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Abstract

Wavelet video encoding with multi-resolution analysis is the base for a layered coding scheme. From one video
source streams of different resolutions can be generated in one coding process. To reduce computing time the
graphics processing unit (GPU) of a PC system is used for tasks of video compression. Color space conversion
and wavelet transformation with just one single rendering pass for horizontal and for vertical decomposition
were done be the GPU. Together with the CPU the GPU increases the computed frames per second and possible

resolutions for live videos.

Live broadcasting and interactive systems with streaming video like video conferencing are applications which
take advantage from the proposed concept. This is especially interesting for live video encoding up to the high

definition TV (HDTV) formats 720p and better.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture-
Parallel processing 1.4.2 [Image Processing and Computer Vision]: Compression (Coding)

1. Introduction

Transmission of multimedia content over internet became
increasingly important in the last few years. Applications
like videoconferencing and internet broadcast and the need
for high quality video make high demands on computational
performance.

On the other hand we have a huge amount of data that has
to be transmitted over the network of a heterogeneous envi-
ronment where every participant has a different bandwidth.
Instead of coding a video multiple times with different res-
olutions a layered coding scheme may be used to provide
every participant with the optimal video resolution accord-
ing to his network and computational capabilities.

The multi-resolution analysis of wavelet decomposition
provides a solution for this use case. The video input frame
is transformed into different subbands, dividing the frame
in a coarse approximation part and a part containing finer
details. If applied multiple times to the approximation we
achieve different levels of details continuously getting a bet-
ter resolution.

Currently a blocked discrete cosinus-transformation
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(DCT) is mostly used to encode pictures and video for ex-
ample in JPEG or MPEG. But the wavelet compression be-
comes increasingly significant in this area and was already
used as the successor of JPEG in JPEG2000 using the well-
known biorthogonal Cohen-Daubechies-Feauveau CDF 9/7-
tap wavelet [CDF92] for lossy compression.

As for videoconferencing the timing is of particular im-
portance. The standard ITU-T G.114 defines a maximum de-
lay of 300 ms from capturing at one participant until play-
back at the other participant. Considering that additional
time is needed to process these data and sending them over
the network encoding and decoding has to be very fast.

With the need for high quality coding different architec-
tures and extensions have been evolved like Intel’s Multi-
media Extensions (MME) and Streaming SIMD Extension
(SSE). While these extensions can improve coding efficiency
significantly the CPU may still be overloaded if other tasks
like collaboration tools have to be performed simultane-
ously.

On the other hand modern consumer PCs are typically
equipped with a high level graphics processing unit (GPU)
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which is optimized for maximum data throughput and pro-
cessing of huge amounts of data. Furthermore, computa-
tional power and efficiency of GPU grows much faster than
the well-known Moore’s Law for CPU [SpGL*05]. With the
appearance of programmable GPUs the way was smoothed
for an efficient way to use the GPU for other purposes than
its original intention. This is called general purpose graphics
processing unit (GPGPU).

This paper is organized as follows: section 2 describes the
motivation for this work. Section 3 reviews related work.
Section 4 gives a brief overview of the graphics processing
unit and optimization techniques. In section 5 we describe
our Solution for wavelet based decomposition on GPU. Sec-
tion 6 shows the results and section 7 gives a conclusion and
future work.

2. Motivation

Multi-Party video conference systems could be implemented
with different architectures. For larger conferences a multi-
media transfer unit (MTU) or advanced network protocols
like multicast or application layer multicast / data forward-
ing might be useful. For conferences with small groups one
client could send its streaming data (voice, video, data) di-
rectly to all other participants. This technique has the disad-
vantage of a higher network load. But if the used networks
have enough bandwidth, multiple direct streams have also
advantages: minimum delay times between two clients and
be able to send to one other client a specific quality and for-
mat.

The video conference system communitrust is using the
described full mesh method for small group multi-party con-
ferences with up to 6 participants.

The wavelet encoder will be integrated in the communi-
trust system to reduce the network load and to reduce the
used computer resources in multi-party conferences.

In a scenario with 5 participants every conference client
has to sent out 4 video streams to the 4 other sites. Also ev-
ery client receives 4 streams of videos from the other partic-
ipants. Typically in a meeting every member would in a spe-
cific moment just look at one other person or observe two
other persons (which i.e. are talking to each other). There-
fore the most reasonable user interface for one client would
show one or two high quality and high resolution videos
and would show the other 2-3 videos in lower quality and
in smaller windows. If we take the situation with 2 observed
participants in high quality and 2 other participants viewed
with lower quality it leads to the following configuration:

In our example this client receives and decodes:

e Two high quality video streams with 700 kbps
e Two low quality video streams with 100 kbps

The incoming streamed data are reduced from 4*700 = 2.8

Mbps to 2#7004+2%100 = 1.6 Mbps = 57 % of 2.8 Mbps. Ad-
ditionally each client encodes one high quality video via the
wavelet encoder which generates a low and a high quality
output stream, which are send out 1-3 times over the net-
work.

3. Related work
Much research has been done in the area of GPGPU.

[HE99] described 3D convolution for volume rendering
using a special Extension of OpenGL which is not supported
by all GPUs. In this case the convolution is emulated in soft-
ware. [MAO3] reported a method to perform the fast Fourier
transformation on GPU.

[SpGL*05] performed a profiling of DCT-based video
decoding. They found that the two parts with the most com-
putational complexity was color space conversion and mo-
tion compensation. To make use of GPU and to achieve a
simple load balancing between GPU and CPU they moved
these two transformations to GPU. [FSLCO5] implemented
and compared multiple techniques to perform DCT and in-
verse DCT on GPU.

[GSO05] used tileboarding for GPU-based 3D wavelet re-
construction. [DCHOS5] presented a technique to store multi-
dimensional datasets in graphics memory bypassing the re-
striction of most graphic cards to handle only textures with 1,
2 or 3 dimensions by using an adapted version of the Wavelet
Coefficient Tree [LF97].

In [HEOO] an implementation for hardware-based decom-
position and reconstruction of wavelets was presented using
special OpenGL features for convolution.

[WLHW] realized wavelet transformation on GPU. Their
implementation is close to ours but was intended to improve
coding efficiency for single pictures instead of video. It was
integrated in the reference software for JPEG2000, JasPer
[AKOO].

Previous work has shown that wavelet transformation
can indeed be performed on GPU and can outperform a
software-based solution. While DCT was studied in the con-
text of video encoding, less work has been done to perform
a realtime GPU-based wavelet transformation. Another im-
portant aspect is the use of specialized functionalities used
by these authors as these functionalities are available only in
a few graphic cards.

4. Graphics processing unit

The need for accelerating 3D rendering - for example in the
computer games industry - has led to high-performance par-
allel graphics hardware. Most consumer-level computers are
equipped with such a device. With the introduction of user-
programmable parts in the pixel pipeline, the GPU can be
used for more than 3D rendering.
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Figure 1: Simplified architecture of GPU and the integra-
tion of DirectShow filter graph.

Figure 1 shows a simplified version of the architecture
of the GPU and the integration of Microsoft’s DirectShow-
interface. The first step in the pixel pipeline is geometry
processing handling geometric data of rendering primitives
for 3D transformations. As we only have two-dimensional
data this part is essentially bypassed by using identity-
transformations. The primitives are then projected to 2D and
rasterized to a rendering target. At this point the pixel shader
is executed for every pixel independently. It gets some pa-
rameters like the current position and a small number of tex-
tures and calculates the color for this particular pixel. The
textured surface is basically a memory holding image data
to be used as a texture while the texture sampler allows ac-
cess to this surface.

A significant feature is the possibility to use the rendered
data as input of another rendering pass. In this case the ren-
dering target - which is typically a surface - can be used as a
texture for the next pass.

Note that in this work the word pixel can also stand for
preprocessed data or additional parameters, for example the
wavelet coefficients.

Along with the complexity of the GPU the APIs have
evolved to support new features of graphics hardware. The
two main APIs are DirectX and OpenGL and their high-level
shader languages HLSL and GLSL respectively. For our im-
plementation we decided to use DirectX as this allows the
easy integration of DirectShow to get video data from a file
or from some sort of capture device. The video mixing ren-
derer 9 (VMRY) directly streams this video into a surface
which can be processed by the pixel shader.

Although the advantages of GPU calculations are obvious
there are also some constraints:

e The number of instructions is limited. As shaders were
originally designed for 3D data there was no need for
complex calculations. Pixel shader version 1.1 only sup-
ports 8 arithmetic instruction slots. This constraint has de-
creasing importance as this number is growing rapidly.
The actual pixel shader version 3.0 supports a minimum
of 512 instruction slots.
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e Limited memory bandwidth between CPU and GPU.
Transfer of huge amounts of data between main memory
and graphic card memory should be avoided. Due to the
asymmetric nature especially read-backs to main memory
can significantly slow down computation [THOO02].

e Format of surfaces. While modern graphic cards support
a variety of different formats for surfaces, older hardware
may not implement them.

For our implementation we only use standard functional-
ities of DirectX 9 and pixel shader 2.0. All shaders are im-
plemented using the high-level shader language HLSL.

4.1. GPU optimization

Some techniques may be applied to improve performance
and to overcome some constraints of the GPU like the lim-
ited number of instructions of the pixel shader.

1. Number of rendering passes. All Pixels are processed
independently by the GPU allowing for highly parallel
computation. For the pixel shader this means that results
from other pixels can’t be accessed directly. To get access
to these results, one must set the output of one rendering
pass as the input of another rendering pass what can take
some time.

2. Pixel packing. Textures and rendering targets support a
variety of different formats. To decrease texture reads
some values can be packed into different channels of a
pixel.

3. Lookup texture. The pixel shader allows for multiple tex-
tures as input what can be used to provide the shader with
precalculated values. Newer shader versions even allow
random access to texture contents via dependant texture
read. This is especially useful for video as some values
can be preprocessed and doesn’t have to be computed for
every pixel of a frame resulting in a higher performance
and a smaller number of the restricted number of instruc-
tions. On the other hand, additional texture lookups have
to be made to retrieve these data.

5. GPU-based wavelet decomposition

The wavelet decomposition transforms a signal in a low-
frequency (L values) and a high-frequency (H values) part.
For two-dimensional data the wavelet transform has to be
performed two times, in horizontal and in vertical direc-
tion because 2D-wavelet transformation is separable (see
figure 2). The original data is then decomposed into 4 sub-
bands.

The overall reason for this is the decorrelation of neigh-
boring values. In pictures the neighboring pixel are often
similar. With the decorrelation we get a part with average
values and a part with details containing the differences.
These details, after quantization, often are zero or close to
zero and thus are a good candidate for further processing. In
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Figure 2: Wavelet decomposition into 4 subbands. First a
horizontal and then a vertical transformation is applied.

image coding often a run-length encoding and entropy en-
coding is applied to reduce the amount of data significantly.

This process can be repeated for the L values resulting
in different level of details making this transformation espe-
cially interesting for layered coding.

5.1. Color space conversion

The first step of video compression is mostly color space
conversion. As the human visual system is more sensitive
to brightness than to color, the initial data can be reduced
in size by coding the color part with less resolution. We
used 4:2:0 chroma sub sampling to map data from RGB to
YCrCb. This scheme is also used in the MPEG standard. In
the following steps the different channels are processed sep-
arately.

5.2. Convolution vs. lifting scheme

[Swe95] proposed a method to increase wavelet transfor-
mation by applying a lifting scheme thus having a computa-
tional cost of only 14 compared to 23 of the standard con-
volution resulting in a speedup of 64%. This scheme works
in 4 steps using the intermediate results of the previous step.
To apply this scheme every step has to be realized by a sep-
arate rendering pass to get access to the intermediate values.
As multiple rendering passes require additional time we de-
cided to use the standard convolution.

5.3. Preprocessing

Typical video has a frame rate of about 25 frames per sec-
ond. To achieve realtime encoding of high quality video as
much computation as possible should be done only once by
making a preprocessing step.

A technique for higher GPU efficiency is the use of a pre-
calculated lookup table with dependent texture read which is
shown in figure 4.

5.4. Boundary extension

Close to the boundaries the signal has to be extended because
it is of finite length. A few methods have been proposed
to face this problem like zeroing, mirroring and replication
[Dau92] in order to reduce artifacts produced by boundary

handling. This problem increases with the number of levels
of decomposition.

As proposed in [WLHW] we used a texture as a lookup ta-
ble to save the positions of coefficients to use. We also used
mirroring to symmetrically mirror pixels across the bound-
aries not repeating the border sample:

Lsl2fsfofrf2]s|

<—Image Border

Note that some boundary extension schemes like [KZT02]
can not be applied since we only save positions of coeffi-
cients.

5.5. Wavelet transformation

The general principle of wavelet transformation is depicted
in figure 3 for the horizontal direction and has to be per-
formed for every pixel. The vertical direction works accord-
ingly.

This method uses only one rendering pass for horizontal
and one for vertical decomposition.

|x-4|x—3| x-2|x-1| X |x+1|x+2|x+3|x+4|

Figure 3: Principle of 1D-wavelet decomposition: for every
pixel at position x, we add the samples at xsy, y=1..4 and
multiply it with the wavelet coefficient. Then the processed
sample at position x is added.

For every input pixel there are four pixel in the lookup
table containing all the data needed for the pixel shader to
perform the wavelet convolution. The format of the lookup
table is given in figure 4. The first 8 values give the positions
of 8 samples to be used for CDF97 wavelet filter kernel, fol-
lowed by the wavelet coefficients. Due to the symmetric na-
ture of wavelet coefficients the samples are first added and
then multiplied by the coefficients (see figure 3). The last
two values contain position and coefficient for the last sam-
ple.

For the high frequency part with only 7 values, position
and wavelet coefficient for & 4 is set to zero allowing the
same method to be used for high and low frequency subband.

As the picture is decomposed into a low and a high fre-
quency subband (see figure 2) the two halves of the picture
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1 2 3 4
R Pos(x-4) || Pos(x+4) Coeff(x+4) || Pos(x)
G || Pos(x-3) || Pos(x+3) || Coeff(x+3) || Coeff(x)
B Pos(x-2) || Pos(x+2) || Coeff(x£2)
A || Pos(x-1) || Pos(x+1) || Coeff(x£1)

Figure 4: Format of the lookup table for a pixel at position
x with the positions of samples and the wavelet filter kernel.

use different filter kernels. [WLHW] proposed a method to
save an index in the lookup table where 0 stands for the use
of low frequency and 1 for the use of high frequency coeffi-
cients. As this results in an additional texture for the wavelet
coefficients and an additional texture lookup for every co-
efficient we decided to directly save them into the lookup
table. Thus, for every pixel we have only 4 texture lookups
in the lookup table and 9 texture lookups for the image data
resulting in a total of 13 texture lookups.

6. Results

We have implemented our solution and performed perfor-
mance measurements on an AMD Athlon 64 Dual 3800+
with 1 GB RAM and nVidia GeForce 6600 GT.

The measured times are given in Table 1. As expected all
values grow accordingly with increasing video resolution.

CSC | DWT | Read-Back | Total
256x256 0.08 | 1.9 0.6 2.6
512x512 0.3 6.7 3.6 10.5
768x576 0.4 12 6 18.9
1280x720 1.0 25.3 12.5 39.7
1920x1080 | 2.4 54.2 28.3 86.6

Table 1: Time needed for color space conversion (CSC),
discrete wavelet transformation (DWT) and read-back to
system memory with different resolutions in milliseconds.

Note that the time for writing the incoming video data
from system memory to GPU-memory is not contained in
these results because the video mixing renderer automat-
ically takes care of this. Due to the asymmetric nature
[THOO2] for transferring data between system and GPU
memory this value may not be as great as the read-back.
Also, for high precision calculations we used float surfaces
as rendering targets. While the captured imput data consists
of only one byte per pixel and per channel, the data for read-
back consists of four bytes per pixel and per channel.

For a video of 25 frames per second we only have 40 ms
for encoding until the next frame arrives. The resolution of
1280x720 is chosen because it is the smallest possibility for
HD video (720p) and the highest resolution that can be pro-
cessed within the given time-frame. It is important to note
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that this calculation is done on GPU only while CPU is not
involved giving us the possibility for a simple load balanc-
ing between GPU and CPU. After a frame is wavelet trans-
formed by the GPU and read-back to system memory the
CPU can further process this data in a pipelining manner
and perform entropy encoding while the GPU is processing
the next frame.

7. Conclusion & Future Work

We have shown a method to successfully perform two impor-
tant steps of wavelet video encoding - color space conversion
and wavelet transformation - on consumer-level GPU in re-
altime. Although there is still the possibility of optimization
the results are very encouraging as we achieved to transform
video in high-definition resolution of 720p. GPU and CPU
can then work in a pipelining manor, realizing a simple load
balancing, for other transformations like entropy encoding.

Future work includes Motion Compensation, comparison
of different wavelet transformation methods and a better
load balancing between CPU and GPU. This codec will then
be integrated into the multiparty videoconferencing system
communitrust.
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