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APPENDIX: Lagrangian Motion Equations

Shabana [Sha89] describes the derivation of motion equa-
tions from general Lagrangian mechanics for the case of a
deformable model with separation of rigid-body motion. In
this supplementary document we summarize this derivation
for the interested reader.

From Lagrangian continuum mechanics, the motion equa-
tions of a deformable body with generalized coordinate set
q can be written in their general form as [GPS02]:
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where .7 is the kinetic energy of the body, .Z is the work
done by the body against dissipative forces, &'(x) is the elas-
tic energy of the body, and Q is the vector of generalized
external forces which includes gravity and contact forces.

Elastic Energy

The virtual work due to elastic forces can be written as
SW, = — / ol sedv )
v

where € and o are the stress and strain vectors. With our
choice of linear strain model, the strain can be written in
terms of the displacement field as € = Bu,, where B is a dif-
ferential operator matrix. In terms of the generalized elastic
coordinates of the body, this becomes € = BSq,.

For a linear isotropic material, the constitutive relation-
ship between stress and strain is ¢ = E¢g, with E the symmet-
ric matrix of elastic coefficients, defined by the two Lamé
material constants A and g. This enables writing the stress
vector in terms of the generalized elastic coordinates. Sub-
stituting € and o into (2) yields an expression for the virtual
work due to elastic forces:
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Here, K, is the symmetric positive definite stiffness ma-
trix associated with the elastic coordinates of the body. The
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generalized stiffness matrix K can be formed from K, as

( 8 12 ) Following equation (3), the virtual work due
€

to elastic forces can be written as W, = QZSCIe, where

Q. = —Kq, is regarded as a generalized force acting on the
body, or equivalently, —dy&’.

Equations of Motion

The various terms of the Lagrangian equation (1) can be
rewritten by integrating the kinetic energy .7, the work pro-
duced against dissipative forces .%, and the elastic energy
& over the entire deformable body, exploiting the texture-
based discretization of the deformable layer described in
Section 3.2 in the paper:
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where M, D, and K are, respectively, the generalized mass,
damping, and stiffness matrices of the deformable body.
They are obtained by integration with linear elements and
linear basis functions, and for their exact expressions we re-
fer to [Sha89]. Note that, due to definition of the elastic en-
ergy based on the displacement field, the generalized elastic
forces only depend on the elastic coordinates.

We define the mass matrix M = (PY)"MP™*, damp-
ing matrix D = (P*)TDP™, and stiffness matrix K =
(PT)TKP*. We also define transformed external forces Q =
(P)TQ, and a quadratic velocity vector Q, as

Q = (PH’ (Mq+ {aiq (%qTMq)} T) )

After some algebraic manipulation, and applying v = Pq
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(See Appendix A in the paper), the system of motion equa-
tions can be reduced to its familiar form:
{ Mv=Q+Q,—Kq—Dv=F,

q=P*v. ®

External Forces

Generalized forces Q can be computed from world-frame
forces f applying the principle of virtual work. Using the
kinematic relationship X = LPv (See Appendix A in the
paper), a world-frame force f, applied at a point p on
the deformable body induces a generalized force Qp =
PTL(P)Tfp-

Mass Matrix
The mass matrix M has the following structure [Sha89]:
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with mass integral m, Iy the usual inertia tensor, time depen-
dent inertia shape integrals
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and
Too = / pusdv. (12)

Quadratic Velocity Vector

From the mass matrix M and (7), the quadratic velocity vec-
tor reverts to [Sha89]:
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where [A] denotes a block diagonal matrix with A replicated
in every block, and u is a column vector that packs the body-
frame position u of all simulation nodes.
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