
ACM Symposium on Solid Modeling and Applications (2004)
G. Elber, N. Patrikalakis, P. Brunet (Editors)

Tracing Surface Intersections with Validated ODE System Solver

H. Mukundan, K. H. Ko, T. Maekawa, T. Sakkalis, N. M. Patrikalakis

Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

Abstract
This paper presents a robust method for tracing intersection curve segments between continuous rational parametric surfaces,
typically rational polynomial parametric surface patches. The tracing procedure is based on a validated ordinary differential
equation (ODE) system solver which can be applied, without substantial overhead, for transversal as well as tangential in-
tersections. Application of the validated ODE solver in the context of eliminating the phenomenon of straying and looping is
discussed. In addition, we develop a method to fulfill the condition of a continuous gap-free boundary with a definite numeri-
cally verified upper bound for the intersection curve error in parameter space and is further mapped to an upper bound for the
intersection curve error in 3D model space, which assists in defining well-formed boundary representation models of complex
3D solids.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Solid Modeling]: CAD, CAGD, tangency, rounded interval
arithmetic, robustness, rigorous error bounds, straying and looping, boundary representation, gap-free boundaries

1. Introduction

Intersection is a fundamental process needed to build and interro-
gate complex CAD models. It is needed in representing complex
objects, in finite element discretization, computer animation, fea-
ture recognition and manufacturing simulation. It is also used in
scientific visualization for implicitly defined objects and for con-
touring multivariate functions that represent some properties of a
system.

There has been extensive research to solve the surface intersec-
tion problem. Solution methods can be broadly classified into lat-
tice methods, marching methods and subdivision based methods
[PM02b,PM02a,HL93]. TheInterval Projected Polyhedron(IPP)
algorithm [HMPY97] using subdivision techniques coupled with
interval arithmetic can exhaustively and robustly find all roots.
However, atopology resolutionof the roots based on adjacency
information is complicated [HMPY97]. In addition, the algorithm
tends to be extremely time consuming in the case of tangential, as
well as higher order intersections. There is also no guarantee that
intervals generated do contain a root [HMSP96], an inherent prob-
lem associated with any subdivision algorithm.

It is well known that the problem of surface intersection can be
reduced to solving an initial value problem for ordinary differen-
tial equations (ODE). Conventional algorithms for solving a system
of ODEs, like the Runge-Kutta method or the Adams-Bashforth
method [PTVF88], compute an estimate for a solution and its er-
ror. The user cannot find out how accurate the estimated answer is
without extensive error analysis. Moreover there are cases where
completely catastrophic answers are returned without any warn-
ing on using the conventional numerical methods. This lack of ro-

bustness in numerical computation can cause undesirable changes
of the topology of intersection as shown by Huet al. [HPY96].
Grandine and Klein [GK97] formulate the intersection problem as
a differential algebraic equation which can be solved as aboundary
value probleminstead of aninitial value problem. The tracing of the
intersection curve is based on approximation methods. Moreover
the algorithm has a hard time dealing with tangential intersections.

Schemes based on interval arithmetic take into account three
sources of errors in the numerical computation of solution to ODEs:
(1) propagation oferror in initial data, (2) truncation errorcaused
by truncating infinite sequences of arithmetic operations after a fi-
nite number of steps and (3)round off errorsinherent to compu-
tation in floating point arithmetic [Han69]. When correctly used,
interval methods can compute bounds in which the correct answer
is guaranteed to be enclosed [CR96].

Robust tracing of an intersection curve segment can be done once
we identify each component and further obtain starting and ending
points. The focus of the paper is to investigate a robust marching
method which will produce a continuous guaranteed bound on the
error at each point on the intersection using avalidated ODE solv-
ing scheme. Thus we assume that we are given an intersection curve
segment, with strict bounds on the starting point. We also apply the
interval versions of the ODEs to robustly trace a tangential inter-
section problem. We also relate the phenomenon ofstrayingand
looping to the criterion of a step size control based on the valida-
tion procedure in the method. The key contribution of this paper is
to obtain strict model space bounds for the intersection curve seg-
ment for both transversal and tangential intersection cases.

The paper is structured as follows: In Section2 we obtain the
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governing interval ODEs for the various intersection cases. The
limitations of conventional nonlinear ODE solvers are discussed in
Section3 and we describe and introduce the concept of avalidated
ODE solver[Eij81, NJC99], its application in tracing surface inter-
section and discuss its use in preventing straying or looping and in
resolving singularities. Section4 deals with the calculation of the
model space error bound. We perform various examples and tests
using a prototype implementation of the algorithm in Section5.
Section6 concludes this paper with a review of the possible appli-
cations and issues.

2. Tracing a Surface to Surface Intersection

The intersection of two interval parametric surfaces[P](σ, t) and
[Q](u,v) can be described as an interval vector equation given by,

[P](σ, t) = [Q](u,v). (1)

We can formulate it as a system ofordinary differential equa-
tions(ODE) which are arc length parametrized. Our approach is to
use a marching scheme to find out the curve of intersection by solv-
ing this system of ODEs as discussed by Huet al. [HMPY97],

σ′ =
dσ
ds

=
Det([c], [Pt ], [N

P])
[NP] · [NP]

, t′ =
dt

ds
=

Det([Pσ], [c], [NP])
[NP] · [NP]

,

u′ =
du

ds
=

Det([c], [Qv], [N
Q])

[NQ] · [NQ]
, v′ =

dv

ds
=

Det([Qu], [c], [NQ])
[NQ] · [NQ]

,

(2)

whereDet denotes the determinant and,

[NP] = [Pσ]× [Pt ], [NQ] = [Qu]× [Qv],

are the normal vectors of[P] and[Q] respectively.[c] is the march-
ing direction and is obtained for various cases as shown below and
s is the arc length parameter.

Equations (2) are true for any surface-surface intersection involv-
ing parametrically defined surfaces, provided we correctly repre-
sent the marching direction (tangent to the intersection curve), and
the surfaces. Based on the intersection type the marching direction
has to be computed differently.

2.1. Transversal Intersection

For a transversal intersection, the direction of marching[c], is per-
pendicular to the normal vectors of both surfaces, thus this direction
can be obtained as follows [HMPY97]:

[c] =± [NP]× [NQ]
|[NP]× [NQ]|

. (3)

2.2. Tangential Intersection

The method to obtain the marching direction for tangential intersec-
tion is based on Ye and Maekawa [YM99] and obtaining an interval
version of it is further discussed by Mukundanet al. [MKM ∗03].
Note that we cannot use equation (3) to obtain the marching direc-
tion because normals to both surfaces are parallel. From the condi-
tion of equal normal curvatures of both the surfaces a point on the
intersection, we obtain a quadratic equation of the form,

[b11](σ
′)2 +2[b12](σ

′)(t′)+ [b22](t
′)2 = 0, (4)

where the interval coefficients[b11], [b12] and [b22] are the func-
tions of the first and second fundamental form coefficients of the

given surfaces. Details are given in [MKM∗03]. There are four dis-
tinct cases to the solution of (4) depending upon the discriminant
([d] = [b12]2− [b11][b22]).

• (d̄, the upper bound ofd < 0): The surfaces have an isolated tan-
gential contact point.

• (d, the lower bound ofd > 0): We have the phenomenon of
branching, i.e.[c] is not uniquely defined.

• (0 ∈ [d] and 0∈ [b11], [b12], [b22]): The intersection of surfaces
[P] and [Q] cannot be evaluated by this method or they have a
contact of at least second order (i.e., curvature continuous).

• (0∈ [d] and 0/∈ [b11]2+[b12]2+[b22]2): The marching direction
vector is defined. Thus,[P] and[Q] are said to intersect tangen-
tially at the neighborhood.

The marching direction is obtained, depending on[b11], [b12] and
[b22], as follows.

If 0 /∈ [b11], then the marching direction is given by,

[c] =
[ν][Pσ]+ [Pt ]
|[ν][Pσ]+ [Pt ]|

,where
σ′

t′
= [ν] =− [b12]

[b11]
. (5)

If 0 ∈ [b11] and 0/∈ [b22], then the marching direction is given
by,

[c] =
[Pσ]+ [µ][Pt ]
|[Pσ]+ [µ][Pt ]|

,where
t′

σ′
= [µ] =− [b12]

[b22]
. (6)

The system of interval ordinary differential equations (2) rep-
resent an autonomous initial-value problem (IVP), which can be
rewritten in vector form as,

y′(s) =
[

σ′ t′ u′ v′
]T = f([y(s)]),

[y0] =
[

[σ0] [t0] [u0] [v0]
]T

.

We can assume at this point thatf hask− 1 derivatives, where
we definek in Section3.1.1. The intersection curve segements are
computed by solving the initial value problem for a system of in-
terval nonlinear ordinary differential equations (ODE).

It has been shown by Huet al. that for a polynomial surface
patch, if there is a tangential contact curve of two polynomials,
then it must start from a border and end at a border unless it is a
loop. One way to determine if we need to use ODEs for transversal
or for tangential intersection is to check if 0∈ |[NP]× [NQ]|. If
this criterion is valid then the given branch is a tangential contact
curve. At this point we note that such a topological configuration is
not the focus of our paper. Our focus is on accurately tracing and
finding a validated error bound in 3D model space, given the kind
of intersection and a bound on the starting point.

3. Validated ODE Solver in Surface Intersection

3.1. Concept of Validated ODE Solver

A validated interval scheme for ODEs not only produces a guar-
anteed error bound for the true solution, but also verifies the exis-
tence and the uniqueness of the solution for the ODE system within
that bound [Moo66,Loh92,Ned99]. Such a scheme is usually per-
formed in two phases [Moo66,NJC99].
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3.1.1. Phase I Algorithm

This phase in a validated solving scheme for ODEs involves:

• Choosing ana priori bound and a step size based on validation
criterion.

• Checking the existence and uniqueness within thea priori en-
closurefor the above step size.

Thus the goal is to compute enclosures[ỹ j ] on the family of the
solutionsy(s;s0, [y0]) for the IVP corresponding to the intersection
under consideration

y(s;sj , [y j ])⊆ [ỹ j ], ∀ s∈ [sj ,sj+1],

wherey(s;sj , [y j ]) represents the family of curves passing through
[y j ] satisfying equation (2) ands is the independent variable which
in our case is the arc length parameter. We call such a bound[ỹ j ],

ana priori enclosure, and try to obtain this bound for thejth step
hj = (sj+1− sj ). For validating the solution for a pair of the step
size and ana priori enclosure, we can use various methods like
the constant enclosure method[Eij81], the polynomial enclosure
method[Loh95] or theTaylor series method[CR96]. The Taylor
series method is preferred to a constant step size method since it can
allow for longer step sizes [Ned99] and can be written as follows:

[ỹ j (s)] ⊇ [y j ]+
k−1

∑
i=1

[y j ]i(s−sj )
i +[ỹ j ]k(s−sj )

k, (7)

wherek is the order of the Taylor series used and[y j ]i is the ith

Taylor coefficient evaluated at[y j ]. We numerically solve for the
corrected step sizehj , given an initial guess for ana priori enclo-
sureas shown by Nedialkov [Ned99]. At this point we have made
an assumption thatf([y(s)]) is well behaved and isCk continuous.

3.1.2. Phase II Algorithm

Phase IIof a validated solution scheme for ODEs involves:

• Propagation of the solution.
• Reducing the phenomenon of wrapping.

Using thea priori enclosure[ỹ j ] from phase I algorithm,phase
II algorithm computes a tighter enclosure[y j+1] at sj+1 using an
interval version of the Taylor series formula coupled with the ap-
plication of the mean-value theorem [NJC99]. Taylor series coef-
ficients and their Jacobian are robustly computed with a technique
calledautomatic differentiation[Moo66,Sta97].

The main difficulty we face inphase II algorithmis thewrapping
effect[KLF01]. The most promising solution to the wrapping effect
is a QR factorization methoddeveloped by Löhner [Loh92]. By
limiting wrapping we prevent the exponential growth in the width
of the interval solution atsj+1.

3.2. Formulation Based on Validated ODE Solver

We solve the ODEs given by the equation (2) using a validated
ODE solver given initial conditions. Our use of rational polyno-
mial parametric surfaces which areC∞ continuous makes sure that
f([y(s)]) is well behaved and is at leastCk continuous.

Phase I algorithmverifies the existence and uniqueness of the
intersection curve segment, and a successful validation results in a

step sizehj and a correspondinga priori enclosure[ỹ j ], which in
the context of surface intersection is,

[ỹ j ]≡
[

[σ̃] [t̃] [ũ] [ṽ]
]T

.

Phase II algorithmnow finds a tight estimate of the bound on the
parameter for a specificsj+1,

[y j+1]≡
[

[σ j+1] [t j+1] [uj+1] [vj+1]
]T

.

This tighter bound acts as the initial condition for the next step,
and hence helps in marching along the intersection curve, without
significant increase of the error in the evaluation of the intersection
curve segment. The intersection curve is obtained as a series of con-
necteda priori enclosures(boxes) in the parameter space, which
encloses the exact curve of intersection in the parameter space as
shown in Figure2 [MKM ∗03].

3.3. Resolving Singularities and Preventing Straying or
Looping

Any numerical scheme, yielding a solution for a physical system
represented by an IVP should first check for theexistenceand the
uniquenessof the solution before returning an approximation, or a
bound for it [Kre94]. This, however is not a common practice in the
conventional solution schemes for IVPs. A typical solution proce-
dure is to use an approximate, point based algorithm [PTVF88] like
Runge-Kutta method, Taylor series method or Adams-Bashforth
technique for solving the ODEs corresponding to the surface to
surface intersection problem at discrete values of the arc length pa-
rameters as mentioned in [PM02b,PM02a]. These methods are
usually robust and reliable for most applications, but it is easy to
find examples for which they return inaccurate results [PMKM04],
especially in the presence of closely spaced features as shown in
Figure1. This is because the algorithms to control the step size are
based on controlling just the error alone. As mentioned previously,

Figure 1: Phenomenon of straying or looping.

a validated ODE solver verifies theexistenceanduniquenessof the
solution for the ODE system within thea priori bound before de-
termining the step size. We employ this idea to successfully resolve
the cases involving singularities in parameter space where the cri-
terion of existence and uniqueness is not satisfied. Also validation
before tracing can prevent the phenomenon of straying or looping
even when intersection curve segments come quite close together,
thereby tracing the correct intersection curve segment.

If the solution exists and is unique for a given step sizehj and
an a priori enclosure[ỹ j ], the criterion (7) based on Taylor series
holds [Ned99]. Without loss of generality, we consider the case of
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k = 1, namely, theconstant enclosure method[Ned99]:

[ỹ j (s)] ⊇ [y j ]+ f([ỹ j ])hj . (8)

Let us assume that the surfaces[P](σ, t) and [Q](u,v) intersect
transversally in such a way that they have two distinct branches and
that these branches lie close to each other in a given region in the
parameter space. For such regions the denominator of equation (3)
|[NP]× [NQ]| gives a value close to 0 and in the event of both curve
segments intersecting each other, it contains 0. The evaluation of
f([ỹ j ]) based on the equation (2) blows up, returning a smaller and
smaller step size and correspondingly smaller[ỹ j ] to satisfy the
criterion (8). In the event of 0∈ |[NP]× [NQ]|, the criterion is never
satisfied, and this condition is reported as a singularity.

This validated step size strategy can hence prevent straying or
looping and successfully resolve the singularities of intersection
curve segments. Also note that when the step size obtained from
the algorithm falls below a pre-specifiedhmin, the algorithm warns
that the two curves are closer than they can possibly be resolved.
An example that fully demonstrates this capability of the validated
ODE solver is performed in Section5.

4. Model Space Error Bound

The significance of thea priori enclosurein interval analysis has
been limited as a way to enclose the truncation error term in the
Taylor formula for obtaining each successive step, thus providing a
method for obtaining a bound for the solution to the ODE system
at sj+1. We realize that thea priori enclosure[ỹ j ] actually bounds
the solutiony(s;sj , [y j ]). The series ofa priori enclosuresin the
parameter space is mapped to the 3D model space to enclose the
true curve of intersection and to provide amodel space error bound.

To prove the existence of a gap-free or continuous bound enclos-
ing the true curve of intersection in the 3D model space, we develop
the following theorem.

Theorem 1Let [σ(s)]and[t(s)]be mappings defined by,

([σ(s)], [t(s)]) : IR → IR2,

such that they are continuous ins∈ [s0,send]. If [P](σ(s), t(s)) is a
continuous rational interval functiondefined by,

[P](σ, t) : IR2 → IR3,

then the mapping[P](s) = [P](σ(s), t(s)) : IR → IR3 is continuous
in IR3 for s∈ [s0,send]. HereIR denotes a set of interval numbers.

A similar theorem can be developed for[Q](u(s),v(s)).

The proof directly follows from the continuity ofrational in-
terval functionsproved by Moore [Moo66]. Majority of mapping
in CAD practice including polynomials is continuous and rational
and hence we realize the goal of acontinuous gap-free boundon the
curve of intersection in 3D model space, given continuous bounds
on its pre-image.

5. Examples

We performed examples using the component packages
[Pro,Fad,Vno] and the Design Laboratory interval library at
MIT. All computation was performed on a PC running at 1.4 GHz
with 512MB of RAM under Linux.

Figure 2: Mapping of the pre-image of the intersection curve seg-
ment from the parameter space to the 3D model space. Note that
the boxes obtained in the parameter space of each of the surface is
continuous, gap free and ordered.

Figure3 illustrates the intersection of two interval bicubic Bézier
surfaces[P1](σ, t) and [Q1](u,v). The solution is obtained by the
validated ODE solver and mapped into 3D model space. Figure
4 shows the tangential intersection of two interval cubic-quadratic
Bézier surfaces[P2](σ, t) and [Q2](u,v). The surfaces are placed
such that the intersection is tangential. The pre-image of the curve
of intersection is obtained using the validated ODE solver and
mapped into 3D model space.

Figure5 shows an example constructed very similarly to the one
used in Huet al. [HPY96]. The surfaces are modeled such that
when an interval bicubic Bézier surface[P3](σ, t) intersects an in-
terval cubic-quadratic Bézier surface[Q3](u,v), then there is a sin-
gularity in the intersection curve (curve is connected). The pre-
image of the curve of intersection is obtained using a validated
ODE solver and mapped into 3D model space.

Marching schemes based on the direct application of floating
point arithmetic may cause the curve to have conflicting topolog-
ical structure from the real curve [HPY96]. These violations are
manifested as gaps or as inappropriate intersections. This example
illustrates that, a validated ODE solver should be able to resolve
the singularity of the intersection curve and report to the user. We
have performed experiments where we perturb one of the surfaces
([Q3](u,v)) in the z-direction so that the curve of intersection is free
of singularity. A positive perturbation in the z-direction will lead to
the branching of the curve in a sense different from a negative per-
turbation in the z-direction. Table1 compares the number of steps
needed to resolve a possible candidate for looping or straying, vs.
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Figure 3: Transversal intersection of two bicubic-Bézier sur-
faces corresponding to a maximum relative model space error of
0.00350.

Figure 4: Tangential intersection of two cubic-quadratic Bézier
patches for a maximum relative model space error = 0.0050.

perturbation of the Bézier patches. Note that when the perturbations
are small we need more steps for resolving.

6. Conclusions

The condition of a continuous gap-free boundary with a numeri-
cally verified upper bound for the intersection curve error is ful-
filled. We map this error in parameter space bound to 3D model
space bounds conservatively. Thus this definite upper bound for er-
ror helps in defining well-formed boundary representation of com-
plex 3D solids. Validated error bounds for surface intersection is
essential in the interval boundary representation for consistent solid
models as shown by Sakkaliset. al.[SSP01]. Also discussed is our
ability to resolvestraying or looping by a validated ODE solver

Perturbation of[Q3] in Steps needed forTest No.
z-direction in model space resolving singularity

1 +0.03 845

2 +0.0003 989

3 +0.000003 1139

4 0.0 singularity reported

5 -0.000003 1303

6 -0.0003 1153

7 -0.03 1007

Table 1: Resolving singularities of the curve of intersection.

Figure 5: Figure (a) shows the surface[Q3](u,v) perturbed along
the positive z-direction, the intersection curve segment is correctly
traced by the validated ODE solver. Figure (b) in a similar way il-
lustrates how the validated ODE solver successfully trace the cor-
rect intersection curve segment when the perturbation is in the neg-
ative z-direction.

which adapts its own step size to verify the existence and unique-
ness. This technique is applied to both transversal and tangential
intersections.

It was noticed that by following Horner’s rule while we input
the expression for[f(y(s))] we are not only able to improve on the
speed but also on the size of the interval. Further the large amount
of data we have obtained could be reduced by the use of an approx-
imation scheme proposed by Tuohyet al. [TMSP97].

This algorithm might prove to be costlier compared to a con-
ventional algorithms for simple problems. Also unfortunate is the
inherent problem of very small but nonzero increase in the width of
the interval solutions due to rounding, but the quality of the solution
far outweighs the cost factor specially for complicated intersection
problems.

Future work on the topic of interval solid modeling could be on
how to reduce the width of thea priori enclosures, there by reduc-
ing the error bounds.
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