Eurographics Italian Chapter Conference (2007)
Raffaele De Amicis and Giuseppe Conti (Editors)

Human Robot Interaction in Virtual Reality

G. Di Gironimo, A. Marzano, A. Tarallo

University of Naples Federico II, Italy

Abstract

In this paper, we describe a framework which helps designers visualize and verify the results of robotic work cell
simulation in a Virtual Environment (VE). The system aims at significantly reducing production costs and error
sources during manufacturing processes. The means to achieve these goals are the development of a prototypical
VE for the support of robots planning tasks, reuse of animation events, and the implementation of customization
tools for animation elements and their behavior. By using advanced Virtual Reality (VR) techniques, the system is
also able to direct the focus of the observer to interesting events, objects and time-frames during robotic simula-
tions in order to highlight the Human Robot Interaction within the manufacturing systems.

Categories and Subject Descriptors (according to ACM CCS):
1.3.7 [Computer Graphics]: Animation and Virtual Reality

J.7 [Computers in Others systems]: Industrial Control and Process Control

1. Introduction

In recent years industrial engineering has been oriented to-
wards the development of flexible manufacturing systems,
[Cra97] and in particular man-machine interaction systems.
Research in robotics is looking for different applications
where a human being is to be conceived not exclusively as
an operator programming off-line the robot, but rather as a
system interacting with the machine by means of different
modes, [CCO00].

The Virtual Reality (VR) technology offers a highly po-
tential in terms of planning and development of manufac-
turing systems, [CDMO06a], [CDMO06b], [DDMO06]. In this
work, we propose a new research methodology that uses VR
techniques in the field of the so-called Anthropic Robotics.
Anthropic Robotics refers to the study of the technologies
and methodologies to develop automatic machines that op-
erate services in environments cohabited with the humans,
such as cooperating robots, [AAB*06].

The robotic systems, that work in the same environment
of humans, have to be endowed with strong characteristics
of autonomy, reliability and safety. Indeed, they have to be
able to respond to breakdowns, collisions or any unexpected
change of the operational scenario and to be able to guaran-
tee the human safety at the same time.

(© The Eurographics Association 2007.

2. The Virtual Reality framework

VR simulations need a specific hardware/software frame-
work, in particular:

e a powerful graphic and calculus system;

e a large screen able to display complex systems in 1:1
scale;

e input devices that allow the user to easily navigate and
interact with the virtual scene;

e a software (Simulation Manager) able to manage all the
aspects of the virtual simulation, [DMPO06];

e a 3D audio output device to increase the realism of the
Virtual Environment (VE).

The platform we have chosen as Simulation Manager is Vir-
tual Design 2 (VD2), by vrcom GmbH: VD2 is an exten-
sive tool containing many functions for product develop-
ment, from the creation of Virtual Environment to assembly
simulation, [AB98], or ergonomic analysis. However, one of
the most interesting feature provided by VD2 is a Software
Development Kit (SDK) that allows the programmer to en-
hance the basic functionalities of the system by developing
external modules that interface with the VD2 kernel. The
kernel of Virtual Design 2 consists of three main compo-
nents, [VAO6]: the interaction manager, the device manager
and the rendering kernel, see Figure 1.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

108 G. Di Gironimo, A. Marzano, A. Tarallo / Human Robot Interaction in Virtual Reality

Figure 1: VD2 kernel architecture.

The interaction manager controls all actions in the Vir-
tual Environment as well as the user’ s interactions with the
virtual scene. It can be configured with a single scene de-
scription file, that is a script file which describes the static
and dynamic configurations of the virtual objects. The de-
scription is based on events, actions and objects. The basic
idea is that certain events will trigger certain actions, prop-
erties, or behaviors. For example, when the user touches a
virtual button, a light will be switched on.

The device manager initializes and controls the hard-
ware devices used in the Virtual Environment. It provides
the mapping of physical devices to logical devices, as il-
lustrated in Figure 2. This concept simplifies scene build-
ing and enhances portability, limiting the concerns about
which tracker-system is used or which machine it is attached
to. The device manager supports the most common VR de-
vices, like Spacemouse, tracking systems (Polhemus, Ascen-
sion, ART, Vicon, Intersense), digital data gloves (Cyber-
glove, 5DT), and haptic systems (Phantom).

Figure 2: The VD2 device manager architecture.

The rendering kernel, based on OpenGL, loads the ge-
ometry, maintains a hierarchical scene graph and renders
it. The renderer supports multiple graphics pipes and more
than one rendering window per graphic pipe. The rendering
kernel also offers several built-in functions for stereo view-
ing. Stereo viewing can be achieved with dual pipe render-
ing, shutter, MCO-style, interlaced, or anaglyph (green-red
stereo).

2.1. The basic actions set

VD2 provides a complete set of commands for planning the
behavior of the VE in relation to the user interaction. Many
commands describe actions that operate on the objects in the
VE. Among the supported actions, the ones we have used for
robotic simulations are:

e grabbing: what makes the virtual experience really “in-
teractive” is the possibility to grab virtual objects and
to move them through the scene. The “grab” action
first makes an object “grabbable”. Then, when the hand
touches it, it will be attached to the hand.

e changing object attributes: these actions allow the user
to change some objects attributes, such as materials, visi-
bility, position, etc.

e sweeping: this action traces the movement of an object in
the VE, by replicating its shape.

e animations: some actions allow the user to record and
playback the movement of one or more objects of the vir-
tual scene.

e gravity: this feature increases the realism of the vir-
tual world, making objects fall in a certain direction and
bounce off some “floor objects”, that can be specified sep-
arately for each object.

e constraints: the VD2 kernel allows the user to constrain
the movement of an object in the virtual environment.
These constraints provide an easy way to define simple in-
teractive kinematics, such as virtual doors and car hoods.
By default, when the constrain action is active, the object
is linked to the virtual hand, so that it tries to follow the
hand’s motion but only within the constraint.

2.2. Dynamic Shared Objects

As aforementioned, the features provided by the VD2 kernel
can be enhanced by functions defined in external modules,
called Dynamic Shared Objects (DSO).

Generally, each DSO module contains a set of functions
developed for a specific application target, as a plug-in. The
basic installation of Virtual Design 2 already provides many
plug-ins, for instance to manage interactive menus or to
make snapshots of the virtual scene.

A DSO module is a dynamically linkable object file,
which allows the linking of the module to the VD2 kernel
to be made at run-time, [PW72]. Moreover, the module is

(© The Eurographics Association 2007.

G. Di Gironimo, A. Marzano, A. Tarallo / Human Robot Interaction in Virtual Reality 109

Figure 3: DSO modular approach.

shared, meaning that many different processes can share the
library functions at the same time, see Figure 3. This modu-
lar approach offers three main benefits:

1. The object code is loaded in the physical memory only
once and then it can be used by multiple processes via
virtual memory management, [Dre06];

2. It is easy to add new features to Virtual Design 2 and
maintain them;

3. The object code is linked to the VD2 kernel only when the
features implemented in the module are really needed.

The functions provided by DSO modules can be used as well
as the basic commands, by specifying them in the scene de-
scription file.

3. DSO for robot control

The VD2 computational engine does not provide native sup-
port for defining and handling kinematic chains. For this rea-
son we developed a DSO module, called robot.so, to manage
open kinematic chain manipulators in Virtual Reality. The
main goals are:

e The plug-in has to be flexible, so that the same functions
have to be suitable for different types of robot;

e The robot has to be able to reproduce an user-defined path;

e The user has to be able to manage the robot in real-time;

e Any eventual end-of-stroke condition has to be signaled
to the system.

3.1. The robot hierarchical model

In order to use the functions provided by the DSO module,
the first step is to arrange the geometric model of the robot.
In general, a kinematic chain is a set of rigid elements, called
links, connected by joints. A joint is essentially a constraint
on the geometric relationship between two adjacent links.

(© The Eurographics Association 2007.

Since VD2 does not provide a really constraint-based Vir-
tual Environment, the scene-graph tree structure has been
used to keep the logical sequence of the different links. Thus,
each joint of the chain is represented by an assembly node,
as shown in Figure 4.

/?\

link_1 axis 2 @

N

()

Figure 4: The robot hierarchical model.

Thanks to the hierarchical structure of the scene graph,
the programmer does not have to be concerned about the nu-
merical solution of the direct kinematic problem. Indeed, a
single geometric transformation, such as a rotation about an
axis, can be defined for a specific joint of the chain, without
concerns about the configuration of the other joints. How-
ever, since the tree structure of the scene-graph is acyclic,
the hierarchical model described above is only suitable for
open kinematic chains.

3.2. Robot Configuration file

One of the most important goals is the flexibility of the mod-
ule: in other words the DSO module should be able to handle
different types of kinematic chain, independently from num-
ber and type of the axes the robot is equipped with. In order
to achieve this, the kinematic chain has to be described in a
configuration file, which specifies not only names of joints
and axes, as defined in the robot scene-graph, but also type
(revolute or prismatic) and working range of each axis, see
Figure 5.

3.3. Robot task planning

Early industrial robots were programmed by moving the
robot to a desired goal point and recording its positions in a
memory, which the sequencer would read during playback.
During teaching phase, the user can guide the robot directly
by hand, or through the interaction with a teach pendant, that

110 G. Di Gironimo, A. Marzano, A. Tarallo / Human Robot Interaction in Virtual Reality

IRaoNcly *
IRBT600 configuration file
Sinvax:
ROBOT = int Robot 10
JOINT = string Name of the joint assembly node, as defined in the scene-graph
AXIS = string Newe of the Rxis geowsetry, as defined in the scene-graph
QMAX, QMAX = float Axis workimg range
TYFE = int Joint type (1=REVOLUTE, 2=PRISMATIC)
" 00 = float Initial joint positien.

ROBOT = 0
{

JOINT joint_1
{

TIFE = 1;
QMIN = -180;
QUAX = 180;
qo = 0

AXIS = axis_0;

}
JOINT joint_2

TYPE = 13
QMIN = 60
QMAX = B0
qo = o

AXIS = axis 1;

}
JOINT joint_3
{

THOE w2

Figure 5: An Industrial robot configuration file.

is a hand-held control terminal which allows to move each
joint of the manipulator, [Cra03].

The DSO module provides functions to simulate in Virtual
Reality both aforementioned teaching systems. Indeed, it is
possible to control the kinematic chain through the flystick,
that is a wireless interaction device designed especially for
VR applications, or to make the robot follow a tracked ob-
ject, such as the virtual hand.

Moreover, the set of actions described in the section 2.1,
can be specified in the scene description file, in order to carry
out the robotic simulation as realistically as possible.

3.3.1. Path planning

The DSO module allows to define different postures for the
robot, by specifying each of them in the scene description
file. Moreover, it is possible to handle the kinematic chain in
real-time, by relating an input from a VR device, such as a
button of the flystick, to the handling of a specific joint, see
Figure 6.

&7

Figure 6: Real-time path planning.

In this way, the user causes the robot to assume the de-
sired posture, by using the flystick as a teach-pendant. Each
posture can be stored in a file, so that the user can define
a point-to-point path. The reproduction of the defined path
then can be triggered by an event, as it happens for any other
action in the VE. Thus, the features described above pro-
vide an easy way to plan a collision-free path for the robot

task. Furthermore, the integration with the underlying soft-
ware architecture also allows the user to plan quite complex
behaviors, so that the robot can manipulate objects or man-
age any eventual collision, see Figure 7.

Figure 7: The manipulator reproducing an assembly task.

3.3.2. Direct end-effector positioning

Generally, finding the joint angles for a given position of
the end-effector in the operational space requires an inverse
kinematic approach, as described in [ZB94]. Since this anal-
ysis is limited to open kinematic chain manipulators, a sim-
pler but effective methodology has been adopted.

As aforementioned, VD2 provides a specific action that
cause a virtual object to follow the user hand, within a speci-
fied constraint. For instance, an object can only rotate about a
defined axis, according to the movement of the virtual hand.
Unfortunately, each constraint is related to a single object in
the scene-graph and it is treated separately from the other
constraints. In other words, the user cannot define directly
kinematic relationships among two or more virtual objects.

This approach is suitable for modeling simple kinematics,
such as a virtual door, but it can lead to an unexpected be-
havior when it is applied to a kinematic chain, because gen-
erally each link of the chain will move independently from
the other elements, as illustrated in Figure 8.

In order to avoid the breaking of the kinematic chain, each
constraint operates on a different joint-node of the hierarchi-
cal model described in section 3.1, rather than directly on the
geometries of each link.

For instance, according to the kinematic chain shown in
Figure 9, the first joint-node contains the whole kinematic
chain, the second includes only the last two links and finally
the third node is just the last link of the chain.

Since all the geometries belonging to a specific joint-node

(© The Eurographics Association 2007.

G. Di Gironimo, A. Marzano, A. Tarallo / Human Robot Interaction in Virtual Reality 111

Figure 8: The kinematic chain breaks during the constrained
movement.

act as a single “rigid object” during the movement, the geo-
metric relationships among the different links will be kept in
any case.

Figure 9: The hierarchical modeling: the joint-nodes of a
kinematic chain.

Many constraints can be triggered by a single event, such
as the collision between the virtual hand and a specific link
of the robot. In this way, the user can drag the whole kine-
matic chain by “grasping” the end-effector until the robot
reaches the desired position, see Figure 10.

At the same time, it is also possible to move by hand only
one or more links of the chain.

4. Conclusions and future work

As aforementioned, the library functions allow the user to
easily plan an intended task for any type of open kinematic

(© The Eurographics Association 2007.

Figure 10: The kinematic chain being dragged by the virtual
hand.

chain manipulator: it is only necessary to prepare the robot
scene-graph and then edit the configuration file according to
the type of chain. Since the DSO module is completely inte-
grated with the underlying software framework, the user can
take benefit from all the others functionality provided by the
Simulation Manager. For instance, it is possible to display
the working area of the robot, highlight eventual collisions
between the robot and any object in the VE or trace the path
of the end-effector (sweeping) during the task execution, see
Figure 11.

Figure 11: The sweeping action applied to the end-effector.

The basic command set can also be used to simulate spe-
cific robot behaviors triggered by certain events, eventually
generated by external modules. Thus, the modular approach
adopted by VD2 kernel could be used to interface a real sen-
sor network with a virtual robot cell. In this way, it would be
possible to test the safety strategies adopted to control robots
that operate in anthropic domains.

However, the plug-in has some limitations:

e The user cannot define a path in the operational space di-
rectly, because the library is not able to perform inverse

112 G. Di Gironimo, A. Marzano, A. Tarallo / Human Robot Interaction in Virtual Reality

kinematic operations. Indeed, the solution of the inverse
kinematic problem would break the requirements of flexi-
bility of the DSO module, since it is strictly depending on
the particular robot type. Moreover, it would need to con-
sider also eventual kinematic redundancy issues, [SS00];

e The module can manage only open kinematic chain ma-
nipulators;

e A dynamic model of the kinematic chain has not been im-
plemented.

Furthermore, in order to use the function set provided by
the DSO module, the user has to prepare the robot scene-
graph and the related configuration file manually. Thus, a
future goal will be to develop a graphic wizard to lead the
user through the configuration process.

5. Acknowledgments

The authors, who have equally contributed to this work,
thank the vrcom GmbH for the indispensable technical sup-
port and Firema Trasporti SpA for the case study. Further the
authors deeply thank Prof. Francesco Caputo and Eng. Ste-
fano Papa for their helpful discussions and suggestions about
future works. The present work has been developed with
the contribute of POR Campania 2000-2006 - MIS 3.16,
performing the activities of the Competence Center for the
Qualification of Transportation Systems founded by Campa-
nia Region.

References

[AAB*06] ALAMI R., ALBU-SCHAEFFER A., BICCHI
A., BISCHOFF R., CHATILA R., DE LUCA A., DE SAN-
TIS A., GIRALT G., GUIOCHET J., HIRZINGER G., IN-
GRAND F., LIPPIELLO V., MATTONE R., POWELL D.,
SEN S., SICILIANO B., TONIETTI G., VILLANI L.: Safe
and dependable physical human-robot interaction in an-
thropic domains: State of the art and challenges. In
IROS 2006 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. Workshop on Physical Human-
Robot Interaction in Anthropic Domains, Beijing (Chine)
(Oct. 2006). http://www.laas.fr/~felix/publis/
pdf/iros06ws.pdf.

[AB98] ABSHIRE K., BARRON M.: Virtual mainteinance:
Real world application within virtual environments. In
Proc. of Realiability and Maintainability Symposium,
Ohio (1998).

[CCO0] CHEN D., CHENG F.: Integration of product and
process development using rapid prototyping and work
cell simulation technologies. Journal of Industrial Tech-
nology 16, 1 (2000), 2-5.

[CDMO06a] CaApuTO F., DI GIRONIMO G., MARZANO
A.: Approach to simulate manufacturing systems in vir-
tual environment. In Proc. of the XVIII Congreso Interna-
tional de Ingenieria Grdfica (May 2000).

[CDMO6b] CApruUTO F., DI GIRONIMO G., MARZANO
A.: Ergonomic optimization of a manufacturing system
work cell in a virtual environment. In Proc. of 5th In-
ternational Conference on Advanced Engineering Design
(June 2006). Selected paper for the Acta Polytechnica
Journal, forthcoming.

[Cra97] CRAIG J.: Simulation-based robot cell design in
adeptrapid. In Proceeding of the 1997 IEEE Interna-
tional Conference on Robotics and Automation, ICRA, Al-
buquerue (Apr. 1997), vol. 4, pp. 3214-3219.

[Cra03] CRAIG J. J.: Introduction to Robotics: Mechanics
and Control. Prentice Hall, 2003.

[DDMO06] DE AMICIS R., DI GIRONIMO G., MARZANO
A.: Design of a virtual reality architecture for robotic
work cells simulation. In Proceeding of Virtual Concept
2006, Playa del Carmen, Mexico (Nov. 2006).

[DMP0O6] D1 GIRONIMO G., MARZANO A., PAPA S.:
Design of a virtual reality environment for maintainabil-
ity tests and manufacturing systems simulations. In Pro-
ceeding of International Conference CIRP-ICME 2006,
Ischia, Italy (July 2006).

[Dre06] DREPPER U.: How To Write Shared Libraries.
Red Hat, Inc., Aug. 2006. http://people.redhat.
com/drepper/dsohowto.pdf.

[PW72] PRESSER L., WHITE J.: Linkers and loaders.
ACM Computers Surveys 4, 3 (Sept. 1972), 150-151.

[SS00] Sciavicco L., SICILIANO B.: Robotica industri-
ale - Modellistica e controllo di manipolatori. McGraw-
Hill, 2000.

[VAO6] VA: Virtual Design 2 - Programmers Guide 4.5.1.
vrcom GmbH, 2006.

[ZB94] ZHao J., BADLER N. I.: Inverse kinematics po-
sitioning using nonlinear programming for highly artic-
ulated figures. ACM Transactions on Graphics 13, 4
(1994), 313-336.

(© The Eurographics Association 2007.

http://www.laas.fr/~felix/publis/pdf/iros06ws.pdf
http://people.redhat.com/drepper/dsohowto.pdf

