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Abstract

Modeling 3D shapes is a specialized skill not affordable to most novice artists due to its complexity and tediousness. At the same
time, databases of complex models ready for use are becoming widespread, and can help the modeling task in a process called
example-based modeling. We introduce such an example-based mesh modeling approach which, contrary to prior work, allows
for the replacement of any localized region of a mesh by a region of similar semantics (but different geometry) within a mesh
database. For that, we introduce a selection tool in a space of semantic descriptors that co-selects areas of similar semantics
within the database. Moreover, this tool can be used for part-based retrieval across the database. Then, we show how semantic
information improves the assembly process. This allows for modeling complex meshes from a coarse geometry and a database
of more detailed meshes, and makes modeling accessible to the novice user.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—Shape H.3.3 [Information Storage and Retrieval]:

Information Search and Retrieval—Search Process

1. Introduction

Modeling 3D shapes is a tedious task often performed by skilled
artists. From the modeling of the global shape of a human to the
sculpting of geometric details such as wrinkles or muscle bulges,
technical skills, talent and time are necessary. These requirements
make the task generally ill-suited to novice users.

Upon realizing that the space of possible shapes is often lim-
ited — for instance, a human is composed of a head, a torso,
two arms and two legs — researchers have recently resorted to
the use of mesh databases and example-based modeling. To date,
this has remained limited to sketch-based interfaces to query en-
tire meshes [XXM* 13, FWX*13], or to rigidly replace segmented
parts of an input mesh with other parts from the database [KJS07,
CKGKI11, CKGF13]. Even for experts, modeling often involves
repetitive tasks that are more efficiently performed by re-using
pieces of existing models in databases. These example-based ap-
proaches are thus expected to benefit the expert as much as the lay-
man. Alternatively, an option is to resort to parameterized shapes
(e.g., Poser [Smil5] for humans and animals) but limiting the di-
versity of the obtained results by a relatively small set of adjustable
parameters.

We leverage recent advances in 3D mesh semantic description as
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well as the development of mesh databases to propose an example-
based modeling framework suitable for the modeling of smooth
shapes by novice users. To do so, we first propose an efficient selec-
tion tool that selects all regions similar in semantics to a brushed
area within a mesh database. This makes use of a continuous se-
mantic descriptor introduced by Léon et al. [LBLV16], that is, a
high-dimensional descriptor able to discriminate between points
sharing the same discrete label. Second, we show how semantic
information also helps in the process of aligning and gluing shapes
together. We demonstrate that our tool finally allows for the mod-
eling of complex geometries by starting with a coarse 3D model
and progressively refining it by replacing localized regions by re-
gions of similar semantic (albeit geometrically different) within a
database of more detailed meshes.

2. Related Work

Example-based shape modeling is an important challenge in com-
puter graphics. The objective is to ease the designers’ work and
speed up the production of 3D models. We can broadly classify
existing techniques into: (1) manual editing tools and (2) part as-
sembly based on consistent segmentation.

Manual editing. Example-based modeling was pioneered by
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Funkhouser et al. [FKS*04]. In their approach, the user finds some
parts of interest from an existing 3D shape database, cuts those
desired parts using explicit scissoring, and glues them together to
create a new shape. This approach introduces three main compo-
nents: an interactive segmentation tool, a 3D local shape retrieval
algorithm (to retrieve parts of interest) and a part composition tool.
Several methods follow this framework, and enable a manual com-
position/modification of a 3D shape [SBSCO06,SS10, TSS*11].

Part assembly based on consistent segmentation. Tech-
niques presented above have the drawback of requiring tedious
manual mesh scissoring and composition. To fasten part re-
trieval and composition, most recent methods pre-process the
database by a compatible segmentation and labeling. Such
consistent semantic labeling of a whole 3D shape database
may be obtained by data-driven techniques [KH10, vKTS*11],
co-analysis [HKG11, SVKK*11, vVKXZ*13] or by fitting a shape
template [KLM™*13]. After this offline pre-process, each shape
of the database is cut into consistent meaningful parts, often
associated to semantic labels (e.g, harm, leg, torso and head in
the case of humanoid models). Such consistent semantic labeling
is perfectly suited for modeling by assembling parts. Indeed, this
allows to have a direct correspondence between the semantic parts
of all objects of the database and thus allows to easily compose
parts. Kreavoy et al. [KJSO7] were the first to use consistent
segmentation for model composition. With their system, the user
just has to click on a part of a target model to exchange it with
another part (with the same label) from a different model. This idea
was extended by Chaudhuri and Koltun [CK10] who introduce an
algorithm for automatic suggestions of novel components to aug-
ment a prototype shape. Chaudhuri et al. [CKGK11] improved this
suggestion system by incorporating semantic relationships between
parts, using a probabilistic model. Kalogerakis et al. [KCK12]
considered a similar model for automatic component-assembly.
Still based on a prior consistent shape labeling, Averkiou et
al. [AKZM14] propose a low-dimensional parametrized space to
explore easily the collection of 3D models and synthesize new
arrangements of parts.

The main weakness of these techniques based on consistent seg-
mentation/labeling is that their degree of freedom is limited by the
pre-defined semantic domain. For instance it is impossible to glue
an ear on the head of a 3D model, if these two components do
not possess different labels in the database. On the other side of
the spectrum, manual editing methods are purely geometric and
thus lack semantic information that could help the editing process.
In this context, from a manually selected region of interest, Kim
et al. [KLM*12] proposed a method to compute fuzzy correspon-
dences on meshes from a non-segmented database. This method re-
lies only on corresponding geometric features across the database
meshes. More recently, a continuous semantic representation has
been introduced recently by Léon et al. [LBLV16]. Given a seg-
mented and labeled 3D mesh, their descriptor consists of a set of
geodesic distances to the different semantic labels. This local mul-
tidimensional signature effectively captures both the semantic in-
formation (and relationships between labels) and the underlying
geometry and topology of the shape. Therefore, it provides more

(a) Head

(b) Foot (¢) Hand

Figure 1: [llustration of the semantic descriptor of Léon et
al. [LBLV16]. Here, a three-dimensional descriptor is considered,
and each dimension represents the distance to points labeled as
(a) Head, (b) Foot and (c) Hand respectively. Blue represents small
distances while red represent larger distances.

precise results than the Kim et al. [KLM™* 12] method. We rely on
this representation to propose a new shape editing framework that
bridges this gap between part assembly (which is too constrained
by a prior segmentation) and manual editing (which requires te-
dious manual operations).

3. Overview

Given a database of 3D shapes, our example-based modeling
framework is illustrated in Figures 6 and 7. As offline pre-
processing, all shapes are first segmented and semantically
labeled, using one of the numerous existing mesh labeling meth-
ods [KH10,HKG11,SvKK*11,vKXZ*13]. We also compute, from
this discrete labeling, the continuous semantic descriptor from
Léon et al. [LBLV16] (see Section 4, Fig. 1). It computes, for each
vertex, a multidimensional signature that describes its semantic
context.

The user starts the modeling process with an arbitrary 3D shape
from the dataset. Then, using a brush painting interface, the user
can select an arbitrary region from this shape that needs to be re-
placed (see Fig. 7a). This input region is analyzed and approxi-
mated by an ellipsoid in the space of the semantic descriptor (Sec-
tion 5). This fitted ellipsoid allows for a fast query of semantically
similar target regions in the rest of the database (Fig. 7b). The user
can thus replace the input region by any of the retrieved target re-
gions. The geometric replacement is done by first aligning both
regions (Section 6.1) and then smoothly merging the aligned mesh
parts (Sec. 6.2 and Fig. 7¢). Those two steps do not consider only
geometric criteria but also rely on the semantic description to pro-
duce a realistic result.

4. Semantic description

Semantic labels are useful for defining the correspondence be-
tween segments, an operation commonly performed in example-
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based modeling [KJS07,XXM*13]. However, defining a unique la-
bel for each segment restricts its use to correspondences between
segments, and thus may only be useful to replace entire mesh seg-
ments. In practice, a user’s selection will often lie in-between two
segments or represent a small subset of a segment. The user could
as well be interested in a different level of detail: for instance, a
user may want to select a foot, when the segmentation and labeling
has produced a unique segment for the entire leg. We thus resort
to a continuous extension of this labeling process, akin to soft seg-
mentation.

To obtain such a continuous semantic description, we use the
multidimensional descriptor of Léon et al. [LBLV16]. As input,
this descriptor takes a segmented and labeled mesh along with a
random sampling of each segment. Then, each dimension of the de-
scriptor corresponds to one label, and its value is computed as the
geodesic distance to the closest sample bearing this label. To com-
pute this descriptor, we use the exact geodesic distance of Surazh-
sky et al. [SSK*05], making it robust not only to rigid transforma-
tions, but also to changes in mesh resolution. Figure 1 illustrates
different dimensions of the descriptor. This descriptor gives a con-
tinuous notion of semantics — for instance, determining that a point
is within the Head region but close to the Neck — while also carry-
ing geometric information.

5. Correspondence and selection

The first step is to determine regions within a mesh database that
are similar to the user selection on the input mesh. This similar-
ity measure is taken as a semantic similarity, that is, the semantic
descriptors within these regions should be similar in term of Eu-
clidean distance between descriptors. This process leads to a corre-
spondence between an input region and a set of semantically similar
regions in the mesh collection.

To avoid disconnected or highly distorted regions, we represent
the user selection by a high-dimensional axis-aligned ellipsoid in
the descriptor space. Each axis of the ellipsoid corresponds to a se-
mantic label and the axis length models how that particular label
varies within the selected area. The ellipsoid representation is com-
pact, fast to compute and allows for the easy matching of selected
areas. In fact, given an ellipsoid representing a selection on the in-
put mesh, retrieving a similar selection on any other mesh merely
amounts to selecting all vertices falling within the ellipsoid in the
descriptor space. It is however important to note that these ellipsoid
live in the high-dimensional space of the semantic descriptors (with
as many dimensions as labels) and that user selections on the 3D
mesh need not be elliptical.

To find the parameters of the ellipsoid representing a selected
area, we first initialize it with a bounding hypersphere encompass-
ing the descriptors of all vertices within the selected area (Sec. 5.1).
We then refine it in an optimization step (Sec. 5.2).

5.1. Initialization

An axis-aligned ellipsoid in an n-dimensional space is defined by
the following equation:

_p)2
y bty M
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(b) Initialization

(¢) K-ring

Figure 2: Overview of the selection and correspondence process.
(a) Manual selection of a reference region on the paw. (b) Initial-
ization with an hypersphere. (c) K-ring around the reference patch,
for k = 3. (d) Final selection on the reference model with the ellip-
soid. Vertices in blue are classified as part of the hypersphere or
the ellipsoid. In (c), vertices in red are part of the original selec-
tion, and vertices in cyan and yellow are part of the 3-ring around
it.

where {a;};—1.., are the parameters (axis) of the ellipsoid and p =
{pi}i=1.n its center.

Since we will rely on iterative optimization techniques, the ini-
tial values for the {a;};—|., parameters have to be chosen carefully
so that they are not too far from the expected final values. For the
initialization, we use a bounding hypersphere of radius r in the de-
scriptor space H, with r defined as follows:

r=|ld(p) —d(q)ll2 (@)

where p is the center of the selected region in descriptor space, g is
the selected vertex farthest from p in term of descriptors, and d is
the semantic descriptor. Figure 2a illustrates this initialization. As
we can see in figure 2b using this descriptor, the selection process
accounts for symmetries.

5.2. Energy minimization

The ellipsoid parameters completely describe the user selection,
thus they are used as a region descriptor for part-based retrieval.
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In order to compute the parameters of the ellipsoid that fits best the
user selection S, we minimize the energy:

2
=Y 1 < § i) =di)? 1) 3

s€S i=0 G

where d;(s) is the i/ dimension of the n-dimensional semantic de-
scriptor computed for vertex s and the center p. S is the selected
region S extended with a k-ring.

The energy term is computed for every vertex s inside the ref-
erence selection and inside the k-ring around this region, as shown
on Figure 2c. The k-ring region is a set of negative examples which
don’t belong to the selected region. They are used to evaluate the
parameters of the ellipsoid. The indicator function 1 evaluates the
consistency between the geometric selection and the semantic el-
lipsoid. If a vertex is inside the selected area and its descriptor is
inside the ellipsoid, then 1y = 1 (we refer to them as positive ex-
amples). Likewise, if the vertex is outside of the selected area (but
within a k-ring — typically k = 3) and its descriptor is outside of the
ellipsoid, then 1, = 1 (we call them negative examples). In every
other case, 15 = 0 and the energy contribution for this vertex is not
computed (eq. 4).

Lif Y, G=d6) gy apdses

a;z
L= qrif gy @db’ > jangse§—s @

0 otherwise

This method allows for a tight ellipsoid, and prevents the ellip-
soid to enclose too many vertices that do not belong to the initial
brushed area. Using the k-ring around the user selection brings a set
of negative examples, that are not part of the selection, to evaluate
the parameters of the ellipsoid. Figure 2c illustrate this k-ring for
the previously considered selection.

The energy function minimization is performed using the
COBYLA algorithm [Pow94] which supports derivative estima-
tion, as the derivative of the energy does not have a simple closed-
form expression due to the indicator function 1.

Given the optimized parameters of the ellipsoid, vertices are
classified according to their descriptors. Figure 2d illustrates this
classification. We notice on Figure 2d that the descriptor accounts
for symmetry. Compared to the hypersphere initialization, shown in
Figure 2b, the ellipsoid brings the selection closer to the reference
query, shown in Figure 2a.

5.3. Query on the database

Once optimal parameters of the ellipsoid are computed for the user
selection, we obtain similar regions among other meshes by de-
termining, for each vertex of these meshes, whether its seman-
tic descriptor lies within the ellipsoid in the descriptor space.
The vertex is selected if and only if its descriptor d is such that

2
Yo W=l 1 The results illustrated in figure 2d, 4b, 6b, and

a
7b are obtained using this method.

(a) Input mesh hole boundary

(b) Rings of vertices

(¢) Semantic alignment of the target region with input mesh boundary

Figure 3: Semantic alignment of the corresponding rings of ver-
tices: a) mesh hole boundary, b) example of rings of vertices, c)
the second ring is chosen as corresponding set of vertices and the
target region is aligned with a rigid ICIP.

6. Automatic geometry transfer

Once the user has chosen a target region to replace the selected
region from the input mesh, our algorithm performs a semantic-
aware geometry transfer. First, we align both regions, and then, the
target region is smoothly and realistically blended onto the input
mesh.

6.1. Automatic alignment

Merging the target region to the input mesh first requires the to-
be-exchanged regions to be aligned. Hence, the target region is
first translated and scaled to fit the selected input region. After this
coarse alignment, the selected region of the input mesh is removed.
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Due to the semantic nature of our selection tool, this may result in
several holes in the input mesh — for instance, if a user brushes a
foot, both feet will be selected (Fig. 2).

Then, the target region is associated with its closest hole in the
input mesh and an iterative closest point (ICP) algorithm [BM92] is
processed to stitch both meshes. Standard ICP uses geometric fea-
tures such as the euclidean distance, curvature, and angle difference
between normals to put vertices in correspondence and rigidly re-
orient the target mesh region to the input mesh hole. However, us-
ing only geometric information to compute these correspondences
may result in unnatural stitching (e.g., see the cat’s head in Fig.
4c). To resolve this issue, we integrate the semantic descriptor in
the ICP algorithm, by replacing the geometric correspondence by
a semantic correspondence between vertices from the input mesh
hole boundary and vertices from the target region. Our algorithm is
the following, as illustrated in Figure 3: we defines several rings of
vertices on the target region, starting from the boundary and mov-
ing away from it. We then select from these rings, the one that is
the closest to the input mesh boundary with respect to its seman-
tic descriptor. In practice, we define the semantic distance sd(v,S’)
between a vertex v from the input mesh boundary and a ring of
vertices S’ from the target region as:

sd(v,S') = min, [d(v) —d()||». 5)

with d is the semantic descriptor. The distance between the input
mesh boundary S and the ith ring S/ is then given by:

j=n
d(S,8)) =Y sd(v;,Si), (6)
j=0

The corresponding ring S, is then selected as argmin(d(S),S).
We can then find a correspondence between each vertex of S, and
S, as:

v/ = argminwd (x,v), (7
xeS]
where wd(x,v) is a weighted sum taking in account the semantic
descriptor and the geometry.

wd(x,v) = o ||[v —x||2 + 0y arccos(Ny — Ny)
05 (ev — cx) +oul[d(v) — d(x)]|2,

where terms correspond respectively to the Euclidean distance
between the vertices, the normal difference of the normals at the
vertices, the difference in the local Gaussian curvatures at the
vertices and the distance in the descriptor space at the vertices. We
found the following weights to perform well in practice: ot = 0.2,
o =0.,03 =0.2,04 =0.4.

®)

This new semantic correspondence results in an improved ICP
alignment, as compared to classical geometric ICP, as illustrated in
Figure 4.

6.2. Mesh fusion
Now that the target region is well aligned with the input mesh, and

that corresponding surfaces are overlapping around their opened
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(a) Final selection (b) Corresponding patch

(¢) Geometric alignment

(d) Semantic alignment

Figure 4: Alignment of the corresponding patch on the cropped
mesh: a) semantic selection on a given mesh, b) corresponding
patch on an other mesh, c) geometric alignment, d) semantic driven
alignment.

border, it becomes possible to merge both meshes. For this step
we consider the SnapPaste algorithm proposed by Sharf er al. [SB-
SCOO06]. This algorithm is an iterative process that performs a soft
ICP by calculating a partial transformation between the snapping
regions of the two parts alternatively, until convergence. In our
work, we propose to use the semantic descriptor to define the cor-
respondence between vertices, similarly to the rigid ICP alignment
performed in the previous step. We thus consider the vertex dis-
tance defined in Eq. 8. The method iteratively transforms the snap-
ping regions to produce two overlayed meshes. Finally, we use a
local re-meshing of the snapping regions in order to generate a sin-
gle artifact-free mesh.

When the selection results in multiple connected components, both
the alignment and mesh fusion are performed independently for
each connected component.

Figure 5: Database segmentation examples for bipeds and
quadrupeds.
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(a) Input mesh (front) (b) Corresponding patch

(d) Input mesh (side)

(¢) Stitched mesh (front)

(e) Stitched mesh (side)

Figure 6: Geometry transfer example. a, d) semantic selection on
a given mesh, b) corresponding patch on another mesh, ¢ & e) re-
sulting mesh after stitching (front and side views).

7. Experiments

Parameters from SnapPaste allow for additional control on the re-
sult. Specifically, the elasticity governs the rigidity of the transfor-
mation and the maximum number of iterations allows for a speed-
quality trade-off. We also let the user fix an overlapping region size
parameter which artificially increases the size of the ellipsoid on
the target mesh. This parameter sometimes offers better alignment
for snapping.

A result including multiple connected components due to the
symmetry of labels can be seen in Fig. 6. Fig. 6a and 6d show the
selected patch on the input mesh (front left leg, in red on the figure).
Fig. 6b, shows the corresponding patch on another dog mesh. One

can notice the symmetry in the semantic selection. Fig. 6¢ and 6e
present geometry transfer results from the patch depicted in green
on both front legs onto the input mesh. Due to the symmetry of the
legs, both the left and right legs have been transfered at the same
time.

Another example is provided in Fig. 7, which is more challeng-
ing because the junction between the parts to transfer is located on
the elbow. Moreover, both meshes have different resolutions and
poses. The definition of corresponding rings of vertices, described
in Section 6.1, helps finding the correct alignment inside the el-
bow. We can see that, while the alignment is performed efficiently,
the target mesh regions are correctly transfered. Nevertheless, the
difference in quality between the two meshes (resolution, triangle
size, efc.) produces some artifacts.

(a) Input mesh (b) Corresponding

patch

(¢) Result mesh front view

Figure 7: Geometry transfer example. a) semantic selection on a
given mesh, b) corresponding patch on another mesh, c) resulting
mesh after stitching.

Table 1 gives average times (in milliseconds) of the main steps of
the proposed method, on a standard desktop computer without GPU
optimization. Note that the ellipsoid selection, the correspondence
and the semantic alignment are achieved in near real time. These
three computation times only depend on the number of triangles
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in the mesh, whereas the stitching time depends on the SnapPaste
parameters and stopping conditions.

Ellipsoid | Corresp. | Alignment
Time 152.4 347.7 17.9

Stitching
6.36 x 10°

Table 1: Execution times in milliseconds

8. Perspectives and conclusion

We have extended example-based modeling approaches to allow
for the replacement of more arbitrary mesh regions that extend
over multiple segments, or that are contained within a unique seg-
ment. We believe this is an important step towards efficient artistic
tools usable by hobbyists, as it allows for greater expressiveness.
To achieve that, we have introduced a semantically based selection
tool that makes use of a continuous semantic descriptor and ellip-
soids. This tool retrieves all semantically similar mesh patches, and
has potential for wider applications, from object retrieval to non-
local mesh filtering operations. We have demonstrated that seman-
tic information can be further used to improve the alignment and
stitching of meshes, by adapting a (soft-)ICP procedure to handle
semantics. Our approach runs in real time, and our results show that
it is effective in creating new meshes by combining existing mesh
pieces from a database.
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