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Abstract

3D scanning technology has matured to a point where very large scale acqui-
sition of high resolution geometry has become feasible. However, having large
quantities of 3D data poses new technical challenges. Many applications of
practical use require an understanding of semantics of the acquired geometry.
Consequently scene understanding plays a key role for many applications.

This thesis is concerned with two core topics: 3D object detection and seman-
tic alignment. We address the problem of efficiently detecting large quanti-
ties of objects in 3D scans according to object categories learned from sparse
user annotation. Objects are modeled by a collection of smaller sub-parts
and a graph structure representing part dependencies. The thesis introduces
two novel approaches: A part-based chain-structured Markov model and a
general part-based full correlation model. Both models come with efficient
detection schemes which allow for interactive run-times.
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Kurzfassung

Die Technologie für 3-dimensionale bildgebende Verfahren (3D Scans) ist
mittlerweile an einem Punkt angelangt, an dem hochaufglöste Geometrie-
Modelle für sehr große Szenen erstellbar sind. Große Mengen dreidimensio-
naler Daten stellen allerdings neue technische Herausforderungen. Viele An-
wendungen von praktischem Nutzen erfordern ein semantisches Verständnis
der akquirierten Geometrie. Dementsprechend spielt das sogenannte “Sze-
nenverstehen” eine Schlüsselrolle bei vielen Anwendungen.

Diese Dissertation beschäftigt sich mit 2 Kernthemen: 3D Objekt-Detektion
und semantische (Objekt-) Anordnung. Das Problem hierbei ist, große Men-
gen von Objekten effizient in 3D Scans zu detektieren, wobei die Objekte aus
bestimmten Objektkategorien entstammen, welche mittels gerinfügiger An-
notationen durch den Benutzer gelernt werden. Dabei werden Objekte model-
liert durch eine Ansammlung kleinerer Teilstücke und einer Graph-Struktur,
welche die Abhängigkeiten der Einzelteile repäsentiert. Diese Arbeit stellt
zwei neuartige Ansätze vor: Ein Markov-Modell, das aus einer teilebasierten
Kettenstruktur besteht und einen generellen Ansatz, der auf einem Modell
mit voll korrelierten Einzelteilen beruht. Zu beiden Modellen werden effizi-
ente Detektionsschemata aufgezeigt, die interaktive Laufzeiten ermöglichen.
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Summary

3D scanning technology has matured to a point where very large scale ac-
quisition of high resolution geometry has become feasible. Using mobile
LIDAR scanners, point clouds at centimeter resolution of complete countries
can be captured at economically viable costs. Cost efficient approaches such
as structure-from-motion reconstruction from community photo collections
complement these efforts.

Having large quantities of 3D data poses new technical challenges. A key
problem is semantic scene understanding: Almost any application beyond
simple 3D rendering, such as mobile navigation, requires an understanding
of the semantics of acquired geometry, e.g. finding roads or entrances to
buildings. Acquiring these data in a large scale by human annotation is
obviously infeasible.

From the variety of problems for semantic scene understanding this thesis
studies two core topics: Object detection and semantic alignment.

We address the problem of detecting object instances (shapes) in 3D geometry
(point clouds) according to semantic object classes. Shapes are defined as a
set of distinctive parts prescribing local part appearance (local shape) as well
as the spatial layout (constellation) of these parts. From only a small number
of hand-annotated examples, a part-based statistical object model is derived
to retrieve large quantities of further object instances, while the part-based
object structure also encodes a natural correspondence structure for objects.
This work is concerned with the construction and analysis of robust statistical
models for this problem as well as with the derivation of efficient and robust
inference and detection schemes for such models.

The first part of this thesis is devoted to give an introduction to, and defini-
tions of the theoretical concepts used within this work. Further, there will be
explanations and derivations how these concepts are related to each other.

The main contributions of this thesis will be given in Chapters 6 and 7.
There, we will see how object correspondences can be encoded with graphical
models and how such models can be trained with a minimal amount of user
interaction. The chapters derive two different models which allow for efficient
object detection in large point clouds.

Chapter 6 presents a statistical parts model based on a Markov chain and
discusses the motivations for using a chain topology model. Besides model
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definition (which relies on geometry with a predominant orientation), the
chapter provides a detection scheme that contributes to a drastic reduction
of the search space and explains how a large number of shapes can be detected
simultaneously.

Chapter 7 depicts a more general part-based approach for the detection prob-
lem. We introduce a statistical graphical model which correlates all object
parts in terms of local shape and constellation. It is fully rotational invariant
and can be extended to a hierarchical version in order to efficiently model
and detect more complex objects. Since fully connected graphical models
cannot be exactly inferred in feasible time, the chapter provides an approxi-
mate but robust and efficient detection scheme – an approach which has not
been utilized yet. Similar to the Markov chain model there is also a strategy,
how search space can be further depleted for such general models.

This work will conclude with a final general discussion about different graph-
ical models for the detection scenario of this thesis and give a prospect to
future applications.
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Zusammenfassung

Die Technologie für 3-dimensionale bildgebende Verfahren (3D Scans) ist
mittlerweile an einem Punkt angelangt, an dem hochaufglöste Geometrie-
Modelle für sehr große Szenen erstellbar sind. So können unter Verwendung
von LIDAR-Scannern Punktwolken von ganzen Ländern in Zentimeterauf-
lösung zu ökonomisch vertretbaren Kosten hergestellt werden. Auch kosten-
günstige Ansätze wie structure-from-motion Rekonstruktionen aus Bilderkol-
lektionen von Photo-Gemeinschaften vervollständigen diese Bemühungen.

Große Mengen dreidimensionaler Daten stellen allerdings neue technische
Herausforderungen. Viele Anwendungen von praktischem Nutzen erfordern
ein semantisches Verständnis der akquirierten Geometrie. Dementsprechend
spielt das sogenannte “Szenenverstehen” eine Schlüsselrolle bei vielen An-
wendungen: Fast jede Anwendung jenseits von einfachem 3D-Rendern wie
zum Beispiel mobile Navigationsanwendungen erfordert ein Verständnis der
Semantik der erfassten Szene, um zum Beispiel Straßen oder Gebäudeein-
gänge zu finden. Diese Daten mittels Annotation durch Menschen im großen
Stil zu beschaffen, ist offensichtlich nicht machbar.

Von der Vielfalt an Problemen beim semantischen Szenenverstehen studiert
diese Arbeit zwei Kernthemen: dreidimensionale Objekt-Detektion und se-
mantische (Objekt-) Anordnung.

Wir wenden uns dem Problem zu, Objektinstanzen (Shapes) in 3D Geometrie
(Punktwolken) entsprechend semantischer Objektklassen zu finden. Shapes
werden als eine Menge markanter Teile definiert, die sowohl das lokale Er-
scheinungsbild als auch die räumliche Anordnung (Konstellation) dieser Teile
beschreiben. Unter Zuhilfenahme einer nur kleinen Anzahl handannotierter
Beispiele wird ein teilebasiertes statistisches Objektmodell abgeleitet, um
große Mengen weiterer Objektinstanzen zu finden. Dabei kodiert die teileba-
sierte Objektstruktur auch eine natürliche Korrespondenzstruktur für Objek-
te. Diese Arbeit beschäftigt sich mit der Konstruktion und Analyse stabiler
statistischer Modelle für dieses Problem sowie mit der Herleitung effizienter
und robuster Inferenz- und Detektions-Schemata für solche Modelle.

Der erste Teil der Arbeit ist dazu bestimmt eine Einführung in, und Defini-
tionen der benötigten theoretischen Konzepte zu geben. Außerdem werden
Erklärungen und Herleitungen aufgezeigt wie diese Konzepte zusammenhän-
gen.

Der Hauptbeitrag der Dissertation ist verteilt auf die Kapitel 6 und 7. Dort
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sehen wir, wie man Objektkorrespondenzen mit graphischen Modellen be-
schreiben kann und wie solche Modelle mit minimalem Benutzeraufwand
trainiert werden können. In beiden Kapiteln werden zwei unterschiedliche
Modelle vorgestellt, die effiziente Objektdetektion in großen Punktwolken
ermöglichen.

Kapitel 6 stellt ein statistisches Teile-Modell vor, das auf einer Markov Kette
basiert und diskutiert die Beweggründe, ein Modell mit Kettentopologie zu
wählen. Neben der Modelldefinition (die sich auf Geometrie mit ausgewie-
sener Orientierung beschränkt) zeigt das Kapitel ein Detektionsschema auf,
welches zu einer drastischen Reduktion des Suchraums beiträgt und erklärt,
wie man eine große Anzahl von Shapes simultan detektieren kann.

Kapitel 7 zeigt einen allgemeineren, Teile-basierten Ansatz für das Detekti-
onsproblem auf. Dort wird ein statistisches graphisches Modell vorgestellt,
das alle Objektteile hinsichtlich des lokales Erscheinungsbildes als auch der
räumlichen Konstellation miteinander korreliert. Es ist vollständig rotati-
onsinvariant und kann zu einer hierarchischen Version ausgebaut werden,
um komplexere Objekte effizient modellieren und detektieren zu können. Da
vollständig konnektierte graphische Modelle nicht in machbarer Zeit exakt
berechnet werden können, wird im Kapitel ein approximatives aber robustes
und effizientes Detektionsschema vorgestellt – ein Ansatz, der zuvor noch
nicht genutzt worden ist. Ähnlich dem Markov Kettenmodell gibt es eben-
falls eine Strategie, wie der Suchraum für solche Modelle weiter eingeschränkt
werden kann.

Die Doktorarbeit schließt mit einer finalen, allgemeinen Diskussion über ver-
schiedene graphische Modelle für das Detektionsszenario dieser Arbeit und
gibt einen Ausblick auf zukünftige Anwendungen.
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1
Introduction

I think it would be a good idea.
rumors about his answer to a question:

Mahatma Gandhi (1869 - 1948)

3D scanning technology has matured to a point where very large scale acqui-
sition of high resolution geometry has become feasible. Using mobile LIDAR
scanners, point clouds at centimeter resolution of complete countries can be
captured at economically viable costs (such as in the well-known projects by
companies like Google [ADF+10] or Navteq). Cost efficient approaches such
as structure-from-motion reconstruction from community photo collections
[ASS+09, FGG+10, GAF+10] complement these efforts.

Having, at some point, accurate 3D models of our entire planet offers enor-
mous opportunities, but it also poses new technical challenges. A key prob-
lem is semantic scene understanding: Almost any application beyond simple
3D rendering, such as mobile navigation, maintenance of public infrastruc-
ture, or planning for disaster preparedness, requires an understanding of the
semantics of acquired geometry, such as finding roads, cars, street lights, en-
trances to buildings, and the similar. This information is not acquired by
any 3D scanner, and human annotation of large scale data is obviously in-
feasible. Hence, the development of computer-aided techniques for this class
of problems has become a very important research topic. From the vari-
ety of scene understanding problems two important categories have emerged
– correspondence problems and semantic labeling problems, such as object
detection.



2 Chapter 1: Introduction

The benefits of matching algorithms for scene understanding is obvious. They
establish geometric and/or semantic correspondences between data, e.g. for
parts of a bigger scene. This can be used for a variety of applications: cleanup
and precision improvements of scanned data, auto completion and hole filling,
meshing, instance highlighting and many more.

There is a large body of work on correspondence estimation for geometric
data sets. Early techniques such as the classic iterated closest point (ICP)
algorithm for rigid matching [BM92, CM92] are concerned with rigid trans-
formations in order to align two or more objects. More sophisticated tech-
niques such as deformable ICP [ACP03, HTB03, BR07] include more com-
plex local transformations. However, they are based on local optimization
and require a user-guided initialization. Furthermore, a variety for global
optimization techniques has been proposed. They solve matching problems
without pre-alignment [ASP+04, GMGP05, LG05, BBK06, HFG+06, CZ08,
HAWG08, ZSCO+08, TBW+09, TBW+11]. Almost all algorithms for global
correspondences (without known initialization) start by detecting geomet-
ric features that are invariant under the considered correspondence trans-
formation. Consistent correspondences are found via global optimization
techniques such as branch and bound, loopy belief propagation, or Hough-
transform-based voting. Afterwards, dense correspondences can be estimated
using local optimization techniques such as gradient descent (to refine trans-
formation parameters) or region growing (to refine the corresponding area in
partial matching scenarios).

However, the most simple but crucial prerequisite of all these approaches
is that the instances to be matched must already be given. For bigger
scenes that means, we first need to detect objects prior to establishing
correspondences. Though, there are techniques which are concerned with
finding correspondences within a scene. In fact, symmetry detection algo-
rithms [MGGP06, PMW+08, BBW+09] yield geometric correspondences be-
tween re-occurring parts. But they mostly work with static symmetries,
that means they do not capture semantics, and therefore they do not allow
for bigger variations. Thus, in order to approach scene understanding, it is
also important to come up with efficient and robust algorithms for 3D ob-
ject detection which can also find instances belonging to a object category
comprising semantically similar objects.

For the construction of an efficient detector design we need to distinguish
between ‘thing’ and ‘stuff’ detectors. Detecting ‘things’ typically means
that we want to find well-defined entities such as cars, pedestrians, or win-
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dows in a wall, whereas ‘stuff’ detection more refers to amorphic objects
or areas without clear structure, e.g. streets, bushes, walls. There are
also object categories which comprise both types. For example detecting
plants in a pot requires both, finding a structured entity (the pot) in ad-
dition to green ‘stuff’. A prominent category of problems, where stuff de-
tection is involved, are segmentation problems. Traditionally they are con-
cerned with structuring objects into different pieces, typically by labeling
regions [GG04, GF09, KHS10, HKG11, SvKK+11, vKTS+11]. Although,
they can cope with unstructured regions and to some extend incorporate
semantic knowledge, it is hard to find a particular object. Most of all, the
majority is not applicable to bigger scenes. However, similar to segmenta-
tion, object detection can also be regarded as a labeling task – by labeling
all pieces of geometry which are semantically similar to a particular object
class with a common label [ATC+05, GKF09, VSS12]. That means detection
can be understood as a binary labeling (or classification) task.

In the following the term detection will be associated with detecting entities
comprising well recognizable structures and an object center. There is a vari-
ety of algorithms which are concerned with object detection in 2-dimensional
images [VJ01, RPA03, DT05, FH05, WZFF06, LLS08, RGKG12]. However,
the field of 3D object detection is only little explored with merely few algo-
rithms approaching this problem [ATC+05, GKF09, VSS12]. These methods
are typically employed for the setting of classification tasks which excel in
detecting objects that can be easily segmented, but they are not suitable to
detect smaller repetitive elements such as ornaments or windows in build-
ings. In general, detection problems for the 3D domain come with different
issues than 2D approaches, inhibiting the direct transfer of 2D implementa-
tions to 3D geometry. Where object detection on images needs to cope with
illumination problems, self-occlusions or scale issues, 3D data such as point
clouds come with different challenges: points are not aligned to a regular
grid, but they are irregularly sampled and subject to non-Gaussian noise ar-
tifacts. Further, there is no clear notion of direct neighbors, which implies
additional computational challenges.

Towards 3D scene understanding, it would be a valuable contribution to
have general algorithms which do not only detect single instances from a cat-
egory of semantically similar objects, but also establish semantic correspon-
dences. This problem can be approached naively in a brute force attempt:
First an object detection algorithm is applied (e.g. using an implicit shape
model [VSS12]), then a matching approach (such as [TBW+11]) consecu-
tively tries to establish correspondences for all relevant regions. A benefit of
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this approach is that one could choose those algorithms which perform best
for the given task. The weak spot is that on one hand computation times
might be high (for each detected instance another matching needs to be per-
formed), and on the other hand, depending on the variety of the object class,
it might be hard to find consisting correspondences for all of the shapes.

The main motivation of this work is to find general models which combine
both worlds: models for object detection that additionally establish con-
sistent and semantically meaningful correspondences. Further, in order to
be applicable on large 3D scenes, we are looking for run-time efficient and
scalable implementations. Having such tools allows for a rich number of fu-
ture applications. It might be only a small step to come up with methods for
decomposing large 3D scans into low resolution primitives for mobile applica-
tions. Other applications could aim at artifact removal and super-resolution
for complex shapes (similar to [BBW+09]). But most desirable can be con-
sidered efficient tools capable of fitting (generative) morphable models to
large 3D scenes. Such tools perfectly suit not only the before mentioned
applications, they can also be used for smoothly filling in scan holes; beyond
that they even allow for morphing in complex scenes.

1.1 Problem Statement

We address the problem of detecting object instances (shapes) in 3D geometry
according to semantic object classes learned from sparse user annotation.
Shapes are defined as a set of distinctive parts describing local geometry
(local shape) as well as the spatial layout (constellation) of these parts. From
a small number of hand-annotated examples, a statistical part-based object
model is derived to retrieve large quantities of further object instances, while
encoding object correspondences via the part-based object structure. This
thesis is concerned with the construction and analysis of robust statistical
models for this problem, as well as with the derivation of efficient and robust
inference and detection schemes for such models.

Formally the detection problem is given as follows: Let S ⊂ R3 be a smooth
2-manifold embedded in three-space. Typically S is represented by a sampled
approximation (point cloud) S = {s1, ..., sn}, si ∈ R3.

Given a shape model with k parts, each part i encodes a relative spatial ar-
rangement xi and a local shape description di. The individual parts can be
subsumed into an overall local shape D and an overall spatial layout X. The
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shape model is then defined by parameters θ = (θD, θX) of (parametrized)
probabilistic models for local shape and layout, and the goal is to find rea-
sonable assignments H = (h1,h2, . . . ,hk) for k parts to points in S, where
hi ∈ S denotes the position of part i in the point cloud.

Hence, the objective is to find assignments for H which maximize the model
likelihood p(D,X,H|θ), and the detection problem itself can be formulated as
a maximum a posteriori hypothesis search over the joint posterior distribution
p(H|D,X, θ) of H.

Implementations for the model and the posterior search are subject of this
thesis and can be found in chapters 6 and 7.

1.2 Organization and Contributions

Chapter 2 provides an overview over previous work which is most related to
the topic of this thesis. Chapters 3,4,5 give an introduction to, and definitions
of the theoretical concepts used in this thesis: Chapter 3 introduces basic
definitions and notations from probability theory, in Chapter 4 we will see
concepts for probabilistic graphical models, and Chapter 5 shows how such
models can be computed. Further, we will highlight how these concepts are
related to each other, since this is essential for a deeper understanding of this
work. To that end, the idea for simultaneous object detection with message
passing algorithms is explained in Section 5.1.4, and in Section 5.2.3 we find
the derivation for an approximate inference scheme which can be used to
compute maximal likelihoods for fully-connected parts models, such as the
one defined in Chapter 7.

The main contributions of this thesis can be found in Chapters 6 and 7.
There, we will see how semantic object correspondences can be encoded using
graphical models and how such models can be trained with a minimal amount
of user interaction. The chapters derive two different models which allow for
efficient object detection in large point clouds.

Chapter 6 presents a statistical Markov chain approach and discusses the
motivations for using a chain topology model. Besides introducing the model
(which relies on geometry with a predominant orientation) we find a detection
scheme that contributes to a drastic reduction of the original search space.
The model as well as the detection performance are evaluated in a number
of experiments.
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Chapter 7 depicts a general part-based model for the detection problem. We
introduce a statistical graphical model which correlates all object parts with
respect to local shape and constellation. Unlike the Markov chain model
used in Chapter 6 it is fully rotational invariant. Since optimal assignments
of fully connected graphical models cannot be exactly computed in feasible
time, there is given an approximate but robust and efficient inference scheme
– an approach which is novel in literature. Similar to Chapter 6 there is shown
how the search space can be depleted for such general models. Further, an
approach is presented how the model can be extended to a hierarchical version
in order to efficiently model and detect more complex objects. A number of
quantitative and qualitative experiments evaluate model capabilities and the
detection performance.

The last chapter (Chapter 8) gives a final general discussion about differ-
ent models for the detection scenario of this thesis. It will show strengths
and limitations, and depict approaches how to proceed. Finally, this work
concludes with a prospect to future research.

List of Contributions:

• This thesis comprises (an implementation of) two novel statistical part-
based models for interactive and robust object detection in point clouds:
a Markov chain parts model and a rotational invariant, fully-correlated
parts model.

• The detection schemes are designed such that found object instances
automatically yield semantic part correspondences – even for object
categories with high variability.

• The implementations comprise efficient pruning techniques that dras-
tically lower the search space such that detection can be performed at
interactive run times even for large 3D scenes.

• The inference algorithms are able to detect all object instances simul-
taneously in unprocessed point clouds.

• The implementations come with a scheme, how to define and refine
semantic object classes with minimal user input.

• Solutions for the correlated parts model cannot be computed exactly.
Therefore, the implementation comprises a novel, efficient approximate
inference scheme.
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• A hierarchical model extension is presented: a tool to create hierarchi-
cal models for detection of more complex object categories.

• The correlated parts model is fully rotational invariant, hence it can be
used for detection tasks in arbitrary geometry.

1.3 List of Publications

The following research papers have been originated by or written in collab-
oration with the author during the preparation phase of this thesis. They
have been published in the proceedings of international, peer-reviewed, lead-
ing venues in the area of computer graphics. The list is split in two parts:

The first part comprises the publications contributing to this thesis. Main
text passages of the papers from this part have been utilized without being
tagged individually. The coauthors have permitted the use of these passages.
The same applies for figures.

The second part contains work which has been published in the proceedings
of international, peer-reviewed, major conferences as well, but it is not part
of this thesis.

Publications contributing to the thesis:

M. Sunkel, S. Jansen, M. Wand, E. Eisemann, H.-P. Seidel: “Learning Line
Features in 3D Geometry”, Computer Graphics Forum (Proc. Eurographics)
(2011)

M. Sunkel, S. Jansen, M. Wand, H.-P. Seidel: “A Correlated Parts Model
for Object Detection in Large 3D Scans”, Computer Graphics Forum (Proc.
Eurographics) (2013)

Additional publications:

K. Scherbaum, M. Sunkel, H.-P. Seidel, V. Blanz: “Prediction of Individual
Non-linear Aging Trajectories of Faces”, Computer Graphics Forum (Proc.
Eurographics) (2007)

M. Sunkel, B. Rosenhahn, H.-P. Seidel: “Silhouette Based Generic Model
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Adaptation for Marker-Less Motion Capturing”, ICCV, Workshop on Human
Motion (2007)

N. Hasler, C. Stoll, M. Sunkel, H.-P. Seidel: “A Statistical Model of Human
Pose and Body Shape”, Computer Graphics Forum (Proc. Eurographics)
(2009)
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Related Work

The significant problems we face
cannot be solved at the same level of thinking

we were at when we created them.
Albert Einstein (1879 - 1955)

In this chapter we briefly review prior concepts and ideas which helped in
design and formation of the work presented in this thesis. Historically, object
detection was first explored in image domain. For that reason the main
concepts for part-based detection models evolved from there.

2.1 2D Scene Understanding

The problem studied in this thesis is closely related to “scene understanding”
approaches for 2D images. While first object detection schemes aimed at rigid
objects under changing viewpoints, current research strives to detect classes
of non-rigid or deformable objects. Besides the development of sophisticated
local shape descriptors [DT05], and bags of descriptors [LSP06, GD05] pre-
scribing (and evaluating) part appearance, two main detection strategies have
emerged: On one hand Markov random fields are used to model local appear-
ance and consistency between neighboring pixels [KH03, HZRCP04]. Such
techniques mostly aim at labeling amorphic categories such as “vegetation”
or “buildings”. On the other hand, hampered by misleading information due
to clutter and occlusion, the focus has shifted from holistic approaches to
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part-based models describing objects by individual parts linked with struc-
tural information. Such models are used to detect constellations of distinctive
parts [RPA03, FH05, LLS04, FMR08], excelling in recognizing individual ob-
jects, such as cars or bikes. The following provides an overview of concepts
for part-based 2D object detection which are most related to the approaches
described in this thesis. A detailed exploration of “scene understanding”
approaches for images in general is not subject of the overview.

Part-based models describe objects by a collection of parts embedded in a
graph structure in order to encode contextual information. The single parts
capture local appearance properties at a certain position which is dependent
on neighboring parts. The models developed in this thesis also follow this
paradigm. There is a number of different approaches which can be grouped
mainly by the different graph topologies used:

Voting Schemes: Voting schemes typically represent star-like graph struc-
tures. Single detected parts independently vote for a designated object cen-
ter, thus generating a discrete distribution of votes in the image. The local
maxima of this distribution then represent detected object centers. There is
a number of generalized Hough transform methods [Bal87, GL09, RGKG12]
implementing such voting schemes. A special case of the generalized Hough
transform is the implicit shape model of Leibe et al. [LLS04, LLS08]. Essen-
tially, it is a codebook of feature point descriptors that are most discrimi-
native for a given object class. After the codebook is created, each entry is
assigned a set of offsets with respect to the corresponding object centroids.
The offsets are learned from training data. At run-time, the interest point
descriptors in the query image are matched against the codebook and the
matches cast probabilistic votes about possible positions of an object center
in the image. Another popular tool for tackling the problem of intra-category
diversity for object detection is Felzenszwalb et al.’s so-called deformable
parts model [FMR08, FGMR10]. It is based on HOG descriptors [DT05]
for local appearance descriptions. The idea behind deformable parts is to
represent an object model using a single lower-resolution ‘root’ template,
and a set of spatially flexible smaller high-resolution ‘part’ templates. Each
part captures local appearance properties of an object, and deformations are
characterized by the part positions relative to the root center. Additionally,
an object class can be partitioned into subcategories. There, the idea is to
segregate object instances into disjoint groups, each with a simple attribute
such as frontal versus profile view, and learning a separate model per group.
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Pictorial Structures: The basic technique most similar to the approach de-
scribed in Chapter 6 is ‘Pictorial Structures’ [FE73, FH05]. In Felzenszwalb
and Huttenlocher’s implementation they use a tree-structured MRF of parts
to describe objects by decomposition into local appearances and spatial rela-
tions. Local appearances as well as spatial relations are estimated with single
independent Gaussian distributions. The model is applied to two different
scenarios: Face detection and pose estimation for an articulated body model,
both for frontal views only. While conceptually related, our setting differs in
two important aspects: First, we are dealing with general 2-manifolds in an
irregularly sampled representation (point clouds) as inference domain, which
provides more degrees of freedom and is more difficult to handle than regular
pixel grids. Secondly, unlike in image understanding applications, we are
aiming at finding many instances simultaneously rather than only the best
explanation for an image given just very few training exemplars.

Constellation Model: The method introduced in Chapter 7 is related to
the idea of constellation models in image understanding as described in Fer-
gus et al. [RPA03]. They propose a part-based approach which models the
pairwise spatial dependencies between all parts. They train a generative ob-
ject class model. That means the parts are modeled by independent Gaussian
distributions for part appearances and overall part alignment. However, the
model does not consider pairwise relations of part appearances. Since it
is infeasible to efficiently and exhaustively explore the distribution of such
models, the state space is limited to a set of up to 30 precomputed features
which can be used for parts. For detection a combinatorial deterministic
(greedy) best-first search (A* search [YC98]) is utilized. Although Bergth-
oldt et al. [BKSS10] further improved the detection scheme by introducing
more sophisticated branch-and-bound heuristics, they still rely on a small
number of pre-defined features.

Correlating Appearance of Parts: The utility of appearance correla-
tions has been shown in the context of bags-of-words models: Wang et
al. [WZFF06] demonstrate that explicitly modeling the inter-dependencies
of local patches yields more discriminative models. In the context of part-
based models, pairwise geometric relations of lines have also proven to be
helpful for recognition [LHS07, SGS09]. Leordeanu et al. [LHS07] use a set
of angles and distances to represent the geometric relations between parts.
Stark et al. [SGS09] enrich constellation models by pairwise symmetry rela-
tions between contour segments. In the 3D domain, these correlation can be
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expected to be even more pronounced, as variability due to lighting, texture,
and occlusion is not present.

2.2 3D Scene Understanding

In prior work 3D scene understanding mostly deals with 2-manifolds in dif-
ferent representations. We can distinguish between sampled representations
such as point clouds, mesh representations which provide additional topol-
ogy information, and parametrized continuous manifolds. Such data inherit
tasks similar to 2D scene understanding, but with different challenges. For
example in case of point clouds captured by LIDAR range scanners the most
prominent issues are not only the lack of topological information but rather
the irregular sampling and strong non-Gaussian noise artifacts. Therefore a
simple transfer of 2D implementations to 3D geometry is not possible.

For disambiguation the following will give a brief overview of typical 3D
scene understanding problems in general and show work which is related to
the detection scenario of this thesis.

Matching: The methods described in this thesis can not only be viewed
from the object detection perspective, but also as means to establish cor-
respondences among semantically similar geometric features. There is a
large body of work on correspondence estimation for geometric data sets.
Early techniques such as the classic iterated closest point (ICP) algorithm
for rigid matching [BM92, CM92] as well as the later deformable ICP tech-
niques [ACP03, HTB03, BBK06, BR07] are based on local optimization and
require user-guided initialization.

More recently, several global optimization techniques have been proposed
that solve the problem without pre-alignment [ASP+04, GMGP05, LG05,
HFG+06, CZ08, HAWG08, ZSCO+08, TBW+09]. An interesting variant is
partial symmetry detection, where a single shape is decomposed into build-
ing blocks. A common approach is transformation voting, which detects
symmetries under a fixed group of transformations such as similarity trans-
formations [MGP06, PSG+06, PMW+08]. The use of a location independent
voting space can, however, lead to problems if many symmetric parts are
present simultaneously. Matching graphs of surface features [BBW+08] has
been proposed to avoid this problem.
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Learning Correspondences: Learning of feature matching is rare in ge-
ometry processing. Schoelkopf et al. [SSB05] apply regression techniques
from machine learning to estimate correspondences, but they do not learn
from user input. In follow-up work, Steinke et al. [SSB06] identify invariant
feature regions in a morphable face model [BV99] by an oriented principal
component analysis (PCA). Their method requires some amount of training
data and outputs a weighting function that describes the invariance of local
descriptors.

Retrieval: A large amount of work has been devoted to the recognition of
isolated objects (see for example [MSS+06], and [DGD+11] for a survey), but
not detecting instances within a larger scene. Most methods are primarily
based on bags-of words approaches [LG07, BBGO11]. Furthermore, fixed
models of deformations have been studied in order to match template shapes
to data (typically isolated objects) under isometry or different types of elastic
deformation (see [vKZHCO11] for a survey). In contrast, our methods aim
at learning the variability from training data and detect occurrences in larger
scenes.

Urban Scenes: In recent years major efforts have been made in acquir-
ing large scale data of urban environments. For example from Google
street view project [ADF+10] there is tons of data available. However,
most data is collected as 2D image sequences, which first off all poses
the demand for 3D scene reconstruction. Structure-from-motion tech-
niques [ASS+09, FGG+10, GAF+10] tackle that problem. Early approaches
for large scale reconstruction of the street view data included simple geomet-
ric constraints, namely that most street scenes can be roughly reconstructed
by piecewise planar 3D models [MK09]. Based on such an approach Google
showed that reconstruction quality can be improved by enriching image data
with 3D laser range scans [ADF+10] of the scene. However most improve-
ments augmenting visual appearance are on texture level, e.g. fusing multi-
modal data into high resolution textures. Yet multi-modal data can also be
used to reconstruct more detailed piecewise planar 3D models. Pylvänäinen
et al. [PBK+12] show how to combine LIDAR range scans and panoramic im-
age sequences into multi-view stereo reconstructions in order to reconstruct
a 3D model of a bigger city scene.

Although the 3D reconstruction of isolated buildings in a scene yields obvi-
ous information about their whereabouts, none of these approaches include
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any form of semantic correspondences. There are techniques which exploit
fixed semantics typical for city scenes. Mesolongitis et al. [MS12] propose
an approach for window detections in point clouds of urban scenes However,
the main idea of their approach is to first segment the scenes in order to
find facades and potential locations for windows. Then they hard-code prior
knowledge: For window detection that is grid-like assumptions for the global
alignment structure of all instances.

More general semantic information can also be extracted based on geomet-
ric information only. For example Kerber et al. [KBWS12] are concerned
with symmetry detection for large city scans, i.e. the retrieval of reoccur-
ring geometry in bigger blocks, such as windows in buildings. However, such
information can only be computed for rigidly matching instances, not for
bigger semantic object categories. Further, it is not clear beforehand which
symmetry information can be extracted. Last but not least, the quality of
the results depends on the quality of the scan. A broader overview over sym-
metry detection in 3D geometry is given in a state of the art report of Mitra
et al. [MPWC12].

Labeling and Classification: Object detection can be interpreted as a
labeling and classification problem where parts of the geometry are la-
beled according to geometric or semantic classes, which is a classical seg-
mentation task. Segmentation and classification of geometric objects ac-
cording to semantic categories is often tackled using conditional random
fields [ATC+05, KHS10, ZLZ+10]. However, the application to large scenes
is often limited, because all labels have to be estimated in a complex global
optimization problem. Further, such approaches are mostly limited to data
with reliable topology information, i.e. clean triangle meshes.

Kalogerakis et al. [KHS10] explore learning user segmentation by example.
They use a Markov random field with learned local descriptors at nodes and
learned edge compatibility costs and perform MAP estimation using iterated
graph-cuts. This approach is not applicable to point clouds, it does not yield
correspondences and will find only one global solution for a prior isolated
object.

Anguelov et al. [ATC+05] address the problem of segmenting large scale
data obtained from 3D scans into few object classes. Their segmentation
framework is based on pairwise conditional random fields. Each variable is
associated to a point in the scan, edges are installed to nearest neighbors. The
task is to assign one of the class labels to each of the variables. Segmentation
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is done by iteratively performing binary classification into the single classes
using a graph-cut algorithm. They incorporate a set of diverse descriptors
and enforce the preference that adjacent scan points have the same label.
Obviously such an approach does not yield any form of correspondences.

A similar technique is proposed by [MVH09]. They show how a conditional
random field can be efficiently extended to higher-order cliques and present a
fast approximation scheme for online classification, onboard a mobile vehicle
for environment modeling.

An approach which segments point clouds into instances of single object
classes is presented by [PMD08]. Their technique relies on the assumption
that an object instance can be well separated from the point cloud. They
use a pure descriptor-based, example driven approach which looks for nearest
neighbor matches in a trained data-base in a bottom-up and subsequent top-
down manner.

Moosmann et al. [MS11] put a special focus on difficult, unstructured outdoor
scenarios with object classes ranging from cars over trees to buildings. They
do not not assume that a perfect segmentation is possible. They provide a
fully automatic hierarchical training method to cope with typical outdoor
scenarios, thus excluding user-defined semantics. The approach is similar to
bag-of-words methods. It can be outlined as follows: The scene is hierarchi-
cally decomposed into previously segmented regions. For each hierarchical
segment a set of features is calculated. The features are clustered and finally
different object classes are defined using selected clusters.

The method of Stamos et al. [SHZF12] aims at a very special scenario. They
aim at fast low-complexity detection and classification algorithms for online
data processing during the acquisition process. They classify points into 5
distinct classes (vegetation, vertical, horizontal, car and curb regions) and
determine the ground level without requiring training or parameter estima-
tion. Key ingredient of the method is the use of heuristic summary statistics
which reduce the dimensionality of the data. Although this is a fast tech-
nique for rough segmentation, it questionable if it can be used to classify
arbitrary objects.

The methods examined so far are more or less based on holistic approaches.
Also some part-based methods which are widely used in 2D computer vision
have been adapted to recognizing 3D meshes [TCF09, KPW+10]. They rep-
resent the surface of an object with a part-based model, i.e. a set of local
part descriptors together with their spatial configuration. The part-based
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representation is robust against partial occlusions and can handle moderate
deformations of object geometry. Toldo et al. [TCF09] adapted the bag-of-
features method from 2D images to also recognize 3D shapes. An object is
modeled as a histogram of 3D visual ‘word’ appearances in terms of its sub-
parts. Based on that descriptor they describe an effective method for hierar-
chical 3D object segmentation on triangle meshes. Knopp et al. [KPW+10]
also use an extended version of the SURF feature descriptor in the context
of 3D shapes, but they enforce spatial consistency as well. They present an
implicit shape model based on 3D surf feature descriptors and perform shape
retrieval and object class recognition for single 3D models and on classes with
rather low intra-class variability.

Another alternative is segmenting shapes using clustered geometry. A well-
received work for object segmentation and categorization of 3D point clouds
in large scenes is given by Golovinskiy et al. [GKF09]. Their algorithmic
pipeline consists of 4 main steps: First background is removed. In case of
urban geometry that is removing planar data such as the ground. The re-
maining data is segmented and clustered into sets of connected components
of nearest neighbor graphs. The clusters form hypotheses for potential ob-
jects. Then, for each component a set of global features is generated (e.g.
height, volume, spin image). In the last step, the vector of all features is
classified using a support vector machine. Velizhev et al. [VSS12] extend
this model by replacing the last step with an implicit shape model (i.e. a
part-based representation voting for the object center) similar to the one of
Knopp et al. [KPW+10]. They show that such a part-based classification
approach yields better detections especially for objects which exhibit con-
siderable intra-class variability. Thus, they not only yield a segmentation
for detected objects but also a clear object center. However, these methods
mainly suit the problem to extract shapes for which a first hypothesis is easy
to compute. For example cars and lamp posts stick out of the ground and
can therefore be well separated. It would not be possible to find smaller
shapes within a bigger structure such as windows in a building.

In summary we can see that the objective of prior large scale approaches is
either to segment scenes directly, using global conditional random fields, or to
first cut geometry into smaller pieces, and classify these afterwards. Yet then
they rely on easy data separability and robust segmentation (for background
removal). There is no (part-based) method which directly approaches the
detection problem without major pre-processing efforts that reduce a 3D
scene to a number of cut-out hypotheses that need to be evaluated separately.
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In fact, the method of Velizhev et al. [VSS12] comes closest to the detection
problem defined in this thesis. In addition to a segmentation it yields an
object center. Also, the Hough voting could be used to reconstruct part cor-
respondences for single object instances. Unfortunately the method is only
suited for detection scenarios with easy and well separable scene objects.
Further it relies on automatic feature extraction and does not allow for se-
mantic correspondences defined by the user. The flexibility of object classes
is therefore limited to geometric similarities which can be automatically ex-
tracted.
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3
Background

Do not worry about your difficulties in Mathematics.
I can assure you, mine are still greater.

Albert Einstein (1879 - 1955)

Our understanding of the world is and will always be limited by our ob-
servations. Accordingly we need models which can deal with our imperfect
knowledge of the world. Statistical models are machine learning tools which
can cope with example-based knowledge and explicitly take into account un-
certainty.

This chapter briefly introduces underlying concepts and notations used in
this thesis. We do not give attention to all details, the interested reader is
referred to a wide range of textbooks such as [Bis06, KF09]. Throughout
this thesis we try to keep notations in a simplified and more intuitive form
in order to support the general readability and understanding, rather that
cherishing absolute soundness with mathematical formalism.

3.1 Probability

Probability or likelihood is a measure for estimation of how likely something
will happen. Probability theory can be used to describe underlying mecha-
nisms in complex systems. In the following we will briefly introduce the most
basic definitions.



20 Chapter 3: Background

Random Variable and Probability: A random variable X is a variable
whose value is subject to the outcome of a given event. It can be assigned
values (or states) x ∈ Ω from the set of all possible outcomes (state space).
In the scope of this thesis we will only consider discrete random variables
with a finite state space Ω = {xi}i=1,...,k.

For a discrete random variable X, each state x ∈ Ω is associated with a
probability p(X = x) ∈ [0, 1], which, for the sake of simplicity, we will also
denote by p(x). Values between 0 and 1 represent the degree of certainty
for variable X being in state x, with p(x) = p(X = x) = 1 expressing the
maximal certainty. The set of all probabilities p(X) := {p(x)|x ∈ Ω} then
defines the probability distribution of X. Every probability distribution must
be normalized, i.e. ∑x∈Ω p(x) = 1.

Joint Probability: The joint probability measures the likelihood for a num-
ber of potentially interacting random variables (combined into one random
vector). For a multivariate random variable X = (X1, . . . , Xn) of n ran-
dom variables ranging over values xi ∈ ΩXi

the (multivariate) joint prob-
ability for an n-dimensional event (X1 = x1, . . . , Xn = xn) is given by
p(x) = p(x1, . . . , xn) = p(X1 = x1, . . . , Xn = xn) ∈ [0, 1]. The joint probabil-
ity distribution for X is denoted by p(X).

Marginal Distribution: Given a joint probability distribution p(X) with
X = (X1, . . . , Xn), the marginal distribution p(Xi) defines the distribution
of a single variable Xi. It can be computed by

p(Xi) =
∑
X1

· · ·
∑
Xi−1

∑
Xi+1

· · ·
∑
Xn

p(X1, . . . , Xn),

i.e. by summing over all states of all random variables except forXi. Similarly
the marginal distribution for a subset of variables S ⊂ X with S = X\Xi

(i.e. all variables except for Xi) can be computed by summing over all states
of the random variable Xi only:

p(S) =
∑
Xi

p(X1, . . . , Xn)

Conditional Probability Distribution: If for a joint probability distribu-
tion p(X) with X = (X1, . . . , Xn) the state of one random variable is already
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known (Xi = xi), then the joint probability distribution for the remaining
random variables can be conditioned:

p(X1 . . . Xi−1, Xi+1 . . . Xn|Xi = xi) = p(X1 . . . Xn)
p(xi)

(3.1)

Bayes’ Theorem: As we will see later, Bayes law is of major importance
for deriving inference schemes for probabilistic reasoning. Intuitively, for two
multivariate random variables X and Y it helps reformulating probabilistic
relationships by translating between p(Y |X) and p(X|Y ).

From definition of conditional probability, Bayes’ law can easily be derived:

p(X|Y ) = p(Y |X) · p(X)
p(Y )

3.2 Gaussian Distribution

Gaussian or normal distributions are parametrized distribution models and
have many convenient properties. Random events with unknown distribu-
tions can often be assumed to be normally distributed. Although this is
a dangerous assumption, the central limit theorem [Kal02] states that (un-
der certain conditions) the mean observation of a sufficiently large number
of independent random variables tends to be normally distributed: Many
common measures or phenomena such as human body height, examination
grades or noise effects roughly follow normal distributions. We can often
(though not always) regard a single event as the average of a number of
effects. In a more general sense the central limit theorem states, that the
more a measurement behaves like the sum or average of independent random
variables, the more it tends to be normally distributed. This justifies the use
of the normal distribution as an approximation to stand in for the outcomes
of random events.

In Chapters 6 and 7 we will derive statistical models for arbitrary, user-
defined object classes. There we need to utilize parametrized distribution
models in order to represent the user input. That means the underlying
distribution is unknown, but we assume that it behaves like the average of
many independent unmeasured effects. Therefore, we will estimate a Gaus-
sian model from the set of exemplars.
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Figure 3.1: Many samples from a 2D multivariate normal distribution, shown
along with the 3-sigma ellipse, the two marginal distributions, and the two 1D
histograms.

Be X = (X1, . . . , Xn) an n-dimensional multivariate random variable. We
use the notation X ∼ N{µ,Σ} to indicate that X is normally distributed
where µ is an n-dimensional mean vector, representing the center of the
distribution, and Σ is an (n × n)-dimensional covariance matrix specifying
linear correlations between pairs of single random variables. Then, for any
assignment x ∈ X follows:

p(x) = (2π)−n/2 · |Σ|−
1
2 · exp

(
−1

2(x− µ)TΣ−1(x− µ)
)

(3.2)

In the following be X = (X1, X2) a multivariate random variable which can
be decomposed into two random variables of lower dimensionality. Be

µ =
(
µ1
µ2

)
and Σ =

[
Σ11 Σ12
Σ21 Σ22

]

mean and covariance matrix of a normal distribution for X.

Marginal distribution: The marginal distribution over a subset X1 ⊂ X
is obtained by dropping the irrelevant variables from the mean vector
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and the covariance matrix:

X1 ∼ N (µ1,Σ11)

Conditional distribution: Given the marginal distributions of X1 and X2,
the normal distribution of X1 conditional on X2 = x2 is given by

X̃1 := (X1|X2 = x2) ∼ N (µ̃1, Σ̃11)

with
µ̃1 = µ1 + Σ12Σ−1

22 (x2 − µ2)

and
Σ̃11 = Σ11 − Σ12Σ−1

22 Σ21.

The matrix Σ̃11 is called the Schur complement (see [Eat83]) of Σ22
in Σ.
An interesting fact is, that although knowing the state of X2 alters the
covariance, Σ̃11 does not depend on the specific value of x2, whereas
the mean is shifted by Σ12Σ−1

22 (x2 − µ2). Furthermore, the random
vectors X2 and X̃1 are statistically independent. This fact is used to
implement an efficient inference scheme in Chapter 7.

Estimating µ and Σ: If neither the mean nor the covariance matrix of the
normal distribution of a random vector S = (X1, . . . , Xn) is known, it
can be estimated from a set of m independent observations xi ∈ Rn.
The mean µ can be estimated by computing the observation mean

µ = 1
m

m∑
i=1

xi.

An estimation for the (n × n)-dimensional covariance matrix is given
by

Σ = 1
m− 1

m∑
i=1

(xi − µ)(xi − µ)T .

3.3 Paradigm of Probabilistic Reasoning

Constructing a probabilistic model p(X1, . . . , Xn) for all relevant interacting
variables X1, . . . , Xn of a given problem is the vital task probabilistic rea-
soning is concerned with. However, sometimes there is only information on
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marginals or conditional probabilities available. The basic idea of reason-
ing (inference) is to infer joint probabilities based on conditional relations.
Given evidence which sets some variables into known states, probabilities of
interest can be subsequently computed using the conditional dependencies.

For example, given 4 random variables A,B,C,D with an unknown under-
lying joint distribution p(A,B,C,D). With help of the rules for conditional
probability (Equation 3.1) the probability for p(A = a,B = b, C = c,D = d)
can be computed by

p(a, b, c, d) = p(a) · p(b, c, d|a) (3.3)
= p(a) · P (b|a) · p(c, d|a, b) (3.4)
= p(a) · p(b|a) · p(c|a, b) · p(d|a, b, c). (3.5)

For reasons of simplicity, in the following we will set aside correct notation
for conditional probability distributions and present formulas with capital
letters for random variables although evidence might be given.

3.4 Bayesian Inference

There are numerous ways to describe probabilistic models for a given prob-
lem. A popular family of problems is concerned with relating observed dataD
to parameters Θ of an underlying model (a data generating mechanism). The
main goal is to find those model parameters Θ which are most likely, given
some data D. Thus, we are interested in the posterior distribution p(Θ|D) of
the parameters Θ for observed data D. Bayes’ law now indicates the inference
scheme:

p(Θ|D) = p(D|Θ)p(Θ)
p(D)

This shows how, from assumed prior knowledge of p(Θ) (about which param-
eter values are appropriate), and from model likelihood p(D|Θ), the posterior
distribution is inferred. The likelihood is defined by the model and repre-
sents the probability of observing the data, given the model parameters are
known. The term p(D) is called model evidence. Since p(D) = ∑

Θ p(D,Θ) =∑
Θ p(D|Θ)p(Θ), it is also sometimes called the marginal likelihood. Regard-

less which value is assigned to Θ, p(D) is constant. This means that this
factor does not enter into determining the relative probabilities of the poste-
rior and can be omitted during optimization.
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Finally, we want to find the most probable a posteriori (MAP) setting which
maximizes the posterior:

Θ∗ = arg max
Θ
{ p(Θ|D) } ∝ arg max

Θ
{ p(D|Θ) · p(Θ) }

Sometimes the prior p(Θ) is assumed constant. Then the MAP solution is
equivalent to the maximum likelihood, namely the Θ maximizing the likeli-
hood p(D|Θ) of the model generating the observed data.

3.5 Statistical Learning

Some words on learning statistical models: In the context of this thesis,
learning a model actually means estimating the multivariate distribution for
a high-dimensional probabilistic model given a set of exemplars (training
data). Those will be Gaussian distributions which are defined by a mean µ
and a covariance matrix Σ. The covariance matrix describes the linear cor-
relations between all pairs of random variables. In case of an n-dimensional
multivariate distribution, it needs at least n exemplars to estimate a non-
degenerated covariance matrix Σ. However, if n is large, there is often not
enough training data available. In those cases, the estimation is regularized
by adding a user-defined multiple of the identity matrix λI to the original es-
timation of Σ, thus lowering rank deficiency [HJ85]. However, finding robust
values for λ is subject to manual adjustments.
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4
Graphical Models

If your experiment needs statistics,
you ought to have done a better experiment.

Ernest Rutherford (1871 - 1937)

Graphical models [Bis06] provide an intuitive but powerful representation for
joint probability distributions. They describe the probabilistic relationship
of random variables using graphs. The nodes of the graph represent random
variables. The edges describe conditional dependencies between the variables.

Two nodes which are not directly connected are conditionally independent.
Figure 4.1 shows an example for a graphical model with 3 random variables
X, Y and Z. The variableX is conditionally independent of Y given Z. That

Figure 4.1: A simple graphical model with 3 random variables. X and Y become
conditionally independent, given Z is known.
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means, Y contains no additional information about X as soon as Z is known.
Similarly, given Z, knowing X does not tell anything about Y . Technically,
that means p(X, Y |Z) = p(X|Z) · p(Y |Z) and the joint probability can be
inferred to

p(X, Y, Z) = p(X, Y |Z) · p(Z) = p(X|Z) · p(Y |Z) · P (Z).

Two main forms for graphical models have emerged [Moo08, Bis06, KF09]:
Bayesian Networks, which are defined on directed graphs and Markov Ran-
dom Fields which come along with undirected graphs.

4.1 Bayesian Networks

Although this thesis is mostly concerned with undirected graphical models,
we will briefly review the fundamentals of Bayesian networks.

A Belief Network or Bayesian Network (BN) represents the factorization of
a multivariate distribution into conditional probabilities of variables depen-
dent on parental variables. It is represented by a directed, acyclic graph. The
nodes of the graph denote the random variables, and the edges describe condi-
tional dependencies between the variables. For random variables X1, . . . , Xn

a BN defines a distribution of the form

p(X1, . . . , Xn) =
n∏
i=1

p(Xi|pa(Xi)),

where pa(Xi) represents all parental variables of random variable Xi. This is
captured by the graph structure – with arrows from parent variables to child
variable. Variables without any parent-child connection are independent of
each other. That also means, if there is no parent of the ith node, the ith
factor is defined by p(Xi).

Figure 4.2 shows a simple BN with variables X1, . . . , X4. The variables X2
and X4 are independent variables. X3 is dependent on both X2 and X4,
whereas X1 is only dependent on X2. Then the joint probability distribution
is given by

p(X1, . . . , X4) = p(X1|X2) · p(X2) · p(X3|X2, X4) · p(X4).
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Figure 4.2: A simple example for a Bayesian Network with variables X1, . . . , X4.
X2 and X4 are independent, X3 is dependent on X2 and X4, whereas X1 is only
dependent on X2.

4.2 Markov Random Fields

Although Bayesian Networks are natural for representing causal relations (as
defined by parental nodes) they are not capable of capturing all possible re-
lations among variables. BNs lack the ability to express ‘inter-dependencies’
between random variables due to their definition based on directed, acyclic
graphs. If those dependencies are of interest Markov Random Fields can be
employed.

A Markov Random Field (MRF) (sometimes also referred as Markov Net-
work) is a set of conditional distributions, one for each random variable.
Given an undirected graph G and associated random variables X1 . . . Xn,
the set of distributions p(Xi|ne(Xi)) > 0 is defined to form a MRF if

p(Xi|Xj, j 6= i) = p(Xi|Xj, j ∈ ne(i))

with ne(Xi) representing all neighbors of variable Xi in graph G. Figure 4.3
shows a simple example for a chain graph MRF.

Figure 4.3: A simple example for a chain graph MRF. This is the analog with
undirected edges for the example BN shown in Figure 4.2. However, the depen-
dency structure is different. Every connected pair of variables is dependent on
each other.
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Given such a set of conditional distributions, in general there is no direct way
to compute the joint probability distribution p(X1, . . . , Xn) [Ibe08]. However,
according to the Hammerlsey-Clifford theorem [HC71, HGW90], it is guaran-
teed that the probability distribution will factorize into a product of positive
potential functions for all maximal cliques of G.

4.2.1 Factorized Formulation

A clique C of an undirected graph G is a subset of nodes such that every two
nodes in the subset are connected in G. The clique C is called maximal if
no more nodes of G can be added to it. That means C is not a strict subset
of any other clique in G.

A function ψ(X) is called a potential function of the random variable X
if ψ(X) is strictly positive (ψ(x) > 0, for all x ∈ X). For a set of random
variables X1, . . . , Xn the function ψ(X1, . . . , Xn) > 0 defines a joint potential
function. Further, a potential function ψ(X) is also a probability distribution
if it satisfies ∑X ψ(X) = 1.

With these definitions there is an alternative formulation for Markov Random
Fields: For a graph G with maximal cliques C and a set of variables S =
{X1, . . . , Xn} associated with G, the Markov Random Field can be defined
by the normalized product of potential functions ψc(Sc) with clique variables
Sc ⊂ S for all maximal cliques C:

p(X1, . . . , Xn) = 1
Z

∏
c∈C

ψc(Sc) (4.1)

The constant Z ensures that the distribution is normalized:

Z =
∑

X1,...,Xn

∏
c∈C

ψc(Sc)

The chain example in Figure 4.3 then factorizes into a product of pairwise
potential functions – one potential for each edge.

p(X1, X2, X3, X4) = 1
Z
· ψ1(X1, X2)ψ2(X2, X3)ψ3(X3, X4)

Remark: The Hammerlsey-Clifford theorem also ensures that this alterna-
tive, factorized definition for a Markov Random Field meets the conditions of
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a Gibbs Random Field, i.e. the distribution is strictly positive [Li95]. Thus,
the joint distribution can also be given in negative log-likelihood form

p(X1, . . . , Xn) = 1
Z

exp
(
−
∑
c∈C

Ec(Sc)
)

with joint energy functions Ec for all cliques in C.

4.3 Conditional Random Fields

So far, we have defined graphical models encoding a joint distribution for a
set of random variables S = {X1, . . . , Xn}. The same graph representation
as for Markov Random Fields can also be used to define a (discriminative)
conditional distribution p(X1, . . . , Xn|Y1, . . . , Ym). It defines the distribution
for set a of random variables {Xi|i = 1, . . . , n} (also called target variables)
given some disjoint set of observations {Yj|j = 1, . . . ,m} (see [KF09]). It
is used to encode relationships between known observations and construct
consistent interpretations.

By definition a Conditional Random Field (CRF) is an undirected graph
G whose nodes correspond to the combined set of variables S = {Xi} ∪
{Yj}. Like for Markov Random Fields the CRF is annotated with a set of
potential functions ψc(Sc) with clique variables Sc ⊂ S. Then the conditional
distribution is encoded by

p(X1, . . . , Xn|Y1, . . . , Ym) = 1
Z(Y )

∏
c∈C

ψc(Sc) (4.2)

with the normalization constant Z summing only over all observations Xj:
Z(Y ) =

∑
X1,...,Xn

∏
c∈C

ψc(Sc)

In fact, this definition for Conditional Random Fields can be derived from
the definition of Markov Random Fields. Given two sets of random variables
X and Y , we have

p(X|Y ) = p(X, Y )
p(Y ) = p(X, Y )∑

X p(X, Y )

=
Def. MRF

∏
c ψc(Sc)∑

X,Y

∏
c ψc(Sc)

·
∑
X,Y

∏
c ψc(Sc)∑

X

∏
c ψc(Sc)

=
∏
c ψc(Sc)∑

X

∏
c ψc(Sc)

.



32 Chapter 4: Graphical Models

Figure 4.4: An example for a pairwise CRF. The graph is built of pairwise cliques
with white target variables Xi and gray observation variables Yi. This example can
also be interpreted as a Hidden Markov Model [KF09]. We try to make predictions
about hidden states of the variables Xi using the knowledge about dependencies
on observations.

That means the distribution of a CRF equals the distribution of a MRF
conditioned on some known observations.

Figure 4.4 shows an example for an often used, special type of CRF. There
is an equal number of random variables and observation variables. Each ob-
servation variable is connected to exactly one random variable, that means,
given X the observations become conditionally independent. Although the
relations between the observations are not directly modeled, there might
still be some dependencies. The fact that the joint probabilities of the ob-
servations are avoided allows to incorporate (into the model) a rich set of
observed variables whose dependencies might be quite complex indeed. For
that reason such models are often used for computer vision tasks such as im-
age segmentation or object recognition [GG84, ATC+05, KHS10]. Though,
the underlying graph for the target variables Xi is often a grid-like lattice
structure instead of a chain.

4.4 Pairwise Markov Models

Within this section the focus will be set on Pairwise Markov Models [Bis06,
KF09]. In this special case the underlying graph contains cliques of size 2
only. Thus, any distribution factorizes into a product of pairwise potentials
defined on each link between two variables. Figure 4.4 shows such a model.
When dealing with Hidden Markov Models (HMM) [KF09] we are usually
given an additional set of observation variables Yi pairwise linked to a set
of latent or hidden variables Xi. In a scenario like that the goal is to gain
some knowledge about the hidden states of the variables Xi given the con-
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ditional dependencies to direct observations. Since every hidden variable is
exclusively linked to one observation, it is convenient to specify the graph
structure which only defines the conditional relations between hidden vari-
ables. Models like that are popular for Computer Vision tasks as well as in
physics. A well studied example is the so-called Ising Model [Cip87]. There,
the nodes of a lattice model represent ‘mini-magnets’ which prefer to be
aligned in the same state, depending on the temperature. That means, given
the observations, the set of potentials encourages neighboring variables to
have the same state.

In case of pairwise Markov Models literature usually distinguishes between
two types of potential functions [Bis06]. The potential function representing
links between observations and unknown states for each hidden node i is
called evidence and is commonly denoted by φi(Xi, Yi). The dependencies
ψij(Xi, Xj) between two hidden variables Xi and Xj is called compatibility
function. Finally, there is a factor for each link in the model and the joint
probability for ‘hidden’ scene and observations can be factorized as follows:

p(X1, . . . , Xn, Y1, . . . , Yn) = 1
Z

∏
i

φi(Xi, Yi)
∏
i∼j

ψij(Xi, Xj) (4.3)

where i ∼ j denotes all pairs of nodes i and j (with i 6= j) which are connected
by an edge. The Normalization is given by

Z =
∑
i,j

∏
i

φi(Xi, Yi)
∏
i∼j

ψij(Xi, Xj).

An interesting fact is, that this factorization also equals the definition of a
Conditional Random Field because there is no direct conditional dependence
between pairs of observation variables (Yi, Yj). Further, all links to hidden
variables are exclusive. Thus, for normalization it is sufficient to sum over
all pairwise combinations involving the Xi. That means, the distribution
conditioned on observations as well as the joint probability distribution over
all Xi and Yi are the same. Finally, when all observations are given, the
Yi = yi are fixed and the joint distribution p(X1, . . . , Xn, Y1, . . . , Yn) also
equals its marginalization p(X1, . . . , Xn).

Thus, in this special case of a pairwise Markov Model, the MRF formulation
equals the one for CRFs and we can simplify notation to specifying the joint
probability only for the hidden variables:

p(X1, . . . , Xn) = 1
Z

∏
i

φi(Xi)
∏
i∼j

ψij(Xi, Xj) (4.4)
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5
Inference on Markov Random

Fields

If all you have is a hammer,
everything looks like a nail.

Abraham Maslow: The Psychology of Science (1966)

In the scope of this thesis inference is the process of computing functions of
some given distribution p(X1, . . . , Xn). In case of a pairwise MRF the prob-
ability distribution is defined as shown in Equation 4.4. Direct evaluation of
such a distribution is exponential in the number of variables. Assuming the
domain of each variable Xi comprises K discrete states, the joint distribution
is built of Kn possible combinations which is an infeasible problem in most
cases. However, many problems are often addressed by finding solutions for
a single variable - a marginal distribution.

In Chapters 6 and 7, i.e. when performing object detection, we will use
Markov Random Fields to represent 3D object models in a graph- (part-)
based manner. When it comes to the actual detection we are not interested
in the joint distribution of all parts. Instead it might be sufficient to detect
high values for only one single part variable. The conditional relationships to
the other part variables then guarantee that we found one part of an instance
of the whole model.

Marginal inference is concerned with the computation of the distribution
for a subset of variables. For example, given we are interested in X1, the
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marginal distribution for p(X1) is

p(X1) =
∑

X2,...,Xn

p(X1, X2, . . . , Xn). (5.1)

5.1 Exact Inference

In general case, the exact inference of marginal distributions is still infea-
sible. It would require Kn−1 operations. However, there are exceptions
for non-loopy graph models [KF09, Bis06] such as pairwise chain-structured
MRFs and pairwise tree-structured MRFs: When taking the special condi-
tional independence structure into consideration the computation effort can
be reduced to quadratic costs in the number of states.

5.1.1 Inference on Markov Chains

Given a chain graph model such as the example in Figure 4.4 for a so-called
Markov Chain, each variable is conditioned on at most two neighbors. That
means, each variable appears in at most two compatibility terms. The joint
distribution can thus be inferred to

p(X1, . . . , Xn) = 1
Z

n∏
i=1

φi(Xi)
n−1∏
i=1

ψi,i+1(Xi, Xi+1). (5.2)

The marginal distribution for a single random variable Xi is the given by

p(Xi) = 1
Z

∑
X1...Xi−1

∑
Xi+1...Xn

n∏
i=1

φi(Xi)
n−1∏
i=1

ψi,i+1(Xi, Xi+1). (5.3)

Changing the order of summation and multiplication [Bis06] results in a
recursive formulation:

p(Xi) = 1
Z
·φi·

∑
Xi−1

φi−1ψi−1,i · · ·

∑
X1

φ1ψ1,2

 ∑
Xi+1

φi+1ψi,i+1 · · ·

∑
Xn

φnψn−1,n


With this decomposition we can reduce the computational costs from ex-
ponential to quadratic in the number of states. Given K discrete states per
random variable, evaluating ψi,i+1 generates O(K2) costs; φi comes with costs
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O(K); there are O(n) (actually O(#edges)) factors of φ and ψ. Thus p(Xi)
can be computed with a total cost of O(n ·K2).

This formulation for marginal inference on Markov Chains yields a recursive
message passing algorithm which is given in Section 5.1.3. The node asso-
ciated with the (marginalized) variable Xi is called the root node. Starting
from the leaves each of the summed factors is stored and passed as a message
to the next factor. Finally at root node all incoming messages are collected
and multiplied with the root evidence.

5.1.2 Inference on trees

For pairwise tree models a similar but slightly more complex approach can be
obtained. The main idea behind is that tree structures are cycle-free graphs.
Then we can find a recursive reformulation for the marginal distribution. A
derivation can be found in [Jan10]. Again, the marginal is factorized into a
product of messages. Since messages are always passed along edges, the total
computational effort is of order O(#edges ·K2).

5.1.3 Message Passing Algorithm

In the previous sections we have seen that marginal inference for non-loopy,
pairwise MRFs can be factorized into recursive structures. The recursion
structure is implied by the structure of the underlying graph. Starting from
the leaves in the graph ‘local’ messages are passed along the graph edges to
the root node, thus generating the marginal distribution of the root. There-
after, in order to compute the marginals for the remaining variables, the root
message is propagated back to the leaves again [Jan10].

The Sum Product Belief Propagation algorithm introduces multidimensional
variables mi→j(Xj) which can intuitively be understood as a message from
node i to node j about which state variableXj should be in [Moo08, YFW01].
The size of mi→j(Xj) will be of the same dimensionality as the number of
states (domain size) of Xj. This is easiest encoded as a vector with each
component representing the likelihood for ‘node i believes node j is in the
corresponding state’.
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Finally, the marginal distribution for Xi is computed as follows:

p(Xi) = 1
Z
· φi(Xi)

∏
j∈N(i)

mj→i(Xi) (5.4)

with messages

mi→j(Xj) =
∑
Xi

φi(Xi)ψij(Xi, Xj)
∏

k∈N(i)\j
mk→i(Xi), (5.5)

where N(i) represents all neighbors of node i.

In the special case of a Markov Chain the computation is a bit easier:

p(Xi) = 1
Z
· φi(Xi) ·mi−1→i(Xi) ·mi+1→i(Xi) (5.6)

with

mi−1→i(Xi) =
∑
Xi−1

φi−1(Xi−1)ψi−1,i(Xi−1, Xi) ·mi−2→i−1(Xi−1)

and

mi+1→i(Xi) =
∑
Xi+1

φi+1(Xi+1)ψi+1,i(Xi+1, Xi) ·mi+2→i+1(Xi+1).

At the ends of the chain, the messages m0→1(X1) and mn+1→n(Xn) are set
to 1.

5.1.4 Most Likely Assignments

So far, we have dealt with estimating marginals of probability distributions.
However, when focusing on detection scenarios we are less interested in es-
timating the distribution of a model. In fact, we are interested in finding
the most probable assignment to all of the variables. In our case, i.e. hav-
ing a pairwise Markov Model that means, we want to find the most likely
joint assignment to the variables X1, . . . , Xn, given we observed some evi-
dence y1, . . . , yn. Thus, we are interested in finding ξ = (x∗1, . . . , x∗n) such
that p(ξ) = maxX1...Xn p(X1, . . . , Xn|y1, . . . , yn). As discussed in Section 4.4,
at this point conditional distribution and joint distribution are the same, so
we can rewrite the problem to finding

ξ = arg max
X1...Xn

p(X1, . . . , Xn). (5.7)
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Please note finding the most likely joint assignment for the hidden variables
is not the same as finding the set of states that individually are the most
probable [Bis06]. The latter case can be solved by first running the Belief
Propagation algorithm to find the marginal distributions for each variableXi.
Then the resulting marginals are maximized separately.

The problem of solving 5.7 can be approached similar to finding the marginal
distribution in Section 5.1.1. We are looking for

p(ξ) = max
X1
· · ·max

Xn

p(X1, . . . , Xn).

In case of a Markov Chain that is

p(ξ) = 1
Z

max
X1
· · ·max

Xn

[
n∏
i=1

φi(Xi)
n−1∏
i=1

ψi,i+1(Xi, Xi+1)
]
. (5.8)

Similar to decomposing Equation 5.3 into a recursive form, Equation 5.8 can
be reformulated as well (see [Bis06]):

p(ξ) = 1
Z
·max

X1

[
φ1 ·

[
max
X2

φ2ψ1,2 · · ·
[
max
Xn

φnψn−1,n

]]]

Likewise, tree-structured pairwise MRFs p(ξ) can also be decomposed into a
recursive structure. Therefore, p(ξ) can be computed using the sum-product
inference scheme - as implemented by the BP-algorithm - by just replacing
the ∑ with the max operator, resulting in max-product message passing
inference. Finally, all incoming messages (see Equation 5.4) are multiplied
and maximized at the root node.

For example, given a Markov Chain of length n and taking root node Xn

(the ‘chain end’), the maximum of the joint distribution is inferred by:

p(ξ) = 1
Z

max
Xn

[φn(Xn) ·mn−1→n(Xn)] (5.9)

mi−1→i(Xi) = max
Xi−1

[φi−1(Xi−1) · ψi−1,i(Xi−1, Xi) ·mi−2→i−1(Xi−1)]

Up to now, we can compute the global maximum p(ξ) of the joint distri-
bution. The result will be the same irrespective of which node is chosen as
root. However, the main interest lies in finding the optimal assignment ξ.
The solution to that can easiest be seen in the example for message passing
inference on chains. Since Xn is the root, propagation starts at X1 and ends
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with maximizing incoming messages over Xn. Finding the maximizing as-
signment for Xn is easy. It is that one which maximizes 5.9. Z is constant,
so we can compute ξXn by

ξXn = arg max
Xn

[φn(Xn) ·mn−1→n(Xn)] (5.10)

Now we need to determine the states ξXi
of the ‘previous’ variables that cor-

respond to the maximizing configuration. Therefore a back-tracking [Bis06]
approach can be applied, i.e. keeping track of which values of the variables
gave rise to the maximum of their direct successors.

ξXi−1 = arg max
Xi−1

[φi−1(Xi−1) · ψi−1,i(Xi−1, ξXi
)] (5.11)

In fact, there is also a way to avoid the back-tracking approach. However,
it comes with the expense that the computation itself requires more mem-
ory. In this case, again we make use of the message passing algorithm but
additionally we store a ‘maximizing’ path tri(xi) for every state xi ∈ Xi. A
path to node i comprises one state for each preceding node - those states
which help maximizing the path to node i. That means, for states x ∈ Xi

and y ∈ Xi−1 of two linked nodes we store a path tri(x) = [tri−1(y), x], if
y = arg maxXi−1 [φi−1(Xi−1) · ψi−1,i(Xi−1, x)]. Accordingly, the best solution
ξ is then given by trn(ξXn).

Pairwise Tree Structures: For tree-structured graphs the computation of
ξ is similar to chain graphs. Starting from the leaves, the propagation algo-
rithm infers the maximum of the joint distribution stopping propagation at
the root node. Then the assignment for ξroot is computed and back-tracking
yields the full joint assignment ξ.

Max-Sum Inference: Depending on the actual graph structure the max-
product algorithm involves products of potentially very small factors. That
can easily lead to arithmetical issues during computation. One way to cir-
cumvent those is to normalize each single message. Another approach is to
compute potentials in logarithmic space. Since logarithm is a strongly mono-
tonic function, max operator and log function can be interchanged. Finally,
taking logarithm has the effect of simply replacing the products by sums
yielding a max-sum algorithm. For chain structures it is called the Viterbi
algorithm [RN93, Bis06]:
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Be φ := log(φ) and ψ := log(ψ), then

p(ξ) = max
Xn

[
φn(Xn) +mn−1→n(Xn)

]

mi−1→i(Xi) = max
Xi−1

[
φi−1(Xi−1) + ψi−1,i(Xi−1, Xi) +mi−2→i−1(Xi−1)

]
Here, the message m0→1(X1) is defined 0.

Spatially Local Maxima: Besides message passing there are also other in-
ference approaches: sampling methods such as Markov Chain Monte Carlo
algorithms draw a number of samples to compute the most likely assign-
ments of a graphical model. However, message passing algorithms such as
Belief Propagation come with a benefit, only little mentioned in literature: In
contrast to sampling methods, Belief Propagation computes many potential
solutions in parallel. When computing the Max-Product BP algorithm, we
are able to not only extract the globally optimal joint variable assignment
but we also get all solutions which are optimal for the root node, i.e. the
max-marginal distribution of the root node variable. We just have to skip
the last maximum operation from computation. For example for chains see
equation 5.9.

That qualifies message passing algorithms for further applications. For exam-
ple, in Chapters 6 and 7 we represent 3D objects using graphical models. In
that case, the state space of each graph node is represented by a point cloud.
The task is to detect all instances of the graphical model in the point cloud -
not only the best fitting one. If we now compute the most likely assignments
for the root node, each vertex in the point cloud is assigned a likelihood for
being an instance of the root node. Thus, (after thresholding) we can extract
all ‘spatially local’ maximum root assignments in the point cloud. These are
then used to start back-tracking, yielding all model instances in the point
cloud (see Figure 6.6).

5.2 Approximate Solutions

For many probabilistic models of practical interest, exact inference is in-
tractable. As soon as it comes to computing most likely assignments (or prob-
ability distributions) for loopy graph models, we we need to resort to some
form of approximation. For this purpose different strategies have evolved:
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Two popular approaches are Sampling-based and Propagation-based meth-
ods. In the following we will shortly review both before we focus on a novel
approach for approximate inference of a fully connected graphical model in
Section 5.2.3.

5.2.1 Sampling Methods

Here, we consider approximate inference methods based on numerical sam-
pling. Those techniques are also called Monte Carlo techniques [GG84,
ADFDJ02]. They are handy, especially when complex, loopy graph struc-
tures are involved [KKKT12]. However, they often require a lot of compu-
tation time to generate good approximations, so they are not well suited
for interactive tasks. Moreover, they yield only one result per computation.
Thus, if for example the goal is to detect all model instances in a scene, a
fair number of repeated runs would be required.

The idea behind Monte Carlo sampling is to generate a set of independent and
identically distributed multidimensional data samples (sometimes also called
particles) until it represents a good approximation for a target distribution.
However, the target distribution is not explicitly given. In fact we only
have the graphical model defining conditional dependencies of single variables
in the joint distribution. However, for most applications the main interest
lies not in computing the distribution itself. It rather lies in evaluating
expectations for an objective function or to optimize some energy functional.

In general, the expected value of an arbitrary function f(x) with respect to
a probability function p(x) is defined by

E[f ] =
∫
f(z)p(z)dz

In our case p is not directly known but its distribution is given in form of
a set of N samples x(i). For large numbers N the expectation E[f ] can be
approximated [ADFDJ02]:

f̂ = 1
N

N∑
i=1

f(x(i))

With that approximation we can compute the probability of a new sample
y using a so-called kernel estimate. If we define a gaussian kernel function
f = fy(x) = 1

a
√
π

exp (−(x− y)2/a2) then the expectation for fy converges to
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the probability p at a queried position y.

f̂y = 1
a
√
πN

N∑
i=1

exp
(
−(x(i) − y)2/a2

)
−→
N→∞
a→∞

p(y)

However, we cannot compute those probabilities as long as there are not
enough samples available. Those can be generated by iterative sampling
methods. Markov Chain Monte Carlo (MCMC) describes a class of algo-
rithms which generate a sequence of samples of a complex distribution. A
widely used implementation is the so-called Gibbs sampler [Bis06, KF09].

5.2.2 Loopy Belief Propagation

Although only guaranteed to converge on cycle-free graphs, Belief Propaga-
tion may also be used to approximate inference for general graphs. The algo-
rithm is then typically referred to as Loopy Belief Propagation [Bis06, KF09].

The computation steps for marginal inference as well as for maximum like-
lihood estimates are the same. However, when applying Belief Propagation
to graphs containing cycles, it is not possible to compute all messages before
they are needed to update another message. There are cyclic dependen-
cies. Therefore, all messages need to be initialized, for example with uniform
values [Jan10].

Belief propagation is neither guaranteed to converge (it might even oscil-
late), nor is there any warranty to compute good approximations [Moo08].
This becomes even more crucial, the more loops are involved. Besides so-
phisticated updating strategies, i.e. the plan in which order single nodes are
updated, there are several approaches which try to tackle the loops. For
example Generalized Belief Propagation [YFW01] sends messages between
groups of nodes. However, this requires to sum over the groups variables at
once, which is intractable for problems with a big state space. Another form
of approach is to approximate the graph with spanning trees [Jan10], thus
omitting some conditional dependencies. In that case BP yields an exact
result for the approximate model.
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Figure 5.1: Example for a fully connected graphical model with 4 random vari-
ables and its representation as a third order Markov Chain. The red edges show
the chain order.

5.2.3 Markov Chain Approximation

In Chapter 7 we will present a statistical model for object detection which
is based on a fully connected graph. That means each edge is part of a
loop. In our case the state space for each variable will be associated with
point clouds, i.e. it is in the order of millions. Those reasons render inference
methods based on loopy Belief Propagation inapplicable. On the other hand
sampling approaches are not helpful, too. Although a Monte Carlo method
might yield approximations close to the optimum, it works only for a very
large number of samples which costs a lot of time. Furthermore, the detection
scenario involves finding all spatially local maxima (see Section 5.1.4) of the
joint distribution.

Hence, we need to find a formulation for the problem such that we can
approximate it with a message passing scheme. The idea is that each fully
connected graphical model can be represented as a Markov Chain of order
n− 1, if n is the number of nodes of the chain [Bis06]. We assume the cyclic
dependencies can be neglected for approximate estimation of the maximal
likelihood. More precisely, we assume that we find a chain inference, such
that for each pair of successive nodes (Xi, Xi+1) there is a bi-directional
conditional relation, but for all other pairs (Xi, Xj) with j > i + 1 we can
assume a one-directional condition such that Xj is dependent on Xi (but not
vice versa).

Figure 5.1 shows an example for a fully connected graphical model with 4
random variables and its representation as a third order Markov Chain. The
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Figure 5.2: Graphical model approximation for a fully connected graph with 4
random variables (see Figure 5.1). Please note neighboring variables in terms of
chain order still own two-directional conditional relations.

joint distribution is inferred by

p(X1, X2, X3, X4) = p(X1) · p(X2|X1) · p(X3|X1, X2) · p(X4|X1, X2, X3).

The most likely estimate p(ξ) for the fully connected model is given by

p(ξ) = max
X1,X2,X3,X4

[p(X1) · p(X2|X1) · p(X3|X1, X2) · p(X4|X1, X2, X3)] .

Unfortunately the loopy conditional structure of the graph does not allow
to generate a recursive formulation similar to the one seen in Section 5.1.4.
However, that is overcome if for every variable Xi dependency is reduced
to dependency on all predecessors X1, . . . , Xi−1 in terms of chain order (see
Figure 5.2). Then we can derive a recursive formulation with p(ξ̃) ≈ p(ξ):

p(ξ̃) = max
X4

[
max
X3

[ p(X4|X1, X2, X3)·

max
X2

[
p(X3|X1, X2) ·max

X1
[ p(X2|X1) · p(X1) ]

]]]

Similar to computing the arg max for a pairwise Markov Chain we yield the
following recursion:

ξ̃X1(x2) = arg max
X1

[ p(x2|X1) · p(X1) ]

ξ̃X2(x3) = arg max
X2

[
p
(
x3|X2, ξ̃X1(X2)

)
· p
(
ξ̃X1(X2), X2

) ]
ξ̃X3(x4) = arg max

X3

[
p
(
x4|X3, ξ̃X2(X3), ξ̃X1(ξ̃X2(X3))

)
· p
(
ξ̃X1(X3), ξ̃X2(X3), X3

) ]
ξ̃X4 = arg max

X4

[
ξ̃X3(X4) · p

(
ξ̃X1(X4), ξ̃X2(X4), ξ̃X3(X4), X4

) ]
ξ̃Xi

(xi+1) denotes a vector representing the approximate optimal assignment
for Xi, given (Xi+1 = xi+1) is chosen in the next iteration.
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In general the recursion can be easily expressed using the BP message passing
formalism (see Equation 5.9) in combination with the assignment tracking:

p(ξ) ≈ p(ξ̃) = max
Xn

[ mn−1→n(Xn) ]

mi→i+1(Xi+1) = max
Xi

[
p(Xi+1|Xi, ξ̃X1,...,Xi−1(Xi)) ·mi−1→i(Xi)

]
m1→2(X2) = max

X1
[ p(X1|X2) · p(X1) ]

ξ̃X1,...,Xi−1(Xi) = (ξ̃X1(Xi), . . . , ξ̃Xi−1(Xi))
ξ̃Xj

(Xi) = arg max
Xj

[
p(Xi|Xj, ξ̃X1,...,Xj−1(Xj)) ·mj−1→j(Xj)

]

In this way we generate a Markov Chain approximation for a fully connected
graphical model. However, that works only for joint distributions for which
it is clear how the conditional probability is computed. For example the
Gaussian distribution is such a distribution and will be used for the model
described in Section 7.

Another important point is that the inference order must be chosen carefully
such that the omitted conditional relations are of lower importance than the
remaining ones. For inference we assume conditional independence between
the first variable and the other ones (except for its direct successor). If that
assumption turns out to be wrong we might introduce potential approxima-
tion errors already at the beginning and we might not find a solution which
is close to the optimum. Though the model in Section 7 will take that into
account.



6
A Chain Model for 3D Object

Detection

Make everything as simple as possible,
but not simpler.

Albert Einstein (1879 - 1955)

This chapter examines the idea of learning objects represented as a chain
configuration of geometric parts. We introduce a formal model for chain
constellations based on a Markov model. Further, we propose an efficient
algorithm that simultaneously detects a large number of instances including
semantic part correspondences. After a short user-guided training stage, in
which one or a few exemplars of semantically similar objects are sketched di-
rectly onto point cloud data, the algorithm automatically finds all instances
of the learned object category. In particular, the algorithm is able to recog-
nize broader classes of semantically similar but geometrically varying shapes,
which is very difficult using unsupervised techniques. In a number of exper-
iments, we apply the technique to point cloud data from 3D scanners. The
algorithm is able to detect object instances with low rates of false positives
and negatives.

The work presented in this chapter has been published at Eurographics
2011 [SJW+11]. With permission of the co-authors main text passages and
figures are utilized without tagging them individually.



48 Chapter 6: A Chain Model for 3D Object Detection

Figure 6.1: We propose an interactive learning algorithm for 3D object detection.
Object classes can be intuitively defined with user strokes. In this example, 2-3
instances have been sketched on the model for each class (indicated by different
colors). Further instances are found automatically using inference on a Markov
chain model.

6.1 Introduction

Approaching the detection problem defined in this thesis we can roughly
distinguish between global models, i.e. modeling the whole object as one
piece of geometry, and part-based models. Whenever constructing a global
object model there is a major issue: Most objects can be decomposed into
more or less distinct object parts and it becomes difficult to model strong
variations within single parts using a global model. For example there are
(generative) statistical models for faces such as in [BV99]. They construct
a complete high-dimensional face space which covers some variety of faces.
However, the coverage is only as complete as the set of training data. If that
approach would be extended to full body-models, we would not only need a
tremendous amount of data to capture a reasonable, fine grained space of all
joint variations, the dimensionality of the search space would simply explode.

Hence, in order to be able to model complex objects we need to derive a
model for 3D objects which combines statistical models for smaller parts, a
so-called part-based model. However, detecting single parts separately does
not yield a recombination scheme, and using simple combinatorial heuristics
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is unreliable. Graphical models (see Chapter 4) represent a good means to
define models which combine single parts in a joint objective function, i.e. a
joint distribution.

Though, when modeling there are different graph topologies which must be
taken into account. The optimal case would be to compute a fully connected
graphical model. However, as discussed in Section 5 there exist no exact
inference methods to compute those distributions in feasible time. In Chap-
ter 7 we will see such a model but we need to apply an approximate inference
scheme in order to find assignments.

For the approach in this chapter we use a chain topology. It models the rela-
tions between pairs of different parts - in contrast to star-like topologies which
model only relations to a designated center. In fact, part-based object mod-
els with star-topology such as implicit shape models [LLS04, LLS08, VSS12]
(or Hough-transform models [KPW+10, RGKG12] in general) are well known
and yield robust approaches for detection applications. Their strong point
is that they yield high detection rates for object centers. However, there
is also a weak spot. Star topologies are prone to false positive detections.
The main reason for that is that all non-center parts are conditionally in-
dependent of each other. That can be explained more intuitively: Models
of that topology are mostly implemented by voting schemes. Every object
part votes (independently from all other parts) for an assumed object center.
That results in a histogram (a discretized, marginal distribution) of center
positions where the local maxima represent detected object centers. But,
the votes are only consistent in terms of the center positions, and there is
no guarantee that all votes for one object center come consistently from one
existing object instance. For that reason there is an issue with false posi-
tive detections in complex scenes (e.g., where multiple model instances are
close by), and part correspondences might be flawed. This issue arises with
Hough-voting models in general [RGKG12]. However, this problem can be
overcome by constructing a model which incorporates dependencies between
pairs of different parts (other than relating all to one center). An intuitive
way to do so is to implement a graphical model with chain topology.

In order to define an object class, the approach is particularly designed to run
with minimal and simple user input, which is crucial for making it a useful
interactive tool. Typically, a single ‘stroke‘ in a point cloud is enough to train
a simple model, where several exemplars can span more complex classes with
significant geometric variation. In particular, we can detect semantically sim-
ilar parts, which permits applications that are currently mostly inaccessible
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to unsupervised global correspondence algorithms.

6.2 Model Definition

In the following we present a part-based model for 3D object detection. The
goal is to detect 3D object instances (shapes) via chain-like configurations of
local geometry (parts) such that the spatial alignment (constellation) of these
parts as well as the parts’ local appearance (local shape) coincide with a se-
mantic object class. That means, we represent objects as a chain graph with
nodes describing single parts. In this way the part-based graph structure
also induces a correspondence structure between shapes. The current imple-
mentation works on manifolds approximated by finite point clouds, therefore
being applicable to raw 3D scanner data. An implementation for other repre-
sentations (e.g., triangle meshes) would require only minimal modifications.
The training data is expected to be given in the same chain-structured for-
mat, with nodes being placed at corresponding locations. Figure 6.2 shows
an example definition for a window object. The aim is to learn the statistical
characteristics of these chain graphs and subsequently find all occurrences of
similar constellations in an input data set.

Formally, we assume that we are given an input surface S ⊂ R3 that is a 2-
manifold of arbitrary topology. From the perspective of the algorithm it will
be given (as a point cloud) in a sampled representation S = {s1, ..., sn}, si ∈
R3. We encode shapes on S as a chain of k local parts H = (h1, ...,hk),
where hi ∈ S. Each part hi represents both, the local shape di = D(hi) of
this part, as well as the position xi = X(hi) of the part itself (i.e. xi = hi).

A specific object class is characterized by statistical models for both the
local part shapes D = (d1, . . . ,dk) with model parameters θφi and the spatial
alignment X = (x1, . . . ,xk) with parameters θψi for each chain segment.
The score for an object belonging to a given class can be computed by a
probability function p : Sk → [0, 1] which we define over the joint distribution
of a Markov Chain model, and thus it can be inferred exactly (see Chapter 5).
It is defined by the normalized product of two potential functions: Singleton
evidence functions φi that prescribe local shape di of an object part and
pairwise compatibility functions ψi that encode the relative alignment of two
neighboring part positions xi and xi+1. Given the parameters θ = (θφi , θ

ψ
i )i,
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Figure 6.2: Example for a window model: The object parts are aligned along the
outline of a window. Starting from the lower left corner, we chose distinct parts
at edges and corner points. Blue marks the variables in the point cloud space and
green the edges of the graphical model. The evidence function φ yields matching
scores for local shapes and ψ defines the compability of the parts, i.e. the relative
alignment, given a global orientation (yellow arrows).

we can infer a specific model class:

p(D,X,H|θ) = 1
Z

k∏
i=1

φi(D(hi))
k−1∏
i=1

ψi(X(hi), X(hi+1)) (6.1)

As already mentioned the part variables hi coincide with their positions
xi, furthermore local shapes can also be identified by the part positions xi.
Accordingly we simplify notation of Equation 6.1 using solely the position
variables xi:

p(D,X,H|θ) = 1
Z

k∏
i=1

φi(xi)
k−1∏
i=1

ψi(xi,xi+1) (6.2)

This means that an object class is completely characterized by specifying the
set of potential functions {(φi)i, (ψi)i}. In the following section, we will look
at how to define and learn these functions from user input.

6.3 Learning

For representing both the φi and the ψi, we use simple Gaussian models.
Obviously, there are more sophisticated learning techniques such as support
vector machines or boosted classifiers that are frequently applied at this point
in computer vision applications [VJ01, PJC+10]. However, we are aiming at
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Figure 6.3: Objects are modeled as Markov chains: Each node is controlled by
a potential function φ that matches local shape. In addition, pairwise potentials
ψ encode the variations of the spacial alignment of parts.

learning from a minimal amount of training data (sometimes even only one
or two examples). Complex non-linear methods are of little use here as the
training data itself does not support many degrees of freedom. Thus, a simple
linear statistical model is an adequate choice for our scenario.

To simplify, we assume that all models have a designated upward direction.
That is a convenient assumption since there is a fair number of tasks (e.g.
finding windows in city scans) that involve data for which there is a natural
orientation. For models such as architectural scenes, statues, as well as many
other man-made and natural artifacts, this is the case and can be easily spec-
ified interactively. We will denote this direction as up in the following. In
conjunction with the surface normal n(x),x ∈ S, this gives us a unique coor-
dinate frame for each surface point, removing a rotational degree of freedom
from the detection problem. In the following, we use (u(x),v(x),n(x)), or in
short (u,v,n) when clear from the context, to denote an orthogonal, right-
handed coordinate frame where n is the surface normal and u is a vector
orthogonal to n that is closest to up.

User Interaction: For the learning phase, we ask the user to sketch one
or more poly-lines (i.e. a series of points successively connected by straight
lines) on the surface - a natural way of user input for object definition of a
part-based chain model. We have implemented a tool that combines a 3D
point-cloud viewer with a surface curve editor to specify such poly-lines in-
teractively. Each click leaves a control point on the surface, thus defining the
center positions of local object parts. If multiple object instances are speci-
fied for one model class, the algorithm expects the user to put the nodes in
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corresponding positions, thus establishing semantic correspondences between
all training instances. This is not a big problem in practice as users usually
tend to chose salient features as node points that are rather easy to locate.

Learning Local Shape: We define the potential φi(xi) by a Gaussian model
with parameters θφi = (µφi ,Σ

φ
i ) in the shape space of local pieces of geometry

in the vicinity of each data point: We cutout consistent regions around each
point of the model and form local depth images (height fields) along the nor-
mal axis. We will refer to these as descriptors. The choice for height fields is
reasonable: There is a number of more sophisticated and robust histogram-
based shape descriptors, e.g. Shape Contexts [BMP02] or adaptations of
HOG-descriptors [DT05] or SIFT descriptors [Low03] for 3D objects. How-
ever, our focus will be on evaluating strengths and weaknesses of the model
itself, hence we are looking for robust but simple shape descriptors. Descrip-
tors other than height fields are not part of the analysis. Last but not least
we want to limit the computational effort for descriptor computations, since
we aim at interactive computation times.

The descriptor space is high dimensional: every depth image pixel represents
one degree of freedom. We learn a low dimensional subspace as Gaussian dis-
tribution by a principal component analysis (PCA) of corresponding training
points. For a single training example, this automatically degrades to learning
a constant mean depth image.

Technically, we parametrize the neighborhood of each point x ∈ S as local
height fields [PG01]: We fix a radius parameter rφ, specified by the user. It
specifies the “local coverage” of the parts, i.e. how far the algorithm should
reach out around each node to compare local geometry. We then cut out
all points within a radius of rφ from x and project them in normal direction
onto the tangent plane in x spanned by (u,v). Let (uj, vj, nj) denote the
respective coordinates of the points in the local tangent frame. We collect all
points that fall within a rectangular region uj, vj ∈ [−rφ, ..., rφ] and store their
normal direction nj. We finally splat these values into a d× d pixel grid (we
use a fixed d = 16) and use a push-pull algorithm to fill potential holes. We
precompute these descriptors for all points x ∈ S in the input and compress
them to more compact dc-dimensional vectors using PCA (in experiments,
we keep the dc = 16 dominant of 256 dimensions of the PCA). This reduces
computational costs but it will not significantly reduce the discriminability
of the descriptors because the projection will well preserve distances in the
descriptor space [DG03]. We denote these values dx (for all x ∈ S).
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Figure 6.4: Local shape descriptor: For a point we extract all neighbors within a
given radius form the point cloud. Given the surface normal n, a tangent frame is
computed. Finally, a smooth depth image is generated by splatting all extracted
points onto the tangent plane. The right picture shows the noise-reduced result
after PCA compression.

Given this database of local geometry, learning a Gaussian model of φi(x) is
straightforward. Assume that the user has specified m input instances, each
consisting of k nodes with positions x(j)

i , i = 1..k, j = 1..m. We compute
a dc-dimensional mean µφi and a dc × dc covariance matrix Σφ

i of the sets
{dx(j)

i
}j for each node i = 1..k independently across the chain using PCA.

The so-defined subspaces of significant variance will typically be much lower
dimensional than the original descriptor space because they were computed
from only very few and presumably highly correlated examples. We store
these statistics to characterize the training set. Then we can evaluate φi as
multivariate normal distribution:

φi(xi) ∼ exp(−1
2(dxi

− µφi )TΣφ
i

−1
(dxi
− µφi )) (6.3)

where
Σφ
i := Σφ

i + λI. (6.4)

Here, we do not use the original covariance matrices but add an additional
uniform noise term, specified by the user parameter λ. This term models
uniform Gaussian noise in the data. Typically, it should be set according to
the measurement accuracy. Often, this is not known exactly and has to be
estimated roughly. Increasing this parameter also increases the tolerance to-
wards shape variations that are not captured in the training set. In the user
interface, the parameter λ can be specified as fraction of the overall variance
(maximum eigenvalue of the covariance matrix of the complete descriptor
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space) of the input patches. This choice facilitates the definition of λ as
it becomes independent of scaling and to some extent invariant to different
input data sets. Please note that λ is not learned automatically from the
user-specified examples. Using only few examples might not be sufficient to
estimate full rank covariance matrices Σφ

i , and a statistically reliable estima-
tion of the full matrix would require prohibitively large amounts of training
data. This simple mixture model avoids this problem by separating the noise
floor from one or two main directions of variation in the descriptor space.

Learning Spatial Layout: Learning the spatial layout parameters θψi =
(µψi ,Σ

ψ
i ) of the chain nodes proceeds analogously: For each user specified

instance, we measure the length and the twist of each edge (chain segment)
{xi,xi+1}. The length is just the Euclidean distance of the endpoints. The
twist is a vector of two angles that describes how to rotate around the normal
n(xi) and out of the tangent frame in order to align the next part position
xi+1 relative to xi, thereby encoding the orientation. For each triple of length
and orientation parameters, we again independently estimate means µψi and
3×3 covariance matrices Σψ

i for corresponding graph edges in the user-defined
training set. We scale the length and the two angle parameters with three
constant factors to obtain a unit variance for each chain segment over all
object instances. This whitening transform is necessary because angles and
length are measured in different units so that the joint probability might be
affected by the different measures rather than data characteristics. In order to
form the final potential function ψi(xi,xi+1), we again add isotropic Gaussian
noise to account for general inaccuracies. In the following, let cxi,xi+1 denote
the scaled length and orientation parameters. Using this notation, we obtain:

ψi(xi,xi+1) ∼ exp(−1
2(cxi,xi+1 − µ

ψ
i )TΣψ

i

−1
(cxi,xi+1 − µ

ψ
i )) (6.5)

with

Σψ
i := Σψ

i +

λ
2
length 0 0
0 λ2

angle 0
0 0 λ2

angle

 . (6.6)

The parameters λlength and λangle describe the anticipated variation of edge
length and orientation. In the user interface, length variations are specified
relative to the average segment length (in percent) and angular variation by
the expected standard deviation in degrees.

Furthermore, we add an option to scale all covariance matrices that are
learned from data (for both local shape and spatial layout) by a factor > 1
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so that more variation in the learned direction is allowed. This is useful
as small training sets might not capture the full variance, so the user can
emphasize learned correlations.

6.4 Inference

The task is now to find all solutions that match the probabilistic model
defined in Equation 6.2. We are interested in maximizing the posterior dis-
tribution p(H|D,X, θ) for all part assignments. Using Bayesian inference
that means we need to find assignments H ∈ Sk which maximize

p(H|D,X, θ) ∝ p(D,X|H, θ) · p(H|θ) = p(D,X,H|θ).

The technical challenge is that Equation 6.2 defines a probability function on
a high-dimensional space: For k chain points, we have to consider |S|k dif-
ferent assignments. A brute-force evaluation is clearly infeasible. In general
there would be no exact solution for this task. However, for pairwise tree-
structured MRFs (and thus for chains in particular), the computation can
be performed in polynomial time using the max-product belief propagation
algorithm (see Sections 5.1.1 and 5.1.4).

As a representation for assignments, we use the n-dimensional max-marginals
νi of the distribution p with respect to fixed part positions xi = y:

νi(y) = max
X∈Sk

with xi=y

p (x1, ..,xi, ..,xk) (6.7)

This means, all chain constellations that go through y at node i are consid-
ered and the maximum probability value is kept.

The max-product belief propagation algorithm produces exact max-
marginals in O(kn2) time for k nodes (of a chain graph) and n states (dis-
crete points in S in this case) [YFW01]. We will now first briefly recap
how belief propagation is used to compute a single globally optimal solu-
tion (Subsec. 6.4.1). Afterwards, we describe a modified algorithm that finds
several locally optimal solutions simultaneously (Subsec. 6.4.2). Derivations
and theoretical details can be found in Chapter 5. Finally, we describe how
we can augment the algorithm to further reduce the O(n2) complexity (Sub-
sec. 6.4.3) of the BP algorithm.
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mfwd
1→2(x2) φ2(x2)

φ2(x2) ·mfwd
1→2(x2)

Figure 6.5: This example shows how the max-marginal distribution for the second
chain node is constructed, given the window model example of Figure 6.2. After the
message mfwd

1→2(x2) = maxx1 φ1(x1)ψ1,2(x1,x2) from node 1 to node 2 is computed,
the marginal distribution φ2(x2) can be updated to φ2(x2) ·mfwd

1→2(x2).

6.4.1 Belief Propagation

Belief propagation on chains works in two passes [YFW01]: First, informa-
tion is propagated from the start node through all nodes of the chain until
the end node. The end node then has gathered enough information to com-
pute the correct max-marginals. In a second pass, information is propagated
back to the start to obtain correct max-marginals everywhere. The messages
combine knowledge from the evidence term φ, the compatibility term ψ and
the incoming belief about the state of the node:

mfwd
i→i+1(xi+1) = max

xi
φi(xi)ψi(xi,xi+1)mfwd

i−1→i(xi) (6.8)

The message passed to the first node is mfwd
0→1(x1) = 1.

The backward messages mbwd
i→i−1 are constructed analogously, just passing

information in the opposite direction. The max-marginals are afterwards
given by

νi(xi) = φi(xi)mfwd
i−1→i(xi)mbwd

i+1→i(xi). (6.9)
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Figure 6.6: After computation of the max-marginal distribution for the last
node of the chain graph, we can extract all spatially local maxima. Those are the
starting points for back-tracking.

If we want to compute the globally optimal solution, we have to perform
backtracking on the solution. It can be conveniently combined with the
backward message passing, where each step yields the needed correct max-
marginal at that node, as follows. We start backtracking from the k-th node
and output a maximum likelihood assignment Z = {z1, . . . , zk} by choosing
the maximum of the max-marginal of node k and then combining this solution
with the best match at k − 1 and then iterating backwards:

zk = arg max
xk

νk(xk); zi = arg max
xi

φi(xi)ψi(xi, zi+1) (6.10)

6.4.2 Computing Several Local Optima Simultaneously

In order to detect a large number of objects having only one output con-
stellation is not enough. We therefore augment the standard algorithm as
follows:

Instead of starting backtracking at a single point zk (the one with maximum
max-marginal probability), we extract a solution for each local maximum
of the max-marginal distribution νk. The restriction to local maxima is
necessary since otherwise (when starting backtracking for all positions xk
with a νk(xk) over a threshold) we would obtain very similar instances with
just minimally perturbed positions of the last node. Therefore, we only
accept maxima that are the largest value within a window of radius 2rφ
around each point (where rφ is again the descriptor radius). We then start
backtracking at each of these solutions. This will extract all at most O(n/r2

φ)
locally optimal solutions for which the distance at node xk is at least 2rφ.
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In cases where solutions overlap at the end node, it is possible to miss locally
optimal assignments that could diverge in two or more different directions
(think of detecting the boundary of a single leaf of a four leaf clover; only
one object instance will be found if the center is the end node). We can fix
this problem by starting the local maximum backtracking for each node of
the chain (after computing the respective max-marginals). Then we obtain
an arrangement of overlaid chain instances that can be combined arbitrarily
by cutting segments between crossings of the chains and recombining. In
practice, however, such situations are rare; we did not observe this ambiguity
in experiments. We therefore restrict the practical implementation to a single
backtracking pass for the max-marginal distribution of the last chain node.

6.4.3 Reducing the complexity

So far, the algorithm is too slow to achieve interactive detection times in
practice: In order to compute a single message in Equation 6.8, we have to
consider all states of node xi+1 and for each we maximize over all possible
states xi, requiring O(n2) computations where n is the number of discretiza-
tion points, i.e. the number of samples in S representing the states of each
chain node (typically in the range of millions). This has to be repeated at
least k − 1 times to compute νk.

The computational effort can be reduced significantly by taking the proper-
ties of the potentials φ and ψ into account. We know that ψi describes a
chain segment originating at position xi with a length that is constrained by
a Gaussian distribution. In addition, the descriptors di are typically non-
matching for large portions of the data.

We first replace the Gaussian distributions φi, ψi by truncated versions, were
we clamp the value to zero if the score falls below 5% of the maximum. This
has the additional advantage of avoiding spurious local extrema of very low
score so that we can run the previously described peak extraction algorithm
without need for an additional threshold value to filter out promising local
extrema.

Given this truncated potentials, we can now restrict the message passing
computations: First, in the loop over possible positions xi ∈ S, we only
consider points for which the messages computed so far are non-zero. In
the first iteration, we consider the evidence term φ1 to make this decision.
Secondly, we do not try to combine it with all points xi+1 ∈ S to evaluate
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Figure 6.7: We prune all points which yield a score of less than 0.05. Thus, the
Gaussian potentials are truncated at 2σ.

ψ(xi,xi+1) but restrict ourselves to points xi+1 for which ψ(xi,xi+1) is poten-
tially non-zero. In order to estimate this, we compute the maximum length
lmax of the distance ‖xi − xi+1‖ for which ψ(xi,xi+1) is non-zero. This can
be achieved by looking at the covariance matrix Σψ

i (which correlates angels
and distances) and extracting the maximum variance in distance direction.
Having lmax, we now extract only points xi+1 from S that are located within
a sphere of radius lmax around xi. We retrieve these points efficiently by
using a hierarchical range query. For this, we precompute an octree for the
points S. During runtime, we traverse the octree top down, only following
boxes that overlap with the spherical range and outputting the points in the
leaf nodes that are within the range. In typical applications, the maximum
radius lmax is very small in comparison to the size of the complete scene so
that we get very significant speedups by this optimization.

6.5 Results and Implementation

We have implemented the described object detection framework in plain,
single threaded C++ and performed experiments on an Intel Core-2 Quad
2.4GHz PC with 8GB main memory. In order to realistically evaluate the
performance in practice, we applied the technique to a number of LIDAR
range scans (and two synthetic test scenes, Figure 6.18). We used the raw
data without any preprocessing other than a simple sub-sampling for the
very dense point clouds. In particular, no smoothing, hole-filling, or out-
lier detection has been performed. Four of the benchmark data sets are
taken from the well-known Hannover city scan collection (available online at
http://www.ikg.uni-hannover.de). In addition, we used a scan of the “Lud-
wigskirche”, a baroque church from the 18th century located in Saarbrücken,
provided by the LKVK Saarland. The LIDAR data suffers from significant
noise artifacts. In particular, reflective surfaces such as windows create local
clouds of structured, non-Gaussian noise artifacts. The scan quality of the
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Figure 6.8: Multi-class learning: Decomposing the old town hall into partially
symmetric elements. Up to two examples are used per class.

church data set is slightly better, probably due to more modern acquisition
equipment.

In the following, we conduct a number of experiments: For each data set, we
have annotated structural elements such as windows, and the different types
of these. Afterwards, we use our algorithm to identify the learned classes.
We perform different types of experiments: In multiple class learning, the
objective is to find elements of different categories. In single class learning, we
try to build a single general class for semantically similar objects. In a third
experiment type, we perform multiple class learning and restrict ourselves
to only a single example per category to study how far we can get with an
absolute minimum of user supervision. Further, we study the effect of using
truncated potentials for pruning during inference.

Multi-class Learning: Figure 6.8 shows the result of a multi-class learning
experiment performed on the Hannover “old town hall” data set. We train
separate object classes for several types of windows, the small roof towers,
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Figure 6.9: Learning classes by using just one example each.

and archways. The detected structures include rounded, pointy, and even
complex shapes. For each class, we use at most two examples, sketched by
the user directly onto the model. By setting conservative global variance
parameters per class, we can avoid any false positives: No wrong matches
are present and members of different classes are not mixed up. At the same
time, we obtain a false negative rate of 24% (32 out of 133). Unrecognized
elements include several severely distorted pieces such as elements with large
scale acquisition holes or strong clutter due to outliers.

We repeat the multi-class experiment on the new town hall data set, obtain-
ing roughly comparable results (see Figure 6.10).

To illustrate the robustness of our approach, we perform another multi-class
experiment on the museum data set (Figure 6.11). In this case, we use exactly
the same isotropic noise parameters for all classes, nevertheless obtaining
good matching results. Figure 6.9 shows the results for the baroque church.
Here, we perform multi-class learning with only a single instance specified
per class. This reduces the recognition results a bit, but we nevertheless
retrieve more than 70% correctly and do not observe false negatives. Figure
6.1 shows results of another interactive session where 2 examples per class
are used (the round windows marked in green use three examples capturing
different types of shape interior: empty, solid and grid-structured).
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Figure 6.10: Decomposition into several classes.
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Figure 6.11: 5 different classes extracted. Same global parameters for each class.
Two training instances clicked per class.
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Figure 6.12: Different types of windows recognized as one class in the experiment
shown in Figure 6.13.

Figure 6.13: Single-class learning: Detecting “all windows”. Training data (win-
dows with blue part positions) consists of 4 exemplar windows. Figure 6.12 shows
a closeup of different window types detected by this class. In the example of
Figure 6.8 these types have been trained individually.

Single-class Learning: Next, we perform a single-class learning experi-
ment, where a set of windows are comprised in one class. The results are
shown in Figure 6.13 and the variation in the input is illustrated in Fig-
ure 6.12. In this case, we recognize all but 7 out of 84 windows in the model.
Out of the 7, three contain large holes such that a recognition is obviously
impossible. Again, false negatives can be avoided. In order to obtain good
results, it is important to specify a large enough variance of the learned
model. It is obviously problematic to estimate the variance from only very
few training examples. Therefore, we have used the option to scale up the
learned variance of descriptors as well as spatial layout. Figure 6.14 shows
the difference between using unmodified and scaled values. We obtain much
higher recognition rates without introducing false positives even if we scale
up the standard deviation significantly, for both the trained shape model and
the descriptors. Consequently, we used these settings for all examples.
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Figure 6.14: Single-class learning: Detecting “all windows”. Training data (blue
spheres) consists of only 4 exemplar windows. Left: Without scaling the learned
covariance matrices the results deteriorate compared to Figure 6.13. Right: Detail
of overlay: green (unscaled), yellow (scaled). When using scaled versions of the
learned covariance matrices, the extracted instances adopt better to the underlying
geometry. Without scaling the noise level exceeds learned correlations.

Effect of pruning: We study the effect of the truncated potentials by com-
paring the marginal distributions of marginals and max-marginals for suc-
ceeding inference steps. Similar to the previous experiments we model a
window, with first chain node representing the lower left corner (red) and
last chain node representing the lower right corner (blue). Like Figure 6.15
shows, the state space of the max-marginals decreases rapidly during infer-
ence. Already the first truncated potential function limits the state space
such that we can expect run times which are significantly lower than the
theoretical O(kn2), if n is the number of states per node.

Running time: As most descriptor-based shape analysis techniques, our
technique needs some time to precompute the descriptors. This has to be
done only once per data set. Preprocessing times are normally in the range
of a few minutes (Table 6.1). Please note that this is an embarrassingly
parallel task that can probably be sped up significantly by an optimized
implementation, but this is not the focus of this work. The interaction is
much faster. Training a model is very fast but some auxiliary tasks such
as estimating the global descriptor variance can take up to 5 seconds in our
examples. Finding all object instances is usually also interactive, in the range
from below one to approximately 10 seconds. However, it is possible to create
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Figure 6.15: Distribution of the max-marginals during inference with the trun-
cated potentials. Left: Truncated potentials φi. Right: Max-marginals φi ·mfwd

i−1→i.
The model is defined in the sense of Figure 6.2. From top to down: The state space
of the max-marginals decreases rapidly during inference.
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model #points #preproc. [s]
old town hall 744,567 516
new town hall 1,271,777 908

museum 2,119,367 3,741
baroque church 2,618,385 2,432

stars 313,236 326
relief 289,509 336

street (training/all) 198,767/1,056,158 436/999

Table 6.1: Precomputation times for the example scenes: timings are measured
for descriptor radius 0.01.

“broken” training models for which the algorithm takes a very long time (up
to 20 minutes) to finish. This happens for example if object definitions
are sketched on non-descriptive, planar regions where pruning cannot be
effectively performed. For practical applications, these degenerate cases are
not relevant as no reasonable matching can be expected.

6.6 Discussion

In any detection task, there is an inherent trade-off between generalization
performance and precision. Our model aims at learning robustly from very
few examples, which limits the precision for very large training sets. Fig-
ure 6.13 shows that, nevertheless, quite some variance can be captured.
And for very different geometry, the user can anytime create multiple ob-
ject classes with parts modeling more complex mixtures.

An important point is a comparison with models of different topologies, e.g.
star-like topologies as implemented by implicit shape models. It will be
discussed in Chapter 7, There we will implement a fully connected graphical
model and conduct experiments which compare the performance of star- and
chain topologies. The results indicate that chain topologies outperform star
topologies (at least in the setting of the experiments) .

Model Transfer: In Figure 6.16 we evaluate the ability to transfer object
models from one data set to another, depicting a row of different houses
from one street in the Hannover data set: Only the small part of one house
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detection with 
transferred model

training set

Figure 6.16: Transferring learned models: Four exemplars were trained on the
blue area, detections on the same and on a different data set are marked red.

marked in blue is used for initial learning (4 windows). The model is stored
and reused on the second independent data set. A large fraction of windows
in the other houses is detected. Of course, this is limited to rather similar
geometry. It is impossible to infer very different geometry that is not within
the span of the example space.

Sensitivity to User Input: Figure 6.17 illustrates various quality levels of
user input. For a single input instance, accuracy is not an issue and all
matched objects will be detected with the same imperfect shape. Only
when combining several instances in a single model, accuracy plays a role.
Nonetheless, potential imprecision is implicitly handled by the model, since
it accounts already for inaccurate surface descriptions. Further, as the feed-
back is almost immediate, it is easy to add further data only when needed
or to see and correct the negative impact of an imprecise input. Figure 6.17
illustrates the effect of different levels of noise in the specification of two
training instances. It turned out that we had to deliberately click off target
to obtain artifacts.

The bad-input example of Figure 6.17 also reflects that we do not explicitly
impose closed chains. In principle, it is possible to formulate the belief prop-
agation algorithm for closed chains, but the computation cost would increase
by a polynomial factor. The choice of a cycle-free chain allows us to per-
form a very efficient search procedure. Most matched instances are almost
closed because the descriptors snap them to the right locations during the
search. We could easily add a culling step to reject chains that are not ‘closed
enough’, but, in practice, this was not necessary. In the examples, only the
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Figure 6.17: The method is robust to imprecision in user input (left, center),
even for very noisy input, the model still finds reasonable matchings (right). The
top row shows the noisy training samples, the bottom row the detection results.
Data set: old town hall.

unrealistically bad user input benefits from this.

Scale Invariance: The model is not necessarily scale invariant: Only if the
user provides examples with scale differences, the linear model will automat-
ically span the whole subspace of scaled examples. However, the current
descriptors are not scale-invariant, thereby limiting the scale range; a design
choice to make the detection more reliable. We could achieve full scale-
invariance using scale space descriptors such as SIFT [Low03, LG05]. Still,
our solution is flexible enough to handle significant variations (Figure 6.18).
By learning different scales its impact in the detection step is reduced (al-
though we still use scale-dependent descriptors). The algorithm finds even
instances that were not directly trained, but it fails for strong scale differences
which is desired behavior.

Object Alignment We qualitatively evaluated the correspondences estab-
lished with detected instances for their usability in a object alignment ex-
periment. Therefore, we roughly designed simple primitives for 3D objects
which were to be aligned with their corresponding instances in a point cloud.
We defined 4 different classes of windows in a point cloud. For each class we
manually established correspondences between the parts of the models and
their corresponding 3D primitives. These primitives have been hand-crafted
with editing tools such as 3D Studio Max. After detecting all windows in
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Figure 6.18: Although the descriptors are not scale invariant to increase preci-
sion, our method is scale tolerant (green) when learned (red) and supports complex
layouts (synthetic data sets; top: stars, bottom: embossed shapes).

the point cloud we applied rigid transformations [Sor09] to the primitives in
order to align them with the corresponding instances in the point cloud. The
results are presented in Figure 6.19.

The detected window instances show up small variations due to variations
in the point cloud, but the simple 3D primitives can be aligned to point
cloud quite well. This experiment is just a simple example which indicates
future applications. Detecting correspondences allows for creating super res-
olution models of point clouds which comprises repetitive shapes that are
not necessarily aligned to a grid. Another application might be to generate
reduced versions of a scan such that it can be decomposed into simpler 3D
objects than the ones found in the point cloud. It is also interesting to further
improve this idea: Instead of fitting static objects to a scene one might use
generative representations in the sense of morphable models [BV99, HSS+09]
such that the scene can be reconstructed in a most flexible way. Then appli-
cations for perfectly filling holes in scans or even morphing parts of a scene
come into range.

Limitations: The user-guided detection scheme has currently some obvious
limitations.

A major limitation is the topology structure of the model: We can only find
chain-like object models, we cannot find complex graphs with cycles. These
have to be composed out of several, independently-trained chain models.
Further, the pairwise dependencies of a Markov chain model do not allow
Belief Propagation to infer marginals which are consistent to all previously
assigned marginals. For example, assume we are given an object model which
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Figure 6.19: The detected object correspondences are used to align synthetic 3D
models with detected objects of different (color coded) categories. The upper left
shows the training examples and the matching primitives. The lower left shows all
detected shapes. The right side shows the aligned primitives.

comprises scaled versions of one object instance. When computing the last
inference steps we cannot decide whether the first matched parts were as-
signed for a small scale instance or a big one. The decision only depends
on the direct neighbor-part and we possibly yield an inconsistent constel-
lation of parts. In this context, an extension to construct more general,
tree-structured graphical models is possible. In Chapter 7 we examine more
complex graphs: fully correlated models.

Furthermore, the current approach assumes a fixed upward direction, mostly
motivated by applications to architectural models and similar man-made
structures. This is no principal limitation. However, a straightforward solu-
tion to this problem (such as evaluating the match for different base orien-
tations covering 360◦ degrees) would increase the runtime. We will approach
this limitation in Chapter 7, too.
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One further limitation we have observed in practice is that the model is not
robust to missing data; if an object part maps to a hole in the surface it
cannot be detected because no discretization points are available (using a
robust φ model is therefore not sufficient).

6.7 Summary

We have presented a technique that learns statistical models for semantic
similar shapes from user input. It is designed such that it can handle scenarios
with only few training examples. Object detection can be performed at
interactive run times and yields robust results with only few false positives
and negatives on scanner data suffering from significant noise artifacts. The
presented approach is conceptually straightforward and easy to implement.
We can not only simultaneously detect all instances of an object class, we
also yield semantic correspondences between those instances which qualifies
the technique for a wider range of applications.

The weak form of user supervision for this approach is a powerful tool for
object detection problems, in particular, if care is taken to minimize the
necessary work for the user. Nonetheless, even a small user interaction makes
matching significantly more robust.

Similar results in accuracy and robustness are hard to achieve with unsuper-
vised techniques. Only setting up their parameters often takes more time
than to specify a few object parts with our solution. Also, a supervised ap-
proach can learn broader classes of semantically similar objects, which is a
very hard problem without user input. Consequently, user guidance offers
a viable way to higher-level “shape understanding”, approaching semantic
rather than purely geometric interpretations.

Since there is no prior work in the field of 3D object detection which also
produces reliable correspondences for parts, the approach described in this
chapter can be seen as a first step into this broad but little explored venue
of geometry processing.
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7
A Correlated Parts Model for

3D Object Detection

Problems worthy of attack
prove their worth by fighting back.

Paul Erdos (1913 - 1996)

This chapter addresses the problem of detecting objects in 3D scans according
to semantic object classes learned from sparse user annotation. Extending
the model presented in Chapter 6, we model objects belonging to a class by a
set of fully correlated parts. We encode dependencies between local shapes of
different parts as well as their relative spatial arrangement. For an efficient
and comprehensive retrieval of instances belonging to a class of interest, we
introduce a new approximate inference scheme and a corresponding planning
procedure. Further, we show how to extend the technique to hierarchical
composite structures, thus reducing training effort. Finally, we evaluate the
method on a number of real-world 3D scans and demonstrate its benefits as
well as the performance of the approximate inference algorithm.

The work this chapter is based on has been published at Eurographics
2013 [SJWS13]. With permission of the co-authors main text passages and
figures are utilized without tagging them individually.
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Figure 7.1: Detection results for the Wilihelm Busch Museum in Hannover. A
general object class (6 parts) for all windows is trained. Additionally a composite
model detects arrangements of windows (overlayed on the right side).

7.1 Introduction

We address the problem of detecting object instances (shapes) according
to semantic object classes. Shapes are defined as a set of distinctive parts
describing local geometry (local shape) as well as the spatial layout (constel-
lation) of these parts. From a small number of hand-annotated examples,
a part-based shape model is derived to retrieve large quantities of further
instances, including their correspondences (see Figure 7.2). Our goal is to
find a general model which also overcomes limitations of the Markov chain
approach presented in Chapter 6. There, a major limitation is that a simple
Markov chain model does not encode part relations bigger than pairwise.
That means, the pairwise dependencies of a chain do not allow the mes-
sage passing algorithm to ‘remember‘ all previously passed messages. For
a category of shapes, which comprises large spatial variations, it is hard to
consider only those parts (during inference) that generate a constellation
which is semantically consistent. For example during training we might have
observed scaled instances of one single instance. The pairwise dependencies
would allow to detect a constellation that blends small and big instances.
The same holds for local shapes. The chain model presented in the previous
chapter does not even comprise pairwise dependencies of neighboring parts’
local shape descriptions.

In general, detecting constellations of parts in 3D geometry poses a number
of unique challenges and opportunities. In Chapter 6 we have seen a simple
but efficient model which shows how to approach two important issues:

Semantic symmetry: In a large 3D scan, a large number of instances of
the same object class such as cars or windows show up simultaneously. Thus
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Figure 7.2: Outline of the method. Given sparse user annotations defining some
shapes and their correlations, a shape model characterizing these shapes is con-
structed. Each node in the model is associated with corresponding distributions
for the local shapes (descriptors) and the relative location within the shape. The
efficient detection allows for refining the model interactively.

it is important to detect all instances in a single pass.

Correspondences: In 3D computer graphics, detecting semantic correspon-
dences can be an intermediate step towards building generative models such
as morphable shape spaces. Therefore, obtaining accurate and consistent
part correspondences is desirable. A chain model is a simple solution to that.
However, higher accuracy and semantic consistency requires more complex
dependencies. Using fully correlated parts improves both.

In this chapter we will in addition approach the following challenges:

Frame invariance: Detection should be invariant under translations and
rotations. In contrast to Chapter 6, we will show how to model full rotational
invariance.

Structuring scenes: Objects can be arbitrarily complex. Parts themselves
might be better modeled by sub-parts. Thus, an extension of the model to
a hierarchical version is helpful. Composite models can learn higher order
co-occurrence patterns to structure the input.

Correlations: The local shape of object parts is typically strongly corre-
lated, e.g. for window- or car models we want to not only ensure that parts
are aligned rectangular, they should also share the same visual appearance.
These general correlations have not been captured yet by previous work.

Efficiency: Since full correlations are modeled with a fully connected graph,
it can not be inferred exactly. That poses the demand for an efficient ap-
proximation scheme.
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Figure 7.3: Each shape H is associated with a spatial layout X and local shapes
di. The layout is given by relative coordinates xi of the individual parts hi in a
coordinate frame centered at the first part. The local shape is a collection of the
local shape descriptors of the shape parts.

We analyze the method empirically on a number of benchmarks, evaluating
the detection performance as well as the run-time costs. This includes a
large city scan with 4GB of input data, for which training is interactive and
detecting all instances of an object class takes less than 2 min, using single-
threaded, unoptimized C++ code.

7.2 Shape Model

Each shape model characterizes an object class by encoding similarities of
shapes from this class. As illustrated in Figure 7.3, we define shapes as a set
of correlated parts. Each part i consists of a relative position xi and the local
shape description di. The individual parts are subsumed into local shape D
and their overall spatial layout X. The shape model θ = (θD, θX) is then
defined by Gaussian models θD ∼ N (µD,ΣD) and θX ∼ N (µX ,ΣX) over D
and X, thus encoding dependencies (correlations) of the individual parts.

7.2.1 Probabilistic Model

In the following, let S ⊂ R3 be a smooth manifold embedded in three-space.
We use n(x) to denote the surface normal at point x ∈ S. Typically S is
represented by a sampled approximation (point cloud) S = {s1, ..., sn}, si ∈
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R3, acquired by 3D scanners and thus subject to noise artifacts.

Given a shape model θ with k parts, the goal is to find reasonable assignments
of the k parts to points in S: H = (h1,h2, . . . ,hk), where hi ∈ S denotes the
position of part i. The detection problem can be formulated as a maximum
a-posteriori hypothesis search over the joint posterior distribution of H and
manifold evidence S. Hence, the objective is to maximize the probability
p(D,X,H|θ). The model is designed such that local shape D and layout X
behave independently of each other. Hence, we can infer:

p(D,X,H|θ) = p(D,X|H, θ) · p(H|θ) (7.1)
= p(D|H, θD)︸ ︷︷ ︸

Local Shape

· p(X|H, θX)︸ ︷︷ ︸
Layout

· p(H|θ)︸ ︷︷ ︸
Prior

(7.2)

It consists of a term accounting for the descriptors (local shape) and their
constellation in 3D (layout). In addition, a prior distribution p(H|θ) can be
used to model additional constraints on the detection. In the experiments,
it is assumed to be uniform over S.

Spatial Layout

Since Gaussian models cannot represent rotations well, we encode the spatial
layout X relative to a local coordinate frame T. The reference frame T is
spanned by the first two parts h1,h2 and the smoothed surface normal n at
h1, as illustrated in Figure 7.3. For reasons of robustness the normals are
smoothed over the whole region the local part covers. We compute a tangent
vector t = (h2 − h1)× n and set T = (n× t , t , n).

The 3(k − 1)-dimensional layout vector X(H) is then given by:

X(H) = (T(h2 − h1),T(h3 − h1), ...,T(hk − h1)) (7.3)

After this (orientation-) normalization, we model the spatial layout of model
parts as a joint Gaussian distribution over the relative coordinates of X(H),
with mean µX and covariance ΣX :

p(X|H, θX) ∼ exp(−1
2(X(H)− µX)TΣ−1

X (X(H)− µX)) (7.4)
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Local Shape

Local shape D is modeled by a joint Gaussian function on (d ·k)-dimensional
vectors D(H) composed of all k d-dimensional local shape descriptors:

p(D|H, θD) ∼ exp(−1
2(D(H)− µD)TΣ−1

D (D(H)− µD)) (7.5)

Again, µD represents the (learned) mean and ΣD the covariance of the de-
scriptors, again including all cross-correlations between the local shapes cap-
tured by descriptors of all of the different parts.

The model parameters are the mean µD and covariance matrix ΣD. The
framework is independent of the actually chosen shape descriptor. Any func-
tion S → Rd can be used. The descriptors used in the experiments are
described in Section 7.4.1.

7.2.2 Learning

In our scenario the model is manually defined: For a number of shapes the
user labels all correspondences between the shapes – thus defining the parts.
The ability to manually select meaningful parts is important for many ap-
plications that can use these coarse correspondences as input, like replacing
found objects with a template. Whereas, parts automatically chosen by some
objective function might not be the ones desired by the user.

The model parameters θ = (µD,ΣD, µX ,ΣX) are learned by supervised train-
ing. This is done by specifying a sparse set of corresponding points on objects
of interests. The correspondences are defined using the same sketching tech-
nique as in Chapter 6. Given the training instances, mean and covariance
are estimated for both local shape and spatial layout.

For small sets of training instances, the learned covariance matrices are rank
deficient. For example, a principal component analysis (PCA) extracts at
most a 3-dimensional space from 4 examples. Hence, the variability is under-
estimated, and whole subspaces are falsely assumed to be noise-free in such
cases. Even if in theory the actual class is described sufficiently by a few
dimensions, inaccuracies such as scanner noise typically make a covariance
of full rank inevitable in practice. We model these unmeasured effects by a
uniform Gaussian noise model, i.e. by adding λI to the covariance matrix,
where λ is a user-controllable parameter.
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In certain scenarios it might also be necessary to amplify (or attenuate) the
variations learned from the training data. For instance, if we want to detect
objects of different sizes but have only observed two sizes so far. Similar to
Chapter 6 this is implemented by scaling the observed covariances.

The final covariances are given by:

ΣX = γXΣobs.
X + λXI and ΣD = γDΣobs.

D + λDI.

7.2.3 Hierarchical Shape Models

We propose a simple extension of the fully correlated model, which allows
the detection to be performed hierarchically, using detected constellations as
parts of higher level constellation models.

A weakly related idea is modeled in [DPP09]. They present a tree-structured
graphical model to decompose objects into a hierarchical constellation of
parts with simple descriptors for the leave parts. The potential functions are
represented in a non-parametric form. Hence they need to apply a sampling
technique for the detection.

The motivation of the new approach is two-fold: First, many complex shapes
can be described by constellations of simpler base shapes. By training part
models separately, fewer training examples are required for estimating good
model parameters. Secondly, finding constellations of constellations allows
us to recognize structural relations between parts (e.g. windows arranged on
a regular grid), which permits the extraction of additional information.

As shown in Figure 7.4, the hierarchical extension is straightforward: First,
several different base models are constructed as described in the preceding
sections. Then, further instances are detected in the model and offered to
the user as additional feature points to be selected as parts in composite
models. The position is set to the centroid of the found instance and the
local shape is obtained by concatenating all local shape descriptors of the base
instance (followed by a reduction to the original d dimensions of a local shape
via principle component analysis). There is also the possibility to comprise
instances of different categories into the composite model. Therefore, the
class of the base model is also used to discriminate the feature points (using
labels for each class). Thus, during detection of higher stages in the hierarchy,
we look only for those parts which correspond to the labels defined in the
composite model.
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Figure 7.4: Using sparse user annotations (upper left) a shape model is learned.
The detected instances (upper right; colors indicate the quality of the match (blue:
perfect; red: bad)) are transformed into descriptors (lower left, similar colors in-
dicate similar descriptors) for the second hierarchy level. Hierarchical detections
shown on the lower right are obtained only using the single, red training exemplar.

7.3 Shape Inference

We now need to find instances of the model defined in the previous section.
Given an input point cloud S, we want to retrieve all local maxima with
a significant score for p(H|D,X, θ). Obviously, the log-likelihood of this
probability function is non-convex in any non-trivial case.

Traditionally, inference in constellation models is done using Markov-chain
Monte-Carlo sampling (MCMC ) [SGS09] or sometimes expectation maxi-
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Figure 7.5: More hierarchical detections for the statue. The hierarchical descrip-
tors shown in Figure 7.4 were used. Instances used to train the model are marked
red.

mization (EM ) [RPA03], but these techniques are slow and can only com-
pute one solution at a time. Another option is a restriction to tree-structured
models [FH05], allowing for exact inference, or even further restrictions to
star [LLS04, VSS12] or chain models like the one presented in Chapter 6.

We use a greedy dynamic programming scheme for approximately retriev-
ing the local maxima of p(H|D,X, θ). Similar to Chapter 6 (with help of
Bayesian inference) we need to find assignments H ∈ Sk which maximize
Equation 7.2. In order to do so efficiently, we use an inference scheme which
is related to belief propagation for chain-structured models. However, in-
stead of only considering direct predecessors, we incorporate dependencies
to all predecessors. Omitting these dependencies in the model would result
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in an ordinary Markov Chain Model which can be inferred exactly, but at
the cost of a weaker model. We examine the effect of including these global
dependencies in Section 7.4.

Like for chain-structured models, we successively compute sets of partial
assignments. Since complete enumeration is not feasible (i.e., of exponential
effort), the key idea is to restrict evaluation to those assignments which are
likely to be part of an actual instance. A detailed explanation and derivation
for the approximate inference is shown in Section 5.2.3.

Given a set of candidate assignments for the first i parts of the model, denoted
by Hi ⊂ Si, we form augmented assignments for the first i+ 1 model parts.
For each possible value hi+1 of part i + 1, we search for the best partial
assignment (in terms of maximizing Equation 7.2) to be combined with hi+1:

Hi(hi+1) = arg max
(h′1,...,h′i)∈Hi

p(h′1, . . . ,h′i,hi+1) (7.6)

We form the set of candidate assignments Hi+1 by combing all hi+1 ∈ S with
their corresponding best matching assignment Hi(hi+1):

Hi+1 =
{

(h1, . . . ,hi︸ ︷︷ ︸
=Hi(hi+1)

,hi+1)
∣∣∣hi+1 ∈ S

}
; H1 = S (7.7)

Once the candidate assignments for part k have been computed, we perform
a local maxima search to retrieve the final detections.

By just keeping track of the current best estimates, we might lose track of
a desired instance in favor of a seemingly better but wrong match. Luckily,
real-world data is typically benign, as demonstrated in Section 7.4, since
fixing the first few parts imposes substantial restrictions on the remaining
ones. Accordingly, we will optimize for the order in which the parts are
processed, as detailed in Section 7.3.2.

7.3.1 Efficiency

Even though we have reduced the complexity from exponential (for the naive
but exact evaluation) to quadratic costs in |S|, the algorithm is still too slow
for large, real-world scenes with several million points.

The goal is to retrieve instances with significant probabilities; accordingly we
can discard all values hi for part i if their local shape or relative position does
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Figure 7.6: Effect of covariance updates. Potential locations for the remaining
parts after fixing preceding parts (for purpose of illustration the orientation of
the shape was fixed). Fixing the second part of the shape already decreases the
horizontal variance drastically.

not match the model at all. We regard hi as a potential value for part i if its
local shape has a Mahalanobis distance of at most 2 to the local mean shape
of part i, thus reducing the set of initial candidates for each part drastically,
see Figure 7.7.

Similarly, (h1, . . . ,hi) is only included in the set of candidates Hi during de-
tection, if hi adds at most 2 to the overall Mahalanobis distance to each model
mean. In order to prune efficiently, we first need to reduce the search space
of potential candiates for hi: Given the tentative assignment (h1, . . . ,hi−1),
we compute p(X|h1, . . . ,hi, θX), i.e. the conditional marginal distribution for
the layout of part i. That is a Gaussian distribution, and the corresponding
2σ ellipsoid yields an upper bound for the set of candidates which add at
most 2 to the overall Mahalanobis distance. Following the procedure de-
scribed in Chapter 6 we again use a hierarchical data structure to efficiently
extract the candidate positions for hi.

Another improvement concerns the evaluation of Equation 7.2: The in-
cremental algorithm requires repetitive evaluation for partial assignments
(h1, . . . ,hi). We can reduce computational effort from O(i2) to O(1) if we
update the model using the Schur complement:

Y =
(
Y1
Y2

)
∼ N

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))

Y2|Y1 ∼ N
(
µ̃, Σ̃

)
with

µ̃ = µ2 + Σ21Σ−1
11 (Y1 − µ1)

Σ̃ = Σ22 − Σ21Σ−1
11 Σ12
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Figure 7.7: Effect of planning. Upper left: User input representing the model
class. After the planning step we obtain an inference order for the parts: dark
blue, red, cyan. The set of initial candidates for each part is shown.

The update incorporates restrictions caused by the previously assigned parts
to the updated model. Further, the updated covariance matrices are inde-
pendent of the ongoing inference and thus can be precomputed. Since the
dependencies on previous parts are encoded in the updated models, they can
be used for a more efficient pruning. The effect of these model updates (for
the spatial layout) is illustrated in Figure 7.6, giving a hint of the effectiveness
of these updates.

The last step to further improve efficiency concerns the evaluation of the
descriptor score for part candidates. The full model for local shape is a
Gaussian distribution, also the local shape for a single part is a Gaussian.
Since the local shape for part i is evaluated for all potential candidates hi,
it is advisable to reduce the number of necessary operations. That can be
achieved by compressing the Gaussian using principle component analysis.
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7.3.2 Planning Inference Order

As already discussed in Section 5.2.3, it is advisable to plan the inference
order, i.e. the order in which part hypothesis are tested. Our goal is to
improve the performance of the inference, both in terms of accuracy and
speed. Therefore, the strategy is to first search for those parts for which the
location has the least uncertainty. This has two benefits:

• The search space is reduced, due to the pruning of unlikely hypothesis
(Section 7.3.1), thereby improving the run-time.

• By fixing the parameters for the part with the least uncertainty first,
the risk of propagating wrong information to later stages of the search
is reduced. This is important since the approximate inference does
not use backtracking or backward propagation of information to part
hypothesis tested earlier.

in Section 7.4 we will demonstrate empirically that planning has a signifi-
cant impact on both of these aspects, improving both on run-time costs and
accuracy.

Planning itself is easy: We pick those parts first for which the uncertainty
in localization is minimal. Again, we use a greedy optimization algorithm to
make the choices:

The first part is selected by descriptor uniqueness: We match the descriptor
model against the whole training set and choose the part with the lowest
matching frequency, i.e., whose descriptor matches the fewest other points
(again using a Mahalanobis distance of 2 as threshold).

For choosing subsequent parts, we now need to model the influence of the pre-
vious choices. Specifically, both the ambiguity in terms of descriptor match
as well as variation in spatial localization should be minimized. For the local-
ity, we compute the marginal of the Gaussian model: we estimate a marginal
covariance in position, given we fix the previous plan-points. Please note
this can be done using the Schur complement of the covariance matrix. For
the descriptor, the improvement depends both on how frequent the descrip-
tors are expected in the input as well as on the correlations with previously
detected part descriptors. We therefore multiply the frequency of the part
descriptor by the relative change in volume in descriptor space due to cor-
relations. This shrinking of descriptor volume is modeled by the ratio of
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Figure 7.8: Manual annotation of the old town hall used as ground truth for
evaluation. For experiments with a general class all different window types are
subsumed in one class, while the specific class experiments only comprise the
windows marked in blue.

the determinants of the unconstrained marginal descriptor covariance and
the marginal descriptor covariance obtained after fixing the already selected
plan-points. A typical result obtained from the planning step is shown in
Figure 7.7.

7.4 Results and Evaluation

Similar to the previous chapter, we evaluate the performance of the correlated
parts model and inference using LIDAR range-scans from the Hannover city
scan collection (http://www.ikg.uni-hannover.de, courtesy of C. Brenner,
IKG, University of Hannover) which is subject to significant (non-Gaussian)
noise artifacts. In addition, we also use 3D scans of figurines to demonstrate
rotational invariance as well as the hierarchical variant of the method. Exper-
iments with large and memory demanding scenes have been performed using
an unoptimized single-core C++ implementation on a dual socket worksta-
tion with two Intel Xeon X5650 (2.6GHz) and 48GB of RAM.

7.4.1 Local Shape Descriptors

The local shape descriptor is used to characterize the geometry within the
r-neighborhood Nr(x) = {y ∈ S| ‖x− y‖ ≤ r} of a point x in S.
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Figure 7.9: Shapes under arbitrary rotations. Projections of the descriptors
onto the first three principle components of descriptor space are illustrated on the
left. The shape model was constructed using the exemplars shown in Figure 7.4,
however allowing for less variations. Detection results are shown on the right.
Colors indicate the quality of the match (blue: perfect; red: bad).

In order to effectively assess the correlated parts model, we do the experi-
ments without the use of sophisticated shape descriptors such as [FHK+04,
CSM+06, KPW+10]. The experiments on large point cloud data require
descriptors which come with low computation costs and yield a robust de-
scriptor for small, almost planar, surface regions (which does not hold for
spin images [JH99]). We have implemented the following shape descriptors:

• Normal histograms: For every point y ∈ Nr(x), we express the
normal direction n(y) in polar coordinates with respect to a coordinate
frame defined by the smoothed normal n(x) and y−x. We then build
a joint histogram of the two angles using 15× 15 bins.
The motivation behind is that we try to measure curvature in radial
and the corresponding tangential directions and build a (discrete) dis-
tribution of both. The idea is that on one hand such shape descriptors
are rotational invariant but still sensitive enough to recognize fine shape
variations.

• Oriented normal histograms: Here, we augment the normal his-
tograms by using a fixed reference frame given by n and a fixed global
upward direction u.
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Figure 7.10: Comparison with constellation model: The detection rate improves
by including descriptor correlations. The left diagram shows results for the specific
class of rigidly similar windows, the right for the more general class containing more
varying geometry.

For efficiency reasons and in order to smooth out noisy data, the set of high-
dimensional descriptors in an input scene is projected onto a low-dimensional
subspace using principal component analysis. In Figure 7.9 we demonstrate
the robustness on a complex shape: All descriptors are mapped onto the first
3 principal components. Local shapes with similar appearance yield similar
scores.

7.4.2 Quantitative Evaluation

For a quantitative evaluation of different aspects of the method we man-
ually annotated two different test sets on the old town hall, as shown in
Figure 7.8, ranging from a very specific class, capturing the most prominent
window type, to a general class, comprising all types of windows present
in the building. We count the number of false positives and negatives by
a coarse criterion that measures the distance of the centroids of the detec-
tion hypotheses to the centroids of ground truth data. A detected instance
only counts as a true positive if this distance to the nearest ground truth
data is smaller than the descriptor radius r employed to compute the local
shapes. We use cross-validation for measuring the performance; we always
use 3 examples per type and average over 8-10 stratified random samples;
we precompute a random partition that guarantees to cover all examples at
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Figure 7.11: Hierarchical detections for the crocodile with base model as shown
in Figure 7.7. Upper left: projections onto the first 3 principle components of
the base descriptor space. Upper right: detections of the base model (3 parts:
nick-tip-nick). Lower left: projections onto the first 3 principle components of
the descriptors obtained from 1st level hierarchy (at centroid positions of the base
shapes). Lower right: Results for a hierarchical model comprising strands of base
shapes. Structuring also helps reducing false positive detections of the base model.

least once. Curves are measured by varying one of the model parameters
while keeping the others fixed.

7.4.3 Shape Model Experiments

Rotation invariance and hierarchical shape model: We demonstrate the
rotation invariance of the approach in Figure 7.9. The statue model fea-
tures a deformed, regular pattern in different orientations, not captured by
a common “upward direction”, which is needed for the method of Chap-
ter 6 to work. We also examine the use of hierarchical models (see Fig-
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Figure 7.12: Evaluation of different model structures. The excerpts show typical
results for the different model types. Results are shown for similar numbers of
false positives. The colors represent the different models.

ures 7.4, 7.5, 7.11), improving the recognition accuracy and yield the struc-
turing of the instances in terms of a regularly repeating grid. Figure 7.22
shows a hierarchical decomposition for the old town hall scan.

Effect of correlations between parts: We first evaluate the effect of includ-
ing all pairwise correlations of the parts’ local shapes into the model (which
are not included in the traditional constellation model [RPA03]). Curves
are measured by varying the descriptor noise parameter λD, describing the
tolerance of a fit to noise and unmodeled effects. The results are shown in
Figure 7.10: When learning a complex class for different windows in the old
town hall, the detection performance improves by including these correla-
tions. For the class of rigidly similar windows, this effect is less pronounced.

Secondly, we compare to different underlying graph structures, i.e. dependen-
cies of relative locations of parts: Both, the full model as well as constellation
style model include all pairwise correlations of parts locations. Star shaped
models, as used in [FMR08, LLS04], only consider spatial relations to one
center part. Chain-structured models, as employed in the previous chapter,
merely consider pairwise correlations between a part and its predecessor. In
order to compare the different model structures, we restrict the general, cor-
related model appropriately by removing accordant pairwise interactions, i.e.
by setting the corresponding entries of the covariance matrix to 0. The re-
sults are shown in Figure 7.12. We varied covariance scale γD, to observe the
behavior under shape models of different flexibility. The underlying structure
of the shape is captured better the more dependencies are included.
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Figure 7.13: Comparison to the Markov chain model in Chapter 6. Because of
the lacking global correlations, lower boundaries of the windows do not match up
(left), which the fully-correlated model avoids (right). For both examples identical
training instances are used. Edges encode the chain used in the previous approach.

We also compare the method qualitatively to the chain model presented in
the previous chapter (Figure 7.13). The new method yields more accurate
correspondences. The global correlations avoid drift over the course of the
chain. For applications in computer graphics, beyond pure detection, this is
an additional benefit.

7.4.4 Inference Experiments

Effect of approximate inference: In order to quantify the error imposed
by the approximate inference, we have implemented an exact version of the
algorithm. To make exact inference feasible, a very specific model (small
variances) is required since this allows for efficient pruning: We use the spe-
cific class (Figure 7.8) and assume very little noise. The results are shown
in Figure 7.14 (middle). As expected, the exact version yields slightly better
results, but the gain of the exponential algorithm is below 3% (please note
the scale!).

Effect of Planning: We also study the effect of planning (see Figure 7.14).
We compare to the average of a random order for inference, again for finding
windows in the “old town hall”. The recognition rate improves consistently
by up to 4%. The effect on the run-time is more dramatic: As shown in
Figure 7.14 (right), we obtain high detection rates much more rapidly than
without planning.
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Figure 7.14: Evaluation of the inference scheme. For a very narrow class (where
exact inference is feasible) exact inference only performs slightly better than the
approximate inference (left). Curves are measured by varying the noise parameter
λD, describing the tolerance of a fit to noise and unmodeled effects. Effect of
planning: the recognition performance improves over the average of a random
order (middle). The runtime improves significantly (right). Curves are measured
by varying λD.

Scalability: We apply the method to all facades from the Hannover data
set (126 million sample points, 4GB binary data). Since we do not want to
compute descriptors for the complete set, we reduce the point cloud to a set
of interest points. This can be done efficiently by extracting points of high
curvature, using the technique of Gumhold et al. [GWM01], i.e., using the
smallest eigenvalue of a PCA-analysis of local neighborhoods as curvature
measure. Only these points are considered as candidates for points in H,
the rest of the method remains unchanged. We denote the reduced point set
by S̃.

Figure 7.15 shows an example where 35 windows are used for training, mod-
eling a class with high variability, and retrieving a large subset of the actual
windows in the rest of the town with few false positives (Figures 7.16, 7.17).
False negatives (i.e. missed instances) arise mainly due to the facts, that con-
siderable parts of the scan suffer from severe noise artifacts which the simple
descriptors were not able to handle. Also in some regions the LIDAR scan-
ners captured only little data (due to insufficient scan resolution for points
far away) which results in missing interest points. The inference algorithm
runs in less than 2 minutes (on the reduced set), statistics are shown in Fig-
ure 7.18. We also vary the scene size by cutting out excerpts: the run-time
scales almost perfectly linear with scene size (Figure 7.18).
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Figure 7.15: Large scale result: The complete set of Hannover scans (126 million
points, 4GB of raw data). We train a class of considerably varying shapes using 35
example windows, all taken from the buildings marked in blue (16 million points).
We are able to detect a substantial fraction of further instance of the “window”
class on the rest of the data set. The computation time is approx. 2 minutes. Close-
ups show trained instances (marked blue) and one detection excerpt (marked red).
More detection close-ups are shown in Figures 7.16 and 7.17.
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Figure 7.16: Detection results for the big Hannover scene (see Figure 7.15). The
top shows the Wilhelm Busch museum which is part of the training region. The
bottom shows detected windows in a street of houses in the test region.
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Figure 7.17: Further detection results for the big Hannover scene (see Fig-
ure 7.15). A considerable percentage of all windows is detected.

|S| |S̃| # found
train 16,193,592 1,013,301 249
test 110,763,979 8,645,128 672
all 126,957,571 9,658,429 921
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Figure 7.18: Statistics for the complete Hannover scan. The point cloud was
cut in parts of different sizes. The measurements of the computation times for
detection show the linear scalability to big data.
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Figure 7.19: Multi-class learning results for the old town hall. Each class was
trained with 3 exemplars.

Figure 7.20: Single-class learning results for the old town hall. The model is
trained with 3 windows of each category as defined in Figure 7.8

7.4.5 Experiments on Old Town Hall Scan

Similar to Chapter 6 we conduct window detection experiments on the scan
of the old town hall in Hannover, for which we used the oriented normal
histogram as descriptors. The challenge with this scan is that it is of rather
low quality. We used the ground truth annotations shown in Figure 7.8. Fig-
ures 7.19 and 7.20 show qualitative evaluations of detection experiments with
the multi-class and the single-class learning. Multi-class training included 3
random exemplars of a chosen category and single-class learning combined 3
training examples of each window category into one detector, thus generating
a class with high variability. Except for few misses, the detection yields good
results with semantically correct part correspondences.
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Figure 7.21: Structure retrieval – 1st step: We use the directed orientation
histogram descriptor (left) and use 4 windows (each form a different class) to
train a multi-class window model. For each found window instance we generate
the descriptor for the next hierarchy level. The colored centroids represent the
resulting descriptors after projection onto the first principal components. Please
note windows of the same type inherit similar colors.

We also applied a hierarchical decomposition and extracted grid-like window
alignments. In a first step we trained a multi-class window model out of 4
training exemplars. From the detected instances we generate new descrip-
tors for the 2nd hierarchy level. With help of those a grid-like structure is
extracted. The results can be seen in Figures 7.21 and 7.22.

7.5 Summary

We have implemented an approach for a general graphical model for object
detection in large 3D scans. The model correlates all parts for both layout
and local shape. We introduced an efficient approximate inference algorithm
which robustly detects all object instances, including their correspondences.
On data with significant artifacts we have shown that it yields robust de-
tection results for whole shapes as well as their part correspondences. The
approach can handle more complex shapes. It is rotational invariant and
can decompose objects hierarchically into composite models with parts rep-
resenting simpler models themselves – which can be used to obtain a natural
structuring of the scene.

In experiments we have deliberately chosen to employ simple, basic descrip-
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Figure 7.22: Structure retrieval – 2nd step: We extract the grid-like structure of
windows in the old town hall scan. The red shapes (left image) denote the training
examples extracted from the 1st hierarchy level (Figure 7.21) of the hierarchical
model. The right side shows the detections of the base model which coincide
with the detection results of the second level. That way false positives of the 1st
level can be filtered out. Please note we actually define corner-like shapes in one
orientation only, but we also find rotated instances. The 2nd level descriptors for
windows are tuned less sensitive compared to the influence of spacial layout.

tors to focus the study on the effect of the correlated parts model and the
approximate inference. Even then, we already obtain remarkable results,
such as discovering a large number of windows in a city scene with few
false positives from a rather small training set, that have not been demon-
strated previously. The algorithm is fast and scalable; a single-threaded
non-optimized implementation can retrieve sets of object instances in large
3D scans with more than 100 million points within 2 min, a figure that has
also not yet been shown in literature.

In comparisons with other graphical models the correlated model clearly
outperforms. In general the results indicate that pairwise chain structures
are more suited for the detection scenario than star topologies, especially
if part correspondences are wanted. A pairwise chain structure performs
better, but it still allows for semantic flaws in the alignment. Those can be
mostly overcome if we use full constellation models. However, those are still
not robust enough when applied to object classes with high shape variability.
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Nonetheless there are still some limitations. The presented detection scheme
is (just as the chain model in Chapter 6) sensitive to missing data such as
holes in a scan, an issue which still needs further consideration. Another
limitation is that the overall detection could be further improved. First ex-
periments with integrating various different descriptors as in [KHS10] indi-
cate potential for improvement. Especially experiences with Bag-of-features
(or Bag-of-words) implementations which are used for implicit shape mod-
els [LLS04, LLS08, VSS12] yield a positive prospect. Since in the experiments
we have shown that a fully-correlated model is superior over star topologies,
integrating according descriptors might yield even better performance.
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8
Conclusion

Don’t let it end like this.
Tell them I said something.
rumors about the last words of

Pancho Villa (1877 - 1923)

We will conclude this thesis with a summarizing discussion about graphical
models for 3D object detection. We start with some final words regarding
the different graphical models. Then we will summarize the contributions
of this work to scene understanding and review existing limitations, and
depict approaches how to proceed further. Finally, this work concludes with
a prospect to the ‘future’.

8.1 Final Discussion on Graphical Models

Besides results from prior work this thesis has shown that 3D object detection
problems can be and should be approached utilizing part-based graphical
models. However, there is a number of decisions to take care of. The most
important one is the choice of the dependency structure. Each comes with
its benefits and drawbacks.

Star Topology: The star topology is one of the common implementations
of graphical models used for Computer Vision. They can be exactly inferred
with easy message passing or voting algorithms. But their strongest point
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is also the weakest. There is no part which is not dependent on a node
other that the root. That means, in case of missing geometry (i.e. holes
or heavy artifacts) those approaches can easily be made insensitive (up to
some extend) by just introducing robust potential functions. If geometry
is missing the model can simply assume a low score for the missing part.
Then, for reconstruction it can be, either be left out, or represented by the
mean of this part. However, the conditional independence structure of star
topologies implies that, as soon as the root node is assigned, all parts become
independent and the overall constellation of all parts might be semantically
inconsistent. This fact is observed in experiments.

Chain Topology: The chain implementation is a dual of the star topology.
In contrast to linking all nodes to a root there are single, exclusive links
between pairs. That approach makes the assignment for parts dependent
on their direct neighbors. Experiments indicate that this approach is better
suited for the detection goal defined in this thesis, i.e. consistent semantic
correspondences between all detected object instances. For models with low
part variations we can capture good results, but as soon as the model allows
for bigger variations, there might be certain ‘drifts’ and inconsistencies in
layout. Further, in contrast to star topologies it is unclear how to make this
approach insensitive to missing data without giving up the efficient inference
scheme.

Tree Topology: Tree topologies are a hierarchical combination of star mod-
els. Hence, they also inherit strengths and weaknesses of normal star struc-
tures. But every path from root to a leaf is also a chain. Thus, they combine
both star and chain topologies. Detection can be made insensitive to holes
since we might utilize robust potentials for full branches. Further each chain
structure would yield a better dependence structure in order to provide higher
semantic consistency. However, the consequence is that each branch itself is
sensitive to holes or we must include early back-tracking capabilities at the
cost of efficiency. Although in terms of semantic consistency the tree topol-
ogy is superior to star- or chain structures it sill leaves out some possibly
important dependencies.

Constellation model: Constellation models encode a fully connected graph
for the part positions, hence they encode full spatial consistency. But those
models cannot be exactly inferred in feasible time. Prior to this work the
most common approach is to use slow sampling approaches. Utilizing the
approximate inference scheme presented in Chapter 7 overcomes that issue.
However, experiments for models with strong variations in the local part
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appearance show that the final localization of parts might be not as precise
as desired.

Correlation model: The novel correlation model is also a fully connected
graphical model. But in comparison to a constellation model it also takes into
account all pairwise part dependencies for local shape. Thus, in comparison
to constellation models problems with part localization can be diminished.
The joint distribution can be efficiently approximated, but likewise the chain
inference it is sensitive to missing data.

8.2 Contributions and Achievements

The concepts and methods discussed and evaluated in this thesis yield a
clear and desirable contribution towards the goal of semantic 3D scene un-
derstanding: General object detection and automatic semantic alignment
for large quantities of object instances in complex scenes are a key tool to
facilitate sophisticated future applications on 3D data. We have seen how
to define statistical 3D object models with only a small amount of user in-
teraction. The main idea behind robust and efficient detection is to utilize
part-based graphical models which also encode natural correspondences for
all objects by just using the parts. We implemented models for two different
graph types and presented highly efficient detection schemes which allow for
interactive applications. The simple chain model can be exactly computed
and yields robust detections, however the model still allows for flaws in the
final parts alignment. The correlation model clearly outperforms the chain
approach (as well as other approaches). It comes with a hierarchical scheme
that constructs composite models which are capable to easily model and de-
tect more complex shapes – decomposing them into a hierarchical structure.
Further, the model is invariant on orientation of the input and comes with a
novel approximate message passing inference that allows for fast and robust
detections even for large city scans. Last but not least there is no compa-
rable prior approach also tackling the given general detection scenario. On
one hand prior work is mainly focused on classification. On the other hand
these approaches either rely on shapes which can be easily separated from
scenes or they need to encode prior knowledge like finding repetitive patterns
within facades. Thus, this thesis can be considered as a pioneer step towards
general scene understanding in 3D.
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8.3 Current Limitations

Besides all the strengths of the presented methods and models, there are still
some limitations. The following shows the major problems and indicates how
they could be addressed in future research.

Shape descriptors: On descriptor side the current approaches still have
room for improvements. For example, results using simple star-structured
implicit shape models exhibit good detection results. A major reason for
that is the utilization of more sophisticated descriptors.

The part-based detection scenario of this thesis raises the demand for precise,
well locatable shape descriptors. Popular techniques, such as histogram of
oriented gradients [DT05], yield descriptors which are insensitive to (high
frequency) shape variations, yet their principle is to decompose local shapes
into regions of blocks. Thus, they are robust but also less discriminative,
i.e. they might not yield sharply peaked predictions. Therefore they are less
suited when in comes to finding accurate shape correspondences.

The secret behind implicit shape models [LLS04] most likely hides in the
Bag-of-features approach. The main idea behind those implementations is
the following: Each point in a geometric data set can be described by its
matching score with the local shapes of a number of feature points (code
book), given some descriptor function. Most important however is, that these
feature points are generated such that their representations in shape space
are well separated from each other. Consequently, any point in the data can
be described in a most discriminative way: by the vector of distances (in
shape space) to all of the feature shapes. This fundamental idea also found
application in deformable matching implementations such as in [TBW+11].
Hence, it is advisable to extent the current implementations to a bag-of-
features inspired approach in a first step and afterwards explore that direction
further.

Parameters: For both of the approaches presented in this thesis the models
contain some meta parameters (e.g. ‘covariance scale’ or ‘sample noise’)
which need to be fixed manually. That is not a big issue since single detection
passes can be performed efficiently. Also, it might be desirable to have some
influence on the final model. Yet estimating the parameters which yield
the best performance might be cumbersome. This issue can be overcome
by applying a scheme which discriminatively learns all model parameters.
However, this is a difficult problem, given the user only annotated few positive
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Figure 8.1: Graphical models for a window. The red node depicts the root
node. The red edges represent bidirectional dependencies, the black arrows show
one-directional dependencies. From left to right: chain model, fully correlated
model with ‘chain’ approximation, star model, fully correlated model with ‘star’
approximation.

training data since we also need negative training exemplars. In general, it
is necessary to gain as much training data as possible in order to reliably
estimate high dimensional distributions.

Discriminative training can help to generate these data utilizing an
Expectation-Maximization algorithm: For a given scene, the user first spec-
ifies all occurring instances of the object class which is to be trained, as well
as a certain tolerance measure. Then we can sample further positive training
data which is within the tolerance in addition to random negative training
samples which are clearly out of bounds. Similar to support vector training
we can estimate an ellipsoidal separating hyperplane representing the de-
tection threshold of the Gaussian model. The volume of the ellipsoid then
represents the space from which we accept valid assignments. Now we can
iteratively refine the hyperplane by further adding false positive detections
to the negative training data until there is no more improvement possible.

This is a rather rough sketch for a discriminative but promising training
approach. However, there is a main issue. The quality of the final model
highly depends on the generated training samples as well as on their number.
In order to estimate a true non-rank deficient covariance matrix we need to
generateO(d2) many samples, where d is the dimensionality of the probability
distribution. Thus, we need to find a sophisticated strategy for that problem.

Sensitivity to holes: As already discussed, the presented algorithms are
sensitive to missing data. However, for correlation models that might be
overcome by modifying the approximate inference scheme. The intuition
behind this is that dual to the chain approximation (see Section 5.2.3), the
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original fully connected graphical model could also be approximated by a star
model with additional one-directional dependencies. Figure 8.1 depicts the
dependency structures for both models. The red edges indicate the message
passing routes (always towards the root node). For the star-like approxima-
tion messages are not recursively computed like for the chain approximation,
but they are directly sent to the root node, separately and in a successive
order. Each time a message is passed we can update the max-marginal distri-
bution of the root variable and (similar to the chain approximation) update
the overall probability distribution for all remaining variables. In that way
the recursive message passing structure can be avoided, thus allowing to ap-
ply techniques with robust potentials that make the inference less sensitive
to holes. An implementation and evaluation of such an approximation is
subject to future work.

Learning Parts: Sometimes the need for supervision in order to train a
semantic model is considered a limitation, even if it is only little. In those
cases it is necessary to not only estimate all model parameters but also to
automatically find consistent correspondences for all training data. That is
obviously a hard problem. A general solution for a fully connected model is
infeasible. However, an approach might be to utilize the inference scheme
that is used for detection also for learning the model, i.e. planning the number
and position of parts. Hence, it is most important that the inference can be
efficiently computed – which can be done with the presented schemes. A
benefit of such an approach is that we would also yield an inference order
that suits the detection scheme best.

8.4 Future Directions

Having sophisticated and robust high-performance tools like the ones pre-
sented in this thesis opens the prospect to a rich number of future appli-
cations. Most obvious tasks might be decomposing 3D scans into low reso-
lution primitives, e.g. for mobile or navigation applications. On the other
hand, techniques for artifact removal or super-resolution based on semantic
knowledge might result in a growing availability of high resolution models
captured with low-budget scanning devices or structure-from-motion tech-
niques. Even further, with the availability of robust semantic correspon-
dences for a large number of scans and with the help of additional techniques
for dense correspondence estimation, the effort for constructing generative
models for complex object classes can be drastically lowered since wearisome
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manual alignment becomes obsolete. This might entail a number of tools for
easy generation of morphable models, and with a growing number of such
generative models we should expect very desirable and powerful applications
that not only allow for automatic seamless hole filling, they also empower
semantic morphing in large complex 3D scenes. Eventually, a general solu-
tion for each of such applications demands general tools for basic semantic
understanding, for which this work shows a direction future research should
follow.
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