionality reduction of the search space for global optimization and indicates the reduced
computation time. On the newly recorded sequences, the surface estimation requires 1.7 seconds
per frame, the local optimization 3 seconds per frame, and the global optimization 14 seconds
for each DOF (maximal 214 seconds per frame). For the skirt sequence, the average computation
time for all steps is 9 seconds per frame whereas global optimization without local optimization
takes 216 seconds per frame using 15 iterations and 300 particles.

The examples in Figures [7.20} [7.21] and [7.22] show that our approach accurately estimates both
skeleton and surface deformation. Even the challenging lock sequence [SHO3] can be tracked
fully automatically whereas the approach [VBMPOS]|| requires a manual pose correction for 13
out of 250 frames. A visual comparison with a mesh-based method [AST08] is shown in
Figure Since this method does not rely on a skeleton, it is free of skinning artifacts and
estimates apparel surfaces more accurately. The prior skeleton model in our approach, on the
other hand, makes pose recovery of the extremities more accurate. In addition, our method is
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Figure 7.20: Various results of our tracking method. The three pictures of the subjects show input
image, adapted mesh overlay, and 3D model with estimated skeleton from a different viewpoint
respectively.
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Figure 7.21: Various results of our tracking method. The three pictures of the subjects show input
image, adapted mesh overlay, and 3D model with estimated skeleton from a different viewpoint
respectively.
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Figure 7.22: Results of our tracking method for the dog sequence. The three pictures of the
subjects show input image, adapted mesh overlay, and 3D model with estimated skeleton from a
different viewpoint respectively.

over a magnitude faster than the mesh-based approach [ASTT08]], which requires approximately
10 minutes per frame.

In contrast to and [VBMPOS], our algorithm can also handle medium-resolution
multi-view sequences with extremely noisy silhouettes like the HumanEva-II bench-
mark [SBO6]. The dataset provides a ground truth for 3D joint positions of the skeleton that
has been obtained by a marker-based motion capture system that was synchronized with the
cameras. The sequence S4 with three subsets contains the motions walking, jogging, and bal-
ancing. The average errors for all three subsets are given in Figure [7.19] d). The plot shows
that our method provides accurate estimates for the skeleton pose, but it also demonstrates the
significant improvement of our optimization scheme compared to local optimization. We finally
remark that the errors in Figure d) are larger than the one given in Table[7.7 and that the
jazz dance sequence taken from also contains some inaccurate estimates for the feet.
The errors do not result from the optimization itself, but a silhouette problem in the data. There-
fore the functional being optimized, which is dominated by this error-corrupted term, may lead
to problems. Since the silhouettes from and are very noisy around the feet
due to shadows, the feet are not always perfectly estimated. This could be improved by using
additional cues or a pose prior as in Section

7.3 Summary

In this chapter, we have introduced two tracking systems for model-based human motion capture.
Both systems combine the techniques from the previous chapters and outperform the current
state-of-the-art. While the first approach has been developed for motion analysis scenarios with
noisy silhouette data and is rigorously evaluated on the HumanEva—1T benchmark [SB06], the
second approach demonstrates that global optimization can be efficiently employed even on high
quality video footage as shown on a large variety of sequences.

Although interacting simulated annealing provides robust and relatively accurate estimates of
the human pose, an even higher precision is only achieved at the expense of high computational
cost. To address this problem, we have introduced a multi-layer framework that combines the
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advantages of global stochastic optimization, local optimization, and filtering. While the first
layer relies on stochastic global optimization, the second layer refines the estimates where fil-
tering and local optimization are coupled. The second layer not only increases the accuracy, but
also reduces jitter and potential bias from the first layer. Although the approach significantly out-
performs the current state-of-the-art on the HumanEva-ITI benchmark, the computation time
limits its application on high quality data, i.e. sequences captured with more than 4 high resolu-
tion cameras in a controlled environment. Another aspect that is inherent in any skeleton-based
pose estimation method is the limited capacity to handle non-rigid surface deformations. Since
garment motion, for instance, is non-rigid and rarely aligned with the motion of the underlying
articulated body, these methods often fail if the subject wears wide clothing like a dress.

Hence, we have presented an approach that recovers skeleton pose and surface motion fully-
automatically from a multi-view video sequence. To this end, the skeleton motion and the
temporal surface deformation are captured in an interleaved manner that improves both accu-
rate skeleton and detailed surface estimation. In addition, we have introduced an optimization
scheme for skeleton-based pose estimation that makes automatic processing of large data sets
feasible. It reduces the computational burden for global optimization in high dimensional spaces
by splitting the skeleton-specific optimization problem into a local optimization problem and a
lower dimensional global optimization problem. The reliability of our approach has been eval-
uated on a large variety of sequences including the HumanEva—-II benchmark. The proposed
method exceeds the performance of related methods since it allows both accurate skeleton esti-
mation for subjects wearing wide apparel and surface estimation without topology changes for
fast movements and noisy silhouettes. This simplifies the acquisition of marker-less motion cap-
ture data for applications like character animation and motion analysis. The current limitation
of this approach comes from the fact that the pose needs to be explained by the functional being
optimized. This means that only body parts can be estimated that are visible. When the feet
are occluded by a very long dress, for instance, the estimated feet pose is somehow arbitrary.
This could be addressed by taking additional prior knowledge into account, like a motion prior.
Furthermore, the approach could also be combined with the multi-layer framework to improve
the accuracy on noisy silhouette data.



8

Conclusions

In this work, we have addressed the question “What is the best way to determine the sequence of
human poses that fits a given image sequence best?” by discussing the following two subques-
tions in the context of markerless human motion capture with skeleton-based shape models:

1. What are good cues for human motion capture?

2. Is human motion capture a filtering or an optimization problem?

8.1 What are good cues for human motion capture?

Local optimization can solve human motion capture accurately but it cannot recover from errors.
Hence, cues are required that guide the local optimization to the true pose. Furthermore, they
need to be robust to occlusions, illumination changes, and clutter and they need to be reliable
for homogeneous and structured surfaces. Since no single cue for motion capture like silhou-
ettes, edges, color, motion, and texture meets the demands, a multi-cue integration is necessary
for tracking complex objects like humans. For instance, a region-based approach that couples
segmentation and pose estimation [RBWO7]] works well for homogeneous objects but it usually
requires many iterations until convergence, which makes the approach very expensive. Particu-
larly for large transformations from frame to frame, the segmentation and consequently the pose
estimation usually get stuck in a local optimum. Another problem is ambiguous solutions for
symmetric objects.

Hence, we have extended the region-based approach with motion cues. Motion cues are comple-
mentary to silhouettes since they perform better on sufficiently structured objects. Furthermore,
they can handle large transformations between successive frames and consequently reduce the
number of required iterations for optimization. Since the impact of a cue should be large in
situations when its extraction is reliable, and small, if the information is likely to be erroneous,
we have proposed an adaptive weighting scheme that combines the complementary cues. We
have also compared dense and sparse features, namely dense optical flow and local descriptors.
The highest accuracy and robustness has been achieved by using sparse and dense features at the
same time. Although both are motion cues, they have different strengths. While the estimated
optical flow might not be exact in difficult situations, it provides at least enough correspondences
for a unique approximate solution. Matches between local descriptors are usually more reliable,
but their number is sometimes not sufficient to estimate the pose.

Besides image-based cues, prior knowledge is another important source of information for mark-
erless human motion capture. Although a surface model with an underlying skeleton reduces the
search space significantly, it does not take into account physical restrictions on the kinematic
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model. For instance, both anatomical limits of joints like knees and elbows and unrealistic self-
intersections constrain the search space. Instead of modeling the physical restrictions as hard
constraints, we allow for the simplification and approximation of the kinematic model by inte-
grating this prior knowledge as soft constraints into filtering and optimization approaches.

Even though the combination of surface-region matching, optical flow, and SIFT tracking pro-
vides precise estimates for rigid and articulated objects with homogeneous and structured sur-
faces, it does not solve the drift problem. Since motion cues rely on image features that are
tracked over time, the accumulation of small errors results in a drift away from the target ob-
ject that cannot be compensated by the region-based features. Hence, we have addressed the
drift problem for human motion capture and tracking in the presence of multiple moving ob-
jects where the error accumulation becomes even more problematic due to occlusions. To this
end, we have proposed an analysis-by-synthesis framework for articulated models that relies on
a combination of region-based and motion-based cues. A comparison with other model-based
approaches for rigid objects has revealed that the proposed method handles the drift problem
better. Our experiments have demonstrated that our framework is not restricted to a single rigid
object but tackles the drift problem also for multiple moving objects and humans in challenging
scenes containing fast movements, occlusions, and clutter.

Furthermore, we have demonstrated that the proposed multi-cue framework tackles challenging
real-world problems and opens up new opportunities for analyzing human motion. For instance,
the analysis of crash test videos is an important task for the automotive industry in order to
improve the passive safety components of cars. In contrast to conventional marker-based systems
which provide only sparse 3D measurements, our approach estimates all six degrees of freedom
of dummy body parts like the head. This opens up new opportunities for analyzing pedestrian
crashes where many biomechanical effects are not fully understood.

Although the analysis-by-synthesis framework tackles major challenges in human motion cap-
ture, there are still some limitations. Drift is only prevented as long as there are enough cor-
respondences between the synthesized and the original image. This means that the approach
assumes that there is enough texture information to establish these correspondences. However,
even in the worst case where no correspondences are available, the method still behaves as a
region-based approach. In general, the method benefits from high resolution images whereas
the framerate is less important since large transformations are captured by patch-based match-
ing. Since high-definition cameras are already widely used in contrast to high-speed cameras,
assuming a high image resolution is not very restrictive. Another limitation is given by the
clothing. Although the approach does not require tight-fitting apparel, it cannot handle arbitrary
deformable surfaces or wide apparel like skirts. Since the skeleton-based surface deformation is
only an approximation of the real surface deformation, the accuracy of the correspondences be-
tween the textured surface and the original image depends on the quality of the approximation.
Furthermore, changes of the illumination are implicitly handled by the robustness of the used
features. For handling illumination changes that exceed the abilities of the features, the textured
model needs to be extended such that the lighting environment is also taken into account.

8.2 Is human motion capture a filtering or an optimization
problem?
Markerless human motion capture can be regarded as a filtering or an optimization problem.

While the filtering approaches rely often on particle filters, the optimization problem is com-
monly solved by iterative methods like gradient descent. Hence, we have studied the strength
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and weakness of filtering and optimization strategies for human motion capture with skeleton-
based shape models where we also introduce a novel stochastic global optimization technique.

Filtering The main problem for applying filtering techniques to human motion capture is the
need for accurate models. In particular, modeling the human dynamics with Markov kernels is
very challenging. While many learning techniques provide solutions only for certain motion pat-
terns, and therefore very application specific solutions, a general motion model is a crucial step
towards commercial applications. We have proposed a motion pattern independent prior that
compensates at least to some extent for the weak dynamical model. The prior ensures that parti-
cles representing a familiar pose are favored such that the state space becomes more constrained.
Even though it improves particle filter approaches, it is not a replacement for a good dynamical
model. Without such a model, accurate results for human motion capture in reasonable time are
hard to achieve. The main advantages of filtering approaches over optimization approaches are
the abilities to handle noise and to resolve ambiguities over time. However, a synthetic example
has indicated that pixel noise is not a serious problem in the context of motion capture with shape
models.

Local Optimization In order to estimate the human pose precisely and accurately, local op-
timization requires strong cues. Since local optimization itself is very fast, the extraction of
the cues dominates the computing time. However, when the sources for feature extraction are
limited, only weak cues are available. This might also occur due to low contrast or low size
of the object despite high-resolution images. Without strong cues, however, local optima be-
come more critical and need to be resolved by global optimization methods. Another global
optimization problem is the initialization of model-based tracking approaches where the pose
cannot be predicted from the previous frame. The initialization problem occurs also for texture
acquisition which is needed for the analysis-by-synthesis framework. Although static 3D scan
devices equipped with cameras or photogrammetric reconstruction techniques can acquire shape
and texture, it is more convenient to acquire the texture directly from the video stream since the
surface color is likely to change from sequence to sequence in contrast to the human body shape.
Therefore, there is a need for global optimization techniques that meet the demands of human
pose estimation and tracking.

Global Optimization We have shown that global stochastic optimization, namely interact-
ing simulated annealing, is a promising alternative to existing filtering and local optimization
approaches for markerless human motion capture. It not only solves the difficult initialization
problem that is relevant for texture acquisition as well, but also applies to pose tracking where
stable results are achieved with a remarkable accuracy. Indeed, a quantitative comparison with
several optimization and particle filtering approaches has revealed that our tracking framework
gives significantly better results even for challenging scenes where the silhouette information is
unreliable. Since the framework is easy to implement and requires neither excessive preprocess-
ing nor strong assumptions, it is a very general solution to human motion tracking that can be
specialized further.

The experiments demonstrate that regarding human motion capture as an optimization problem
avoids the modeling problem of filtering approaches. As long as the problem cannot be well
approximated by the filtering equations that model the observations and the temporal evolution
of the pose, filtering approaches perform poorly for this task. Furthermore, the observation
that image noise is not very serious for model-based human motion capture has been supported
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by our experiments where accurate results have been achieved by global optimization despite
significant errors in the silhouettes. Hence, human motion capture with skeleton-based shape
models can be very well modeled as an optimization problem.

Local optimization may perform better than global optimization for sequences where local op-
tima are not critical - but this requires high resolution image data where strong cues can be ex-
tracted. Apart from that, global optimization is the method of choice where interacting simulated
annealing takes a leading role. Since interacting simulated annealing approximates a distribution
instead of a single value, it has several advantages for pose tracking in comparison to standard
optimization techniques. The optimization can be initialized with a large set of hypotheses, up
to one hypothesis for each particle. This increases the variety among the particles and helps
to recover from large errors or ambiguities as they occur for a small number of cameras. Fur-
thermore, the proposed tracking system preserves the uncertainty that arises from the prediction
and optimization and takes it into account for the next frame. This increases the robustness and
efficiency of the approach compared to other techniques like fast simulated annealing as we have
demonstrated in our experiments.

Optimization and Filtering Although interacting simulated annealing performs very well
compared to local optimization and filtering approaches, there are still some limitations that
need to be mentioned. When the estimates are observed over time, some jitter is noticeable
which is typical for stochastic approaches like interacting simulated annealing that sample from
a distribution of interest. Variations between estimates of two frames might also occur, when
the tracker recovers from an ambiguity in the previous frame. Moreover, interacting simulated
annealing provides estimates close to the global optimum in reasonable time, but more precise
estimates are only achieved at a very high cost.

To address these problems, we have introduced a multi-layer framework that combines the ad-
vantages of global stochastic optimization, local optimization, and filtering. While the first layer
relies on stochastic global optimization, the second layer refines the estimates where filtering
and local optimization are coupled. The second layer not only increases the accuracy, but also
reduces jitter and potential bias from the first layer. Although the approach significantly out-
performs the current state-of-the-art on the HumanEva-II benchmark, the computation time
limits its application on high quality data, i.e. sequences captured with more than 4 high resolu-
tion cameras in a controlled environment. Another aspect that is inherent in any skeleton-based
pose estimation method is the limited capacity to handle non-rigid surface deformations. Since
garment motion, for instance, is non-rigid and rarely aligned with the motion of the underlying
articulated body, these methods often fail if the subject wears wide clothing like a dress.

In order to address these issues, we have presented an approach that recovers skeleton pose and
surface motion fully-automatically from a multi-view video sequence. To this end, the skeleton
motion and the temporal surface deformation are captured in an interleaved manner that improves
both accurate skeleton and detailed surface estimation. In addition, we have introduced an op-
timization scheme for skeleton-based pose estimation that makes automatic processing of large
data sets feasible. It reduces the computational burden for global optimization in high dimen-
sional spaces by splitting the skeleton-specific optimization problem into a local optimization
problem and a lower dimensional global optimization problem. The reliability of our approach
has been evaluated on a large variety of sequences including the HumanEva—-ITI benchmark.
The proposed method exceeds the performance of related methods since it allows both accurate
skeleton estimation for subjects wearing wide apparel and surface estimation without topology
changes for fast movements and noisy silhouettes. This simplifies the acquisition of markerless
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motion capture data for applications like character animation and motion analysis. The current
limitation of this approach comes from the fact that the pose needs to be explained by the func-
tional being optimized. This means that only body parts can be estimated that are visible. When
the feet are occluded by a very long dress, for instance, the estimated feet pose is arbitrary. This
could be addressed by taking into account additional prior knowledge, like a motion prior. Fur-
thermore, the approach could also be combined with the multi-layer framework to improve the
accuracy on noisy silhouette data.

8.3 What is the best way for estimating human poses?

We eventually emphasize that the results and conclusions need to be viewed in the context of
the stated assumptions, namely the availability of a skeleton-based shape model and at least two
calibrated and synchronized cameras. While interacting simulated annealing in combination
with filtering and local optimization performs very well under these assumptions, this might not
be the case for human motion capture in general, even though the convergence properties of
the approaches are generally valid. Nevertheless, we have proposed three human motion capture
systems, namely an analysis-by-synthesis framework, a multi-layer framework, and a framework
for surface and skeleton estimation, that cover a wide range of settings that are relevant for
real-world applications. The systems not only simplify the acquisition of markerless motion
capture data for applications like character animation and motion analysis but also open up new
possibilities as in the crash test example. We finally remark that the presented work goes beyond
human motion capture since it deals with solving a complex optimization problem in a 30-40
dimensional search space efficiently. In particular, the global optimization example and the
discussion on the asymptotic behavior of interacting simulated annealing in Section [6.1] are of
general interest.

8.4 Future Challenges

In this section, we briefly discuss extensions, related problems, and aspects that are out of scope
of this work. Getting rid of the assumptions on the model and the camera setting is clearly the
biggest challenge.

Calibrated and Synchronized Cameras Even though indoor and outdoor sequences can
be captured with pre-calibrated and synchronized cameras, human motion capture with off-the-
shelf handheld video cameras is an interesting low-budget alternative without the need of ex-
pensive hardware. This allows the acquisition of markerless motion capture data not only by
nearly anyone but also in arbitrary environments since no heavy equipment is required. While
hardware synchronization is basically a matter of money, moving cameras increase the size of
the capture area since the cameras can follow the subject. This is particularly relevant for sports
science where the athletes typically perform on a large area. In order to capture human mo-
tion with unsynchronized and moving cameras, the cameras need to be calibrated and registered
in a common world coordinate system [THWSO0S]]. The synchronization of the video streams
can be achieved via the audio streams recorded by the cameras. Although the calibration and
synchronization is not as accurate as in a static setup, a variant of the multi-cue approach from
Section [5.3| can be used to estimate the human poses as shown in Figure 8.1] A more detailed
description of the approach is given in [HRTT09]. This could be further generalized by taking
video clips from the internet that show different views of a sports event.
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Figure 8.1: Two examples for human motion capture from sequences that have been recorded
with four handheld cameras. The four views for one time instance are shown. Top: Indoor-
climbing. Bottom: Running and jumping on a forest trail.

Surface Model Although the acquisition of a surface model is out of the scope of this work,
our approaches cope with models acquired by a static full body laser scan, shape-from-silhouette
methods, or human shape databases. The type of model basically depends on the application,
but it is not essential for the presented algorithms. In principle, the initialization problem can be
extended by estimating not only the pose but also the shape using the approach from Section[6.2]
To this end, the SCAPE model or related datasets can be used.
The shape parameters increase the search space only by a few dimensions since the space of
human shapes can be mapped to a low dimensional manifold. These datasets, however, are only
available for humans and not for other subjects like animals.

Skeleton and Topology In this work, we have assumed that a skeleton-based shape model
is available that already provides the skeleton and the topology of the subject. The type and de-
grees of freedom of the skeleton depend on the application. For instance, a skeleton for anima-
tion [BPQ7] differs from a biomechanical skeleton model [REDCO3]|. Skeletons for biomechani-
cal studies have usually more degrees of freedom than the one we have used in our experiments,
but some degrees are very constrained. Since it is straightforward to integrate these constraints
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into our approaches, we expect that our algorithms work for biomechanical skeleton models as
well as for standard skeleton models. Since we have assumed that the skeleton and the topology
of the subject are known, our approaches do not suffer from topology changes in contrast to vi-
sual hull approaches. In a more general setting, however, the topology is not known a priori. In
this case, the topology and the underlying skeleton need to be estimated from the video footage.
This means that one still obtains a consistent topology as it is needed for many applications, but
the topology is estimated from the evolution of the surface [VZBHOS]. Using the approach from
Section[7.2] one might begin with an initial reconstruction of the topology and the skeleton from
the images of the first frame. The refinement from Section needs then to be generalized to
allow for skeleton and topology changes.

Deformable Surfaces The motion of arbitrary deformable objects without an underlying
skeleton can still be approximated by a skeleton-based surface model. As in Section the
surface deformations can be split into large scale deformations that are captured by the global
skeleton pose estimation, and small scale deformations that are captured by surface refinement.
We also emphasize that interacting simulated annealing works with any representation of the
surface. Although the human skeleton is a natural representation as illustrated in Figure [1.2]
other representations that reduce the dimensions of the search space are also suitable as long as
the mappings between the surface mesh and the search space can be computed very efficiently.

Details The camera resolution usually prevents capturing very small details like fingers and
facial expressions which are important for character animation. This could be addressed by
representing the 3D hand shapes and 3D faces by examples where a mapping between the image
data and the examples needs to be learned. Moreover, the estimated examples need to be merged
with the surface in order to obtain a seamless mesh. Another approach is an active camera system
where additional cameras focus only on one body part. To this end, the cameras need to follow
specific body parts like the head or one hand. A camera calibration as in Figure might not
even be necessary since the positions of the body parts are already known.

Motion Transfer Motion transfer is a very important issue for character animation. Our
captured performances can be easily edited and used in animation frameworks typical for games
and movies, which are almost exclusively skeleton-based. The realism, however, is limited by
the skeleton-based deformation. While the approach from Section reconstructs skeleton
motion and detailed time-varying surface geometry, the physically plausible cloth behavior is
not maintained when the skeleton is edited. Nevertheless, our approach provides a convenient
opportunity to acquire a rigged fully-animatable virtual double of a real person that comprises
of a skeleton-based representation for the actual body parts and a physically-based simulation
model for the apparel. Having such a model, new animations can be created with new body
motion and cloth deformation that look as realistic as in the captured sequence as outlined in
Figure[8.2] To this end, the captured data needs to be analyzed to identify non-rigidly deforming
pieces of apparel on the geometry. The parameters of a physically-based cloth simulation model
like [MHHRO7]| can then be estimated for each piece of apparel from the data obtained by our
approach from Section This is also an elegant way to get rid of skinning artifacts that might
be still visible after the surface refinement.

Multi Objects Although we have focused on tracking single subjects, the extension to multi-
ple objects is straightforward. Indeed, the sequences in Sections[5.5|and[5.6|already contain mul-
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(@) (b) (© (d) (e

Figure 8.2: a) Input frame from captured sequence. b) The reconstructed animatable model
simulating the same pose. ¢)-e) Subsequent frames of a newly created animation for which only
motion parameters of the underlying skeleton were given.

tiple moving objects. Furthermore, tracking two objects simultaneously is simpler than tracking
a single object without the knowledge of the second object.

Cues The cues that have been discussed in Chapter [5| are visual cues that can be extracted
from the image data of a standard camera. However, additional cues from other devices like
time-of-flight cameras, acceleration sensors, or infrared cameras can also be used. In particular
for the crash test analysis example in Section [5.6] the fusion of visual information and the data
from the acceleration sensor is suitable.

Figure 8.3: Monocular standard test sequence with self-occlusions. Input image with estimated
contour and tracking results.

Monocular and Motion Priors The presented approaches are not limited to a multi-camera
setting. Only the computation of the bounding box for the pose initialization in Section [6.2]
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requires at least two camera views, but this could be generalized by specifying the view frus-
tum for the camera, i.e., the depth range needs to be given. Since projections on a GPU are
anyway specified by a view frustum, it does not impose an additional restriction. However, pri-
ors become necessary in monocular scenes where image cues for some body parts are missing.
Figure [8.3] shows an example where the right arm of the person is fully occluded. Since mo-
tion priors usually impose strong restrictions on the type of motions that can be captured, we
have not used these priors even though they can be integrated in our approaches similar to the
learned constraints of the skeleton from Section 4.2} Figure [8.3] shows tracking results where
the system from Section[5.3]has been supported by a kernel density estimate on a set of walking
motions [BRCSO7]. When motion priors are needed or desired, the multi-layer framework from
Section [7.1]is appealing for several reasons. While interacting simulated annealing is powerful
enough to track sequences without motion priors, these priors can simplify the search and reduce
the computation time. When the motion pattern can be detected on-the-fly, the computational
effort can be adapted depending on whether the captured performance is part of the learned mo-
tion prior or not. This would improve over existing methods with motion priors that dramatically
fail when the performed motion is not part of the training data. Furthermore, the second layer
would reduce the bias introduced by the priors.

For applications where only one camera view is available, it is questionable whether 3D human
motion capture data is needed at all. Tracking humans in monocular sequences is usually only
possible with a certain amount of learning and very limited depth accuracy. However, when a
large training set is required anyway, learning the mapping from the 2D image data directly to the
space of interest might be more suitable than model fitting with strong priors. Indeed, bottom-
up approaches rely on detectors for humans or body parts and they
work very well for monocular sequences. Since detectors basically produce many hypotheses
including false positives as shown in Figure[8.4} particle-based approaches like interacting simu-
lated annealing or nonparametric belief propagation [SBR™04] are very suitable to integrate this
information for tracking, even for several camera views.

Figure 8.4: Detected pedestrians in monocular scenes [GL09]. The image in the middle contains
correctly detected pedestrians (green), false positives (red), and missed detections (cyan).

Real-time Our current implementation of interacting simulated annealing does not achieve
real-time performance on a single-core PC. Although a partial implementation on a GPU has
reduced the computation time to around 2 seconds per frame for the Maria sequences from
Section[6.3.2] the required number of energy evaluations per frame is still too large for real-time
performance, namely 15 iterations x 200 particles x 5 views. Since, however, the particles and
the camera views can be evaluated in parallel, the computation time might be further reduced
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by using a cluster of PCs, at least one for each camera view. Instead of increasing the hardware
requirements, a lower dimensional representation of the surface model than the one obtained by
the skeleton might reduce the number of required particles, and consequently the computation
time. One might also consider other kernels than a Gaussian kernel for the mutation step to in-
crease the performance, similar to related simulated annealing approaches where other statistics
have improved the convergence.

Evaluation Quantitative evaluations are very important to measure the progress in human mo-
tion capture. Since the ultimate goal is the design of a markerless tracking system that captures
the motion of a human in an outdoor scene with the accuracy of a commercial marker-based
system in an indoor scene, the accuracy must be compared to marker-based systems. One of
the standard datasets that use marker-based motion capture data as ground-truth is the recently
released HumanEva-ITI benchmark [SBO6]. Although there are only very few approaches at
the moment that can track the sequences S2 and S4 with a reasonable accuracy, one can expect
that an overfitting will occur over the next 5 years due to the limited variation of human motion.
Hence, larger datasets are required that cover not only more types of motion but also several set-
tings from one camera to eight cameras. The quality of the ground-truth of the benchmark is also
affected by the placement of the markers and the relative motion of skin and cloth with respect
to the underlying bones. Instead of comparing the 3D positions of the joint centers estimated by
the marker-based system, one could also directly compare the marker positions. This would also
reveal whether limb rotations along the axis are correctly estimated. While the skeleton pose can
be validated by a standard marker-based system, approaches that estimate the surface like our
approach from Section [7.2| require more advanced techniques. Since a large number of markers
strongly interferes with the experiments, the ground-truth could be acquired by tracking a hidden
fluorescent texture, as it is already used for commercial systems [Mov08|]. Another alternative
are synthetic sequences that are generated by ray tracing and achieve movie quality.

Applications We have presented approaches that acquire accurate markerless motion capture
data that can be used for a large variety of applications like action recognition, rehabilitation,
sports science, biomechanical research, or character animation. Hence, it is interesting to see
how the approaches fit the demands of the applications, help to make current processes more
efficient, and open up new opportunities. Besides human motion capture, the systems might also
be applied to other problems like robotics where filtering or local optimization have shortcom-
ings. In general, some results of this work might be relevant to any application where a complex
optimization problem needs to be solved efficiently.
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A

Appendix

A.1 Parameter Evaluation for ISA by means of Synthesized
Sequences

For an exhaustive experimental evaluation of the parameters of IS A, an articulated arm with
three degrees of freedom is tracked. The aim of this section is not to find “the best” parameters
since these depend on the specific application. Rather, we reveal the general impact of the
parameters on the performance using an experimental setting that is typical for human motion
capture. The evaluation results provide a general guidance and a good starting point for finding
the optimal setting for a particular application. Parameter settings for full-body human pose
estimation are given in Sections[6.2]and[6.3] Furthermore, we compare the two selection kernels
discussed in Section ISA with ¢, = 0 is denoted by ISA( and with €;(n;) =
1/(n (e, exp(—G: V))) by IS A ,. In Section EI, we demonstrate the influence of the
mixing condition that is essential for the convergence of IS A as shown in Theorem [6.1.2] and

Theorem

(@ (b) (©
Figure A.1: From left to right: a) The pose of the arm is described by the vector z = (a, 3, 7).
b) Image of the synthesized arm with superimposed templates for two different values of «.
¢) Graph of exp(—V(x)) over («, ).

A.1.1 Toy Example

Experimental Set-up and Implementation Details The arm consists of three limbs
and three joints. The position of the arm is described by 7 = (a,3,7) € E, where



A.1 Parameter Evaluation for ISA by means of Synthesized Sequences 175

E := [-170,170] x [—125,125] x [—125,125] as depicted in Figure[A.1]a). For evaluation, a
sequence of 201 synthetic images is generated, see Figure[A.T|b). X is uniformly distributed in
FE yielding an unknown arm position at the beginning. The angles a1, B¢+1, and ;11 are sam-
pled from Gaussian distributions on £/ with mean «y, 3, and ~; and variance o, = 20, og = 40,
and 0., = 30, respectively. This sequence (Seq ) is difficult for tracking since the velocity and
the direction of the movement may change from frame to frame. In a second sequence (Segs),
the arm moves from position (—30, —80, —40)7 to (50,30, 20)7 and back with constant speed
as illustrated in Figure[A.2]a). Moreover, we added some Gaussian noise to each position vector.

(a) (b)

Figure A.2: a) Motion sequence Segs. b) Template’s silhouette (fop). Error map (bottom).

In order to compute the Boltzmann-Gibbs measures exp(—(3;V'), the image is converted to a
binary image by thresholding. This image is compared with the silhouette of each arm template
that is determined by a particle xﬁz) as shown in Figure b). An error map is obtained by
a pixelwise AND operation between the inverted binary image and the template’s silhouette.
The weighting functions are then calculated by g; := exp(—/3N./N,), where N, denotes the
number of pixels of the template’s silhouette and N, the sum of the pixel values in the error
map. The graph of the weighting function is plotted in Figure [A.T|c). We have observed in our
experiments that sup, (exp(3; osc(V')) ~ 40. This means that the selection kernel is valid
if the number of particles is greater than 40.

In the following, we evaluate the performance of I.SAg and IS A, /,, in combination with differ-
ent annealing schemes, variance schemes, number of annealing runs, and number of particles.
The simulations for Seq; and Segs have been repeated 50 and 40 times, respectively. The error
of an estimate ) _, ﬂﬁz)xﬁl) is measured by 1 — exp(—N./N,). The averages of the mean square
errors (MSE) for each sequence indicate the performance.

Since in real world applications the measurements are noisy due to clutter, film grain, bad
lighting conditions, CCD camera noise, etc., we have also added strong noise to the weight-
ing functions by exp(—p39(Ne + Wt(i))/Np), where ¥(N) = max(0, min(N, N,)) and Wt(i)
are independent zero-mean Gaussian random variables with variance 40000. For comparison,
N, ~ 4000.
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GPF vs. ISA We assume that the dynamics for Seq; are known. Hence, the algorithms are
initialized by the uniform distribution on E and the prediction step (6.10) is performed accord-
ing to the Gaussian transitions used for the arm simulation. By contrast, the dynamical model
is not used for tracking Segs. The initial distribution is instead the uniform distribution on
[—20, —40] x [—60, —100] x [—20,—60] C E and the transitions kernels are the same as for
Seqi . In order to provide a fair comparison between a generic particle filter (GPF', Algorithm|T])
with np particles and 1.S A with various annealing schemes, the number of particles is given by
n = |np/T]| where T denotes the number of annealing runs. GPF with np = 250 achieves
a MSE of 0.04386 for Seq; and 0.04481 for the noisy sequence. Seqy has been tracked with
225 particles and MSE of 0.01099 and 0.01157, respectively.

> °
2 25 30 35 40 45 Inf
c

(@)

2 25 30 35 40 45 Int
[

(d

Figure A.3: Performance for different annealing schemes with 7' = 5. Average of the MSE for
the sequences Seq; (top) and Segs (bottom) with noisy measurements (dashed) and without
noise (solid). a,d) 3y = a(1 — ¢ ). b,e) By = aln(t +¢)/In(T +c—1). ¢,f) 3 =
a((t+1)/T)c. Top: The curves for the geometric annealing schemes are unstable and the best
result is obtained by /SA;/, with a logarithmic scheme. Bottom: The error decreases when
B¢ — «. The impact of the selection kernel and noise is small.

Annealing Schemes We have evaluated the performance of various annealing schemes
0< Gy <--- < PBpr_1 with fixed length 7' = 5. While the particles are diffused between the
annealing steps for Seq; by Gaussian kernels with o, = 20, og = 40, and 0, = 30, we set
0q = 0g = 0, = 5 for Seqy. In Figure@, the MSEs for the annealing schemes with decreas-
ing increments

B =a(l—c ) (geometric),
Gr=aln(t+c)/In(T+c—-1) (logarithmic),
Br=a((t+1)/T)° (polynomial)
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By ISAy | ISAy), | 1SAy | ISAy,
Seqy Seq, with noise
a(t+1)/T | 0.03634 | 0.03029 | 0.03220 | 0.02809
a 12417 1 0.02819 | 0.02302 | 0.03185 | 0.02609
a1.8F1=T 10.04214 | 0.05128 | 0.03891 | 0.04452

Seqo Seqo with noise
a(t+1)/T | 0.01006 | 0.00948 | 0.00988 | 0.01026
a1.20+1=T) 1 0,00818 | 0.00805 | 0.00827 | 0.00858
a1.8¢1=1) 1 0.01514 | 0.01501 | 0.01557 | 0.01543

Table A.1: MSE error for annealing schemes with constant and increasing increments (1" = 5).
The schemes are outperformed by the annealing schemes given in Figure[A.3]

are given. The schemes are normalized such that 571 = o = 4. When c tends to infinity or to
0, in the case of a polynomial scheme, 3; — aforall 0 <t < T.

The diagrams show that the geometric annealing schemes are unstable in the sense that the curves
of the MSE with respect to ¢ contain many local optima, particularly for Seq;. It makes the
optimization of the scheme for a particular application quite difficult. The logarithmic schemes
performed best where the lowest MSE for Seqi, namely 0.01501, was achieved by IS4,
with ¢ = 10. In comparison, the errors for Segy are significant lower and the scheme with
B¢ = « performs best since the motion is simple and local maxima rarely occur. Furthermore,
the difference between the two selection kernels is small. The impact of noise on the results
is also minor when the dynamics are simple in contrast to the more difficult sequence. The
observation that the error for Seq; with noise significantly declines as ¢ goes to infinity indicates
that the other parameters are not well chosen for this noisy sequence. The results for schemes
with constant or increasing increments in Table [A.T|reveal that these schemes are outperformed
by the schemes given in Figure We use henceforth a polynomial annealing scheme with
¢ = 0.1 since both .S Ag and IS Ay ,, perform well for the scheme.

Variance Schemes During the mutation step of .S A, the particles are diffused according
to a Gaussian distribution where the variance for each annealing step is defined by a variance
scheme. The errors for constant schemes are given in Table [A.2] for deterministic schemes
in Tables [A.3] and [A.4] and for dynamic schemes (6.14) in Figure [A.4] The first column of
Tables and contains the reference variance that is reduced for each annealing step by the
decreasing scheme given in the second column. We give three examples where ¢ € {«, 3,7}
(—do —dg — d) means that o7, = 07, | — d,. The decreasing scheme —0d" d* d* gives the
variance scheme UZt = aitfl — d*. The scheme ait = d'T'o? is denoted by xd' d? d® d*.

The dynamic variance schemes are not only easier to handle since they depend only on one
parameter c, but they also outperform the deterministic schemes provided that an appropriate
parameter c is chosen. The best result for Seq; with MSE 0.01175 was obtained by 154, ,
with parameter ¢ = 0.3. In comparison to the GPF’, the MSE was reduced by more than 73%.
We see that the error for Seqy was not significantly improved when comparing the best settings
for constant, deterministic, and dynamic schemes. It indicates that the flow of Feynman-Kac
distributions locates the global minimum and that the error is mainly caused by the particle
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(020%03) | ISAy | ISAy, | ISAy | ISAy),
Seqq Seq; with noise
(153525) | 0.02527 | 0.01985 | 0.02787 | 0.02573
(204030) | 0.02145 | 0.01756 | 0.02453 | 0.02213
(254535) | 0.02341 | 0.02011 | 0.02506 | 0.02357
(154035) | 0.02238 | 0.01891 | 0.02035 | 0.02510
(254025) | 0.02240 | 0.01905 | 0.02622 | 0.02345
Seqo Seqo with noise
(0.50.50.5) | 0.00637 | 0.00631 | 0.00643 | 0.00664
(222) 0.00612 | 0.00627 | 0.00639 | 0.00652
(555) 0.00668 | 0.00648 | 0.00666 | 0.00702
(0.525) 0.00611 | 0.00626 | 0.00643 | 0.00629
(520.5) 0.00661 | 0.00674 | 0.00674 | 0.00695

Table A.2: MSE error for constant variance schemes

(Tables[A.3]and [A.4).

(0505 02) | Decreasing scheme | [SAg | ISAy), | ISAy | ISAy,
Seqq Seq, with noise
(3249 36) (=4 —3 —2) | 0.01997 | 0.01920 | 0.02437 | 0.02335
(325854) (-4 —6 —8) | 0.02243 | 0.02485 | 0.02480 | 0.02093
(327054) | (=4 —10 —8) | 0.02048 | 0.02066 | 0.02332 | 0.02411
(325242) (=4 —4 —4) | 0.02193 | 0.01919 | 0.02489 | 0.01795
(29 5245) (=3 —4 —5) | 0.01989 | 0.01666 | 0.02029 | 0.02074
(234735) x B3 B2 5o 0,02230 | 0.01950 | 0.02654 | 0.02203
(274737) | —01.51.521.5° | 0.02187 | 0.02324 | 0.01807 | 0.02328
(274737) | —01.531.521.5 | 0.02048 | 0.02219 | 0.02398 | 0.02109
(489773) | x0.80.820.820.8* | 0.02140 | 0.02030 | 0.02099 | 0.02326
(306045) | x0.90.920.920.9* | 0.01907 | 0.01690 | 0.02470 | 0.02142

. The decreasing schemes perform better

Table A.3: MSE error for deterministic variance schemes. The schemes are outperformed by
dynamic variance schemes (Figure [A.4).
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(02 o% 03) Decreasing scheme | [SAg | ISAy;, | ISAy | ISAy,

Seqo Seqo with noise
(3.558) (-1 -1-1) 0.00619 | 0.00632 | 0.00635 | 0.00629
(555) (=1.5 — 1.5 —1.5) | 0.00614 | 0.00623 | 0.00640 | 0.00656
(3.556.5) (-1 —1.5 —2) 0.00606 | 0.00626 | 0.00641 | 0.00642
(6.553.5) (=2 =15 —-1) 0.00648 | 0.00654 | 0.00651 | 0.00656
7.57.57.5) —-01.51.5%1.5° 0.00649 | 0.00657 | 0.00662 | 0.00662
7.57.57.5) —01.521.5%21.5 0.00636 | 0.00638 | 0.00646 | 0.00657
)
)

1.21.21.2 x0.80.820.830.8% | 0.00622 | 0.00623 | 0.00649 | 0.00639
75.75.75) | x0.90.920.9%0.9% | 0.00631 | 0.00607 | 0.00636 | 0.00641

(
(
(
(

Table A.4: MSE error for deterministic variance schemes. The best dynamic variance schemes
(Figure|A.4)) perform as well as the best deterministic variance schemes.

approximation. Hence, an improvement is only expected by reducing the number of annealing
runs yielding more particles for approximation or by increasing nr.
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Figure A.4: Performance for dynamic variance schemes with different values of c in the presence
of noise (dashed) and without noise (solid). From left to right: a) MSE for Seq;. The error
is significantly reduced in comparison to deterministic schemes (Tables and[A.3)). The best
result is obtained by ISA;/, with ¢ = 0.3. b) MSE for Seqz. The best dynamic variance
schemes perform as well as the best deterministic variance schemes (Tables and[A 4).

Number of Annealing Runs and Particles The influence of the number of annealing runs
for different values of nr is plotted in Figures and Seq; has been tracked by IS Ay
and ISA;/, with a dynamic scheme with ¢ = 0.2 and ¢ = 0.3, respectively. The parameters
for Seqy are 0.06 and 0.05, respectively. The curves for IS A/, are quite stable with a unique
optimal parameter 7" = 6 independent of n and noise, see Figure[A.5] By contrast, the curves
for IS A contain deep local minima, in particular when the sequence was disturbed by noise.
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Moreover, one can observe at 7' = 7 that the error for ISA,, increases significantly when
the number of particles is not clearly greater than sup,(exp(8; osc(V')). This shows the impact
of the condition on the results. The MSEs for Seg are given in Figure [A.6] The error is
reduced by decreasing the number of annealing runs and by increasing ny as expected whereas
the differences between I.SAq and ISA, /,, are minimal. It also demonstrates the robustness of
IS A to noise. As comparison, the error of GPF was hardly reduced by increasing ny. The
MSE was still above 0.043 and 0.01 for Seq; and Seqs, respectively.
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0.014 0.014}

& 0.013} & 0013}
= =
0012} 0012}
0.011 0.011
001+ 001}
0.009 ] 0.000}
0.008 ‘ ‘ : : 0.008
2 3 4 5 6 7 2 3 4 5 6 7
T T
(a) (®)

Figure A.5: Performance of ISAy (triangles) and 1S Ay, (circles) for different numbers of
annealing runs T" with np = 250, 300, and 400. The curves for IS A, /,, are more stable with
a unique optimal parameter 7" = 6, but the error increases at 7' = 7. More annealing runs
are required than for Seq, (Figure [A.6). From left to right: a) MSE for Seq; without noise.
b) MSE for Seq; with noise.
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Figure A.6: Performance of ISAy (triangles) and 1S Ay, (circles) for different numbers of
annealing runs 7" with n = 225, 300, and 400. From left to right: a) MSE for Segy with
noisy measurements (dashed) and without noise (solid). The error decreases with increasing
nr whereas the differences between [.SAg and IS A, /,, are minimal. The error is only slightly
affected by noise. b) Variance of MSE for Segs without noise. The variance also decreases with
increasing ny. The curves for IS A, /,, are more stable. ¢) Variance with noise.
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Figure A.7: When the mixing condition is not satisfied, /.S A loses track of the articulated arm
after some time and is not able to recover. From left to right: ¢ = 1, 5, 158 and 165.

Figure A.8: When the mixing condition is satisfied, IS A is able to track the articulated arm.
From left to right: ¢ = 1, 5, 158, and 165.

A.1.2 Mixing Condition

In this section, we illustrate the impact of the mixing condition that is essential for the con-
vergence results given in Sections and For this purpose, we track a stiff arm, i.e.
x = a. We suppose that the arm movement is given by the process X; := X;_1 + V;, where
Xo = 0 and V; are i.i.d. uniform random variables on [—10, 10]. Let us examine the events
where V; € [9.75,10] for 1 < ¢ < 400. Even though the probability that this occurs is very
small, it is strictly greater than zero.

For the simulations, we have used ISAy with a prediction step and parameters n =
100, T = 2, Bp = 3.2. The initial distribution is dy and the mutation kernels K;(z,-) are
uniform distributions on [z — 2, z + 2]. When uniform kernels have been chosen for prediction
in accordance with the process Xy, I.S'A has not been capable of tracking the articulated arm as
shown in Figure |A.7} The algorithm loses track of the arm after some time and is not able to
recover afterwards. For comparison, the uniform kernels have been replaced by Gaussian kernels
with variance 100, which satisfy the mixing condition since the state space is bounded. In this
case, the arm has been successfully tracked over a sequence of 400 images, see Figure[A.8] We
carried out the simulations 25 times. This shows that interacting particle systems may fail when
the mixing condition is not satisfied, even though the particles are correctly predicted according
to the dynamics.
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