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Abstract

Granular materials exhibit a large number of diverse physical phenomena which makes their numerical simulation
challenging. When set in motion they flow almost like a fluid, while they can present high shear strength when at
rest. Those macroscopic effects result from the material’s microstructure: a particle skeleton with interlocking
particles which stick to and slide across each other, producing soil cohesion and friction. For the purpose of
Earthmoving equipment operator training, we developed Parallel Particles (P2), a fast and stable position based
granular material simulator which models inter-particle friction and adhesion and captures the physical nature
of soil to an extend sufficient for training. Our parallel solver makes the approach scalable and applicable to
modern multi-core architectures yielding the simulation speed required in this application. Using a regularization
procedure, we successfully model visco-elastic particle interactions on the position level which provides real,
physical parameters allowing for intuitive tuning. We employ the proposed technique in an Excavator training
simulator and demonstrate that it yields physically plausible results at interactive to real-time simulation rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically Based Modeling

1. Introduction

Recently, the training of operators of heavy machinery, such
as cranes, excavators and bulldozers, with Virtual Reality
(VR) training simulators has become more and more com-
mon. In general, simulations have to run at interactive to
real-time rates and must be physically plausible to prevent
negative training. Especially in the context of Earthmoving
equipment simulation this is a challenging task, since the
machine interacts with a deformable medium: soil. The non-
linear physical nature of soil gives rise to a number of dy-
namic effects including fluid-like flows, high compressibil-
ity, non-linear cutting forces, sudden material slip, internal
friction and cohesion yielding a wide range of emerging an-
gles of repose as well as stable slope angles. These effects
must be captured as accurately as possible in a training sim-
ulator and at simulation rates which are close to real-time.
Furthermore, due to the human in the loop, interactions be-
tween machine and soil medium are arbitrary and must be
stable at all times. Operators use their equipment to push,

lift and dump soil. For each of these operations the opera-
tor needs to learn specific skills and techniques, devised to
correctly interact with soil. For example, very cohesive soils
require the operator to perform accelerating bucket motions
to make the soil fully escape the bucket. A bulldozer blade
must be lifted in a particular way to prevent the blade from
being sucked downwards into the ground, creating a cutting
force too high for the bulldozer to advance. The more pre-
cise and the faster the operator is able to perform those ma-
neuvers, the more efficient is he in accomplishing his tasks.
Apart from operator safety, improving the efficiency of oper-
ators in the field is one of the main goals of training. Conse-
quently, a real-time granular material simulation should have
the following qualities:

• simulation stability
• good performance
• can model frictious and cohesive materials
• provides plausible soil dynamics
• enables interaction with rigid bodies, such as a bucket
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• good scalability on modern architectures

For the purpose of successful training of Earthmoving
equipment operators, we developed a fast and stable gran-
ular material simulator – Parallel Particles (P2) – which
is based on the framework of Position Based Dynamics
(PBD) [MHHR06], and fulfills all of the aforementioned re-
quirements. We employ a Discrete Element Method (DEM)
which explicitly models inter-particle contacts as opposed
to Continuum Mechanics approaches which treat the mate-
rial as a continuum [LL03]. Our model considers particle
positions only, omitting rotations. We find that this still al-
lows to produce physically plausible results and at the same
time provides potential for a reduction in processing time.
Dealing only with positions leads to simpler formulations
and a smaller memory footprint which results in better per-
formance. We decided to use the PBD approach for several
reasons. It is first of all unconditionally stable, fulfilling al-
ready one of the requirements. Second of all, omitting orien-
tations and modeling particle positions only, suffices to cre-
ate realistic cohesive and frictional effects. In fact, oriented
particles, require modeling of either rolling friction or inter-
locking, e.g., via particle angularity, to allow for stable piles.
This is not the case for purely positional particles. Sliding
friction alone suffices to stabilize a particle on a slope. With
a spherical, oriented particle, sliding friction merely leads to
rolling which makes one of the above techniques necessary
to prevent it from rolling down an even lightly inclined slope.
Therefore, with positional particles, less parameters are re-
quired to achieve the desired soil dynamics effects which
makes simulation tuning easier. Our contributions are

• a novel, parallel solver for general PBD problems
• a visco-elastic position-based contact constraint, equiva-

lent to a spring-damper, used to model stable granular ma-
terials

• Coulomb friction formulated in the PBD framework com-
bined with adhesion, enabling stable heaps of granular
material

• simple error reduction techniques which improve solver
convergence

In the following, we will first present related work. Sec-
tion 3 then describes the original PBD approach and our
modifications to it. The following sections provide details on
the proposed method, including our parallel solver, the par-
ticle contact model and coupling with rigid bodies, as well
as error reduction techniques to improve convergence. Sec-
tion 8 provides simulation results. We conclude with Sec-
tion 9 and discuss future work.

2. Related Work

Bell et al. propose a DEM method for the representa-
tion of granular materials with friction but no adhesion in
[BYM05]. The authors use the concept of composite parti-
cles to simulate angular grains, and allow thus for particle

interlocking in their simulations. Their integration scheme is
different to ours and is not suitable for real-time applications.

The method presented in [IWT12] is a meshfree approach
which uses predictive-corrective Smoothed Particle Hydro-
dynamics (PCISPH) to simulate granular material with fric-
tion and cohesion. The method yields very good results but
is not used in a real-time context.

A granular material simulation using regularized Pro-
jected Gauss-Seidel is proposed by Servin et al. [SWLB14].
The authors show the benefits of non-smooth vs. smooth
approaches, and propose a hybrid method. No timing re-
sults are provided in this work. Unfortunately, Gauss-Seidel
is not efficiently parallelizable as pointed out by Tonge et
al. [TBV12]. The graph coloring approach to split the work
is a NP hard problem and requires use of a greedy algorithm
for an acceptable complexity. This increases the number of
needed colors, making the load balancing suboptimal and
hence limiting the speed-up. This problem occurs especially
with many constraints per rigid body, which is precisely the
case in granular materials.

Tonge et al. suggest splitting of rigid bodies to derive a
parallel solver for the solution of Rigid Body Linear Com-
plementarity Problems (LCP) in [TBV12]. Their approach
enables jitter-free, parallel rigid body dynamics. We inspired
our parallel solver from this work.

The approach proposed by Macklin et al. in [MMCK14],
not yet published at the time of writing, shows strong sim-
ilarities to our method, but was developed independently.
The authors also present a parallel Position Based Dynamics
solver. They show that the approach is suitable for simula-
tion of various materials, while we focus on contact model-
ing for granular materials only.

3. Position Based Dynamics

The proposed granular material simulation approach is based
on the Position Based Dynamics (PBD) framework intro-
duced to the Computer Graphics community by Müller et
al. [MHHR06], which is outlined in this section. In this
method, which is intended mostly for simulation of de-
formable bodies such as cloth but has also been success-
fully applied to the simulation of other materials [BMOT13]
[MMCK14], a deformable body is represented by a set of
point masses with positions xi, velocities vi and masses mi.
The point masses are connected by constraints, such as dis-
tance, stretching and bending constraints to form, e.g., a
cloth. A constraint between n points is represented by a func-
tion C : R3n → R, formulated on the position level, which
can be either an equality or an inequality:

C(xi1 , ....xin) = 0

C(xi1 , ....xin)≥ 0
(1)

Inequalities can be used to model unilateral contacts, while
for a distance constraint an equality would be used.
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The dynamics of the deformable body are simulated in a
predictor-corrector fashion as follows. At the beginning of
each step, the unconstrained positions pi of all points are
computed by performing a semi-implicit Euler integration
based on current velocities and external forces, fe, such as
gravity:

pi = xi +∆tvi +∆t2 fe

mi
(2)

Note that in the original approach the predicted velocities
are first damped for stability reasons before they are used to
produce the predicted positions, which is not necessary in
our method.

The predicted, unconstrained positions are likely causing
constraints to be violated at this point, and must therefore
be corrected to viable target positions which do not violate
the constraints at the end of the step. This is realized by a
correction phase. Before any positions are corrected, colli-
sion detection is performed on the predicted positions yield-
ing contact constraints which are represented by inequalities.
All constraints, both permanent and contact constraints, are
then processed by the solver. The original work suggests an
iterative Gauss-Seidel style approach, with which the solver
corrects the predicted positions by processing all constraints
sequentially. This process is repeated for a fixed number of
iterations yielding the final corrected positions pi. In a sub-
sequent integration phase, the new velocities and positions
are computed as follows:

vi← (pi−xi)/∆t

xi← pi
(3)

As pointed out by Müller et al. [MHHR06], a big advantage
of this approach is that the integration scheme is uncondi-
tionally stable. This makes it a very good fit for application
in a VR training simulator. In the original approach, the inte-
gration phase follows a velocity update, in which velocities
are modified in order to mimic contact dynamics effects such
as friction. We omit this phase in our approach, since we di-
rectly embed friction into the position corrections performed
by the solver (see Section 6.5.1).

3.1. Position Correction

During the correction phase, individual point position cor-
rections, which are combined by the solver, are computed
using constraint projection as follows. In a given solver it-
eration, let’s assume that a n-point constraint C is violated,
that is C(p1, ..pn) 6= 0. For simplicity, we will assume that
C is an equality constraint w.l.o.g. Inequality constraints are
handled by the solver by simply not performing any position
correction unless the inequality is violated. So, all concepts
discussed below directly apply also to inequality constraints.
Defining the vector of positions as p = (p1, ...,pn), Müller et
al. [MHHR06] want to find a vector of position corrections,

∆p, which no longer violates the constraint function:

C(p+∆p) = 0 (4)

Using a Taylor series expansion and dropping the non-linear
error terms, they linearize the constraint C around p as

0 =C(p+∆p)≈C(p)+∇C(p)∆p, (5)

where∇C(p) denotes the gradient of C as a row vector. The
authors of [MHHR06] restrict the position correction to lie
along the constraint gradient, turning it into a scalar β, and
weight the position corrections by the inverse masses of the
individual points, wi = m−1

i , yielding

∆p = βW∇C(p)T , (6)

where W = diag(w1, ...,wn) denotes the inverse mass ma-
trix. By combining Equations 5 and 6, Müller et al. derive the
following formula for the correction of the individual point
pi due to the effect of constraint C:

∆pi =−swi∇piC(p),

s =
C(p)

n
∑

j=1
w j|∇p jC(p)|2

, (7)

Here, ∇piC(p) denotes the gradient of C with respect to
point pi.

For the simulation of compliant constraints, Müller et
al. suggest a simple model in which the position correction
pi is scaled by a stiffness factor kpb, reducing the magnitude
of the position correction, and, thus relaxing the constraint.
Applying the position correction yields the new, corrected
position:

pi← pi + kpb∆pi (8)

We replace this simple compliance model in Section 6. This
section also describes how Equation 7 can be used to formu-
late contact constraints which model visco-elastic particle
interactions together with friction and adhesion.

4. Method Overview

We adopt the Position Based Dynamics approach in our
DEM soil simulation by considering the point masses as in-
dividual, spherical particles with radii ri. Our collision de-
tection produces inter-particle and rigid body/particle con-
tact constraints using the predicted particle positions. Most
importantly, we make the following modifications.

First, we do not use the original sequential Gauss-Seidel
style solver but propose a parallel solver scheme. The main
idea is to process particles independently, by computing all
constraint projections of a particle and averaging them to ob-
tain the final particle position for the iteration.

Second, we do not employ the simplified friction model
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proposed in the original approach, which is based on damp-
ing velocities. This model is not capable of simulating stable
piles. We also drop the simplified original compliant con-
tact model, which is purely elastic and has no potential for
tuning contact dampness – a factor which is very important
in a DEM simulation. Instead we model real Coulomb fric-
tion together with adhesion. Also, we handle inter-particle
collisions via a relaxed, unilateral contact constraint, which
formulates a spring-damper on the position level and cre-
ates visco-elastic particle interactions, allowing for tuning
via real physical stiffness and damping coefficients.

Finally, we suggest error reduction techniques which cre-
ate physically plausible results even with a low number of
solver iterations. All these modifications are presented in the
following sections.

5. Parallel Constraint Solver

The proposed parallel constraint solver is motivated by the
mass-splitting approach taken by [TBV12], who split rigid
bodies by the number of their interactions, creating split
masses. All contacts involved in one interaction are solved
in parallel using Projected Gauss Seidel; assuming a fixed
joint between all split bodies, the final velocity is computed
as the average of all split body velocities. We follow a simi-
lar approach. In a given solver iteration, we process all parti-
cles in parallel and compute the corrected particle positions
at the end of the iteration through constraint averaging as
follows. For each predicted particle position pi, we compute
the n position corrections, ∆pi, j, caused by the n constraints
Cj which the particle violates in this iteration, and we set the
final position correction for this iteration, ∆pi, to the aver-
age of the individual corrections. Applying this correction to
the current particle position yields the new, corrected particle
position, pi, at the end of this iteration:

∆pi =
1
n

n

∑
j=1

∆pi, j

pi← pi +∆pi

(9)

This treatment produces a data-parallel problem and allows
for processing particles in parallel with excellent load bal-
ancing, as follows. At the beginning of the correction phase,
all particles are assigned to different threads. In a given
solver iteration, all particles are then processed in parallel.
A thread will process all its assigned particles one by one.
For each particle i, it computes the individual position cor-
rections ∆pi, j and combines them using Equation 9 to move
the particle to the new, corrected position at the end of the
given iteration. The solver will perform a fixed number of
iterations in this way, usually between 5 and 10 for real-time
applications, yielding the final particle positions and veloc-
ities at the end of the step through Equation 3. No conver-
gence check is performed because with so few iterations it
can not be reached. However, the results are physically plau-
sible and suffice for our application. It is noted that the pro-

posed solver is a generic solver which is not limited to the
simulation of granular materials, but can be applied to other
position-based problems as well.

The solver parallelization leads to a significant speed-up,
as shown in Figure 1. We further reduce processing time
by sorting particles by their occurrence in space, using their
hash grid id (which becomes also the particle id) as the sort
key. Each thread then processes contacts in lexicographical
order of their two particle ids which produces a spatially and
temporally local memory access pattern. Processing contacts
in this way increases cache coherence and therefore reduces
memory access times significantly.

Figure 1: Performance of our parallel solver (PP) with
2 and 4 threads compared to single-threaded Gauss-Seidel
style solver (GS). 2000 particles are successively poured to
form a pile (cf. Fig. 3), using 10 solver iterations. Timings
include collision detection.

6. Contact Model

The original constraint projection function, which employs
a normalized stiffness parameter for relaxation, can yield
very stiff interactions if the number of solver iterations is
correspondingly high. It allows simulating only elastic inter-
actions, which is problematic for the simulation of granu-
lar materials with large timesteps. Small penetration errors,
e.g., due to tunnelling problems in the collision detection can
cause high reaction forces, which in turn can lead to insta-
bilities. Müller et al. circumvented this problem by applying
global damping on the velocity level [MHHR06]. In this sec-
tion, we will present a visco-elastic contact model with fric-
tion and adhesion, formulated as position-based constraints.
A simple, yet effective regularization approach allows mod-
eling the normal component of particle contacts as spring-
damper, which enables intuitive and physically motivated
relaxation and damping of particle interactions. This makes
system-wide damping to achieve stable simulations unnec-
essary.

6.1. Elastic Constraint (Spring)

Following the recipe from Erin Catto in [Cat11], we will first
show that a single distance constraint in the original PBD
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approach is equivalent to a spring, integrated with implicit
Euler. W.l.o.g. we will continue the discussion in one dimen-
sion and examine a single mass particle attached by a spring
with stiffness coefficient k to some fixed reference point un-
der zero gravity. The equation of motion for this spring-mass
system is

mẍ+ kx = 0, (10)

with particle position x and mass m. Assuming initial po-
sition x0, velocity v0 and step size ∆t, and introducing ve-
locity v = ẋ, this second-order ordinary differential equation
(ODE) can be numerically approximated by performing two
successive implicit Euler integrations, leading to the follow-
ing sequence of positions and velocities

vr+1 = vr−∆t
k
m

xr+1

xr+1 = xr +∆tvr+1

(11)

where r denotes the r’th element in the sequence. Solving for
velocity, we obtain

vr+1 =
1

1+∆t2 k
m

vr−
∆t k

m

1+∆t2 k
m

xr. (12)

Let’s do the same for a position-based spring (a distance
constraint with zero target distance), and assuming only one
solver iteration. First, the method performs a prediction step,
yielding the predicted position p via one semi-implicit Euler
integration, which is then corrected. The spring constraint

function in our example reduces to C(p) = p !
= 0, and ac-

cording to Equation 7 the position correction is simply −p,
and it is relaxed by the stiffness factor kpb according to Equa-
tion 8. Finally, the new velocity is computed using Equa-
tion 3. Altogether this produces the following sequence:

p = xr +∆tvr

xr+1 = p− kpb p = (1− kpb)p

vr+1 =
xr+1− xr

∆t

(13)

Solving for velocity leads to

vr+1 = (1− kpb)vr−
kpb

∆t
xr. (14)

Performing coefficient matching between Equations 12
and 14, we obtain the following relationship between the
spring coefficient k and the position-based stiffness factor
kpb:

kpb =
∆t2 k

m

1+∆t2 k
m

(15)

This shows that a single position-based spring constraint
is equivalent to a spring integrated with implicit Euler, as
also demonstrated in Figure 2. As pointed out by Müller et
al. [MHHR06] the stiffness factor kpb must be made inde-
pendent of the number of solver iterations, and the authors

provide the corresponding formula. We will face the same
problem when deriving the combined position-based spring-
damper constraint in Section 6.3.

6.2. Viscous Constraint (Damper)

We can observe that Equation 15 gives the simple, normal-
ized stiffness factor proposed by Müller et al. a physical
meaning, relating it to a spring. In the following, we will first
introduce a viscous constraint in the position-based frame-
work which will ultimately lead to a full spring-damper con-
straint for visco-elastic particle interactions.

A damper dissipates kinetic energy, therefore reducing the
relative velocity between two constrained particles. Velocity
in the position-based approach results from the difference
between the previous particle position and the new, predicted
and corrected particle position. That is, according to Equa-
tion 3, particle velocities emerge implicitly during the itera-
tive constraint correction process performed by the solver as

vi, j =
pi, j−xi

∆t
, (16)

where vi, j denotes the velocity of particle i after a correc-
tion caused by constraint Cj which yields the corrected posi-
tion pi, j. Here, xi denotes the particle position from the last
frame.

A viscous damper constraint between two colliding parti-
cles i and j, acting along the contact normal n =

(pi−p j)
|(pi−p j)| ,

can thus be formulated as

Cd(pi,p j) = ((pi−xi)− (p j−x j)) ·n
!
= 0. (17)

Again, the effect of the constraint is relaxed by scaling the
corresponding position correction (see Eq. 7) by a factor, re-
ferred to as cpb to avoid confusion with kpb, which we use
exclusively for the spring constraint.

6.3. Visco-Elastic Constraint (Spring-Damper)

In order to model a spring-damper, we could now simply cre-
ate both a damper and a spring constraint between each pair
of contacting particles, which would model exactly the par-
allel nature of the Kelvin-Voigt spring-damper model. How-
ever, this would require processing more constraints in the
solver and would therefore reduce performance and yield
worse convergence.

To prevent this, we will instead combine the spring and
damper constraint types in a single spring-damper constraint
and make it again equivalent to the implicit Euler case for
convenient parametrization, following the procedure in Sec-
tion 6.1. However, we will re-utilize the damper constraint
later to model viscous sliding friction and adhesion.

As before, w.l.o.g. we will proceed in one dimension. A

c© The Eurographics Association 2014.

139



D. Holz / Parallel Particles: A Parallel Position Based Approach for Fast and Stable Simulation of Granular Materials

single mass particle attached by a spring-damper with stiff-
ness coefficient k and damping coefficient c under zero grav-
ity has the following equation of motion:

mẍ+ cẋ+ kx = 0 (18)

The sequence of particle positions and velocities can be
approximated using implicit Euler integration as

vr+1 = vr−∆t
c
m

vr+1−∆t
k
m

xr+1

xr+1 = xr +∆tvr+1

(19)

We now combine the position-based spring constraint and
the damper constraint from Equation 17 to a single constraint
by performing both the spring and the damper correction at
the same time. We recall that p denotes the predicted posi-
tion. According to Equation 7, the damper position correc-
tion in this simple case is (p− xr), which we scale by the
damping factor cpb from Section 6.2. Again assuming only
one solver iteration, this yields the following time stepping
scheme:

p = xr +∆tvr

xr+1 = p− kpb p− cpb(p− xr)

= (1− kpb− cpb)p+ cpbxr

vr+1 =
xr+1− xr

∆t

(20)

Solving for vr+1 in both the position-based and the implicit
Euler time stepping scheme as in Section 6.1, and perform-
ing coefficient matching, we obtain the following relation-
ship between the stiffness and damping coefficients k and c,
and the position-based stiffness and damping factors kpb and
cpb:

kpb =
∆t2 k

m

1+∆t c
m +∆t2 k

m

cpb =
∆t c

m

1+∆t c
m +∆t2 k

m

(21)

As we can see, the position-based relaxation factors kpb and
cpb are now coupled. They both depend on the stiffness co-
efficient k and the damping coefficient c, which shows that
the effect of the spring and the damper are in fact now com-
bined. If we set the damping coefficient c to zero, we will
obtain again Equation 15, i.e., a pure spring which does not
depend on c. Analogously, we obtain the formula for a pure
position-based damper if k is zero.

Now, that we know how to scale the position corrections
of the position-based spring and damper constraints to ob-
tain combined spring-damper behavior in the simple one-
dimensional case, we can apply our knowledge to the general
case of an inter-particle contact, modeled as spring-damper
in the normal direction. The constraint function for a spring
between particles i and j with radii ri and r j respectively is

provided as

Cs(pi,p j) = (pi−p j) ·n− (ri + r j)
!
= 0. (22)

We apply the position correction from both the spring con-
straint Cs and the damper constraint Cd from Equation 17 to
particle i and scale it by the stiffness and damping factors
kpb and cpb. The position correction for particle i due to a
collision with particle j is therefore

∆pi← j = kpb∆pi,s + cpb∆pi,d , (23)

where ∆pi,α denotes the position correction of pi due to con-
straint Cα computed via Equation 7. Correction of particle
position p j follows analogously. In order to model the con-
tact correctly, a position correction is only performed if the
particles do in fact collide, that is, Cs ≤ 0, which is the same
as turning the constraint into an inequality. Note that the gra-
dient of both constraints with respect to particle i,∇piCs and
∇piCd , is n, which, according to Equation 7, means that this
spring-damper is purely acting in normal direction. This al-
lows us to easily add tangential contact effects such as fric-
tion and adhesion later on.

6.4. Solver Iteration Independence

Now that we have a fully configurable, single, spring-
damper constraint, we need to address the issue of the num-
ber of solver iterations. As described in [MHHR06], the sim-
ple, normalized stiffness multiplier produces different re-
sults with different solver iteration counts, which is obvious.
Müller et al. presented an effective way to produce indepen-
dence from solver iterations by converting the stiffness mul-
tiplier into a stiffness factor via a conversion function which
was based on the total number of solver iterations applied
each frame. This works fine if a fixed number of iterations is
used, which is usually the case in game-like interactive and
real-time applications, as in our use case.

In the previous examples we have so far always assumed
only a single iteration when performing an integration us-
ing the position-based method. Let’s now examine the be-
havior of the simple, one-dimensional spring-damper system
from Section 6.3 when integrated using the position-based
approach with more than one iteration. In this case a single
prediction step is followed by several constraint corrections,
which leads to the following sequence:

p(0) = xr +∆tvr

p(1) = (1− kpb− cpb)p(0) + cpbxr

...

p(n) = (1− kpb− cpb)p(n−1) + cpbxr

xr+1 = p(n)

vr+1 =
xr+1− xr

∆t

(24)
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Here, n denotes the number of solver iterations and p(i) cor-
responds to the corrected position after the i’th iteration. As
can be easily seen, with more than one iteration we no longer
obtain the desired particle position which models a spring-
damper. By examining the series of corrected positions p(i)

more closely, we are able to bring the final corrected position
p(n) into a more convenient form, writing it as the polyno-
mial

fn(α) :=p(0)αn + cpbxrα
n−1 + · · ·+ cpbxrα

0

=p(0)αn + cpbxr

n−1

∑
k=0

α
k = p(n),

(25)

with α = (1− kpb − cpb). Under the assumption that α 6=
1⇔ kpb+cpb 6= 0, which means that at least the spring or the
damper must be active, we can replace the geometric series
term by 1−α

n

1−α
and obtain

fn(kpb,cpb) :=p(0)(1− kpb− cpb)
n

+cpbxr
1− (1− kpb− cpb)

n

1− (1− kpb− cpb)
= fn(α).

(26)

The function fn defines the corrected position after n iter-
ations. In order to obtain the desired spring-damper result
as in Equation 20, the final corrected position p(n) must be
equivalent to (1−kpb−cpb)p+cpbxr. To this end, we intro-
duce solver-iteration independent, modified relaxation fac-
tors k′pb and c′pb, which replace kpb and cpb in the correction
phase (see Eq. 24), and for which we must have

fn(k′pb,c
′
pb)

!
= p(0)(1− kpb− cpb)+ cpbxr. (27)

This condition can be solved to obtain the following rela-
tions

k′pb = 1− cpb
1−α

1/n

1−α
−α

1/n

c′pb = cpb
1−α

1/n

1−α

α = 1− kpb− cpb

(28)

which allow us to convert the solver-iteration dependent
stiffness and damping factors kpb and cpb from Equation 21
into solver-iteration independent stiffness and damping fac-
tors k′pb and c′pb. The factors k′pb and c′pb are used instead of
kpb and cpb in Equation 23. With these modifications a sin-
gle position-based spring-damper constraint simulated with
multiple solver iterations is equivalent to a spring-damper
integrated with implicit Euler, as demonstrated in Figure 2.

6.5. Friction and Adhesion

Soil shear strength, which resists collapse of soil piles, is
governed by the soil’s cohesion and internal friction. The
internal friction is for the most part produced by the dry
friction between individual soil particles, which form the
particle skeleton of a soil formation. Interlocking between

Figure 2: Response of spring-damper integrated with our
approach (5 solver iterations) and implicit Euler. A single
particle with radius 0.05 m and 1 kg mass collides with a flat
horizontal ground at height zero. Top: stiffness and damping
coefficients are k=1000 N

m and c=100 Ns
m . Bottom: k=100 N

m ,
c=0 Ns

m .

particles caused by roughness of the facing surfaces (parti-
cle angularity) also plays a role, further strengthening the
soil [Das83]. In addition particle angularity creates the ef-
fect of rolling resistance. In our simulation model we omit
the interlocking effect and model the internal friction and
cohesion as pure dry friction and surface adhesion respec-
tively. Our simulator is able to produce various different an-
gles of repose with the proposed parameter set, allowing for
the representation of materials ranging from purely frictious,
cohesion-less materials such as sand and gravel to cohesive
soils such as loam and clay. The following sections describe
the proposed models in detail.

6.5.1. Friction

For the simulation of friction and adhesion, which can be
modelled as purely viscous effects, we can reuse the damper
constraint from Section 6.2. Friction can be described by the
Coulomb friction law, relating friction forces with normal
forces acting at a contact point [TBV12] as

|vt |= 0⇒ |ft | ≤ µs|fn|
|vt | 6= 0⇒ |ft |= µk|fn|∧ ft ·vt =−|ft ||vt |

(29)

with relative tangent velocity vector vt , and friction and nor-
mal force vectors ft , fn respectively. Intuitively this states
that if the contact is sliding (relative tangent velocity is not
zero), the friction force must always oppose the relative tan-
gent velocity. Also, the friction force magnitude is linearly
proportional to the normal force, scaled by one of two fric-
tion coefficients, the static and kinetic friction coefficients
µs and µk respectively. As demonstrated in [SWLB14], the
Projected Gauss-Seidel method for Rigid Body LCPs is an
efficient way to numerically model this relationship. In this
approach, for each contact constraint, first the normal force
is computed. The resultant normal force is then used to cap
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the friction force via projection onto the friction cone. Our
friction approach is inspired by this technique.

We use the following damper constraint (see Eq. 17) with-
out relaxation (c′pb = 1) to produce the tangential friction
force between particles i and j:

Cf (pi,p j) =v · t !
= 0

v :=(pi−xi)− (p j−x j)
(30)

Here, v measures the relative velocity between the particles
and t = v⊥

|v⊥| denotes its normalized projection onto the con-
tact tangent plane with v⊥ = v− (v ·n)n. If the relative ve-
locity has no tangent component (i.e., |v⊥| = 0) no friction
correction needs to be applied. Otherwise, the position cor-
rection applied by this constraint to particle i can be written
according to Equation 7 as

∆pi, f =
wi

wi +w j
λt, (31)

with λ = Cf (pi,p j) and ∇piCf = t. In order to model
Coulomb friction we limit the constraint correction by pro-
jecting the displacement λ onto the friction cone as in the
Projected Gauss-Seidel method, which yields the capped
displacement λ f . The cap is performed based on the nor-
mal correction λn, caused by the spring-damper constraint
in Equation 23, which can be reformulated and combined
with the friction correction, yielding

∆pi← j =
wi

wi +w j
(λ f t+λnn), (32)

where λn depends on the spring-damper factors k′pb and c′pb,
and λ f is defined as

λ f =

{
λ , if |λ| ≤ µs|λn|
sgn(λ)µk|λn| , otherwise

(33)

We derived this projected correction scheme as follows. By
examining the difference in relative particle velocities in-
duced by a position correction, we derived formulas which
convert a scalar (or vectorial) position correction λ, applied
to a particle with mass m, into an equivalent constraint force
f and vice versa:

f =
m

∆t2 λ, λ = ∆t2 f
m

(34)

These relations can be used to extract the force fn from λn,
compute the tangential friction force ft = µs| fn| and trans-
form it back into an equivalent tangent displacement λ f .
Putting everything together this yields Equation 33. Figure 3
demonstrates the presented friction model.

6.5.2. Adhesion

Cohesive forces in soil increase with the surface area in
which they act when a soil is subject to shear stress. Moti-
vated by this fact, we take the contact surface Ac into account

Figure 3: Angle of repose experiment: 2000 particles are
poured to form a pile and stabilize. Experiments performed
with PP2 solver with 10 iterations, ε = 0.5, 0.0003 m sleep
threshold, and varying kinetic friction angle θk and adhesion
a. I: θk = 5◦, a = 0 Pa. II: θk = 30◦, a = 0 Pa. III: θk = 5◦,
a = 1000 Pa.

when computing the adhesive force Fa acting on particles
from the provided adhesion parameter a:

Fa = aAc (35)

Favouring fast computation over accuracy, we use a quadrat-
ically interpolated contact surface. Assuming that the con-
tact surface is maximized when the penetration ζ between
two particles i and j is equal to the smaller of the two radii,
rmin = min{ri,r j}, the particle contact surface can be ap-
proximated as

Ac = πr2
min(1− (

ζ

rmin
−1)2). (36)

The computed adhesive force is applied both on the con-
tact tangent plane as well as in contact normal direction. For
the tangential component, we compute the scalar displace-
ment λa equivalent to Fa using Equation 34 and add it to
the friction displacement cap in Equation 33, thus combin-
ing friction and tangential adhesion in a single constraint.
For the normal adhesion we use an additional damper con-
straint without any relaxation (c′pb = 1) and cap the normal
displacement by λa. The corresponding adhesive position
correction is applied immediately after the spring-damper
position correction in Gauss-Seidel style, which avoids hav-
ing to process the additional damper constraint in the solver.

6.6. Rigid Body Coupling

A fundamental component of any interactive particle simu-
lation is interaction with the environment. In particular, for
training of excavator and bulldozer operators, forces applied
to the cutting tool (the bucket or blade) are very important
to correctly model the effects of the machine interacting
with the simulated granular material. At the beginning of
each frame we compute rigid body/particle contacts using
the predicted particle positions. For each particle position
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correction computed for rigid body/particle contacts in the
solver, we compute an equivalent force vector using Equa-
tion 34 and apply it to the rigid body as an external force at
the contact position. Figure 4 shows a simulation with rigid
body/particle interactions.

Figure 4: Rigid body coupling: The wheel turns as a result
of rigid body/particle contacts. Particles accumulate on the
plank and make it tilt, causing weights to slide down.

7. Error Reduction

The proposed relaxed Jacobi-style solver allows for an
easy parallel implementation and high performance. On the
downside, it requires a high number of solver iterations to
converge to an equally stiff result as in the sequential Gauss-
Seidel scheme (see Fig. 5). To improve convergence, we pro-
pose an intuitively motivated approach. Noticing that in a
granular material simulation the error in the solution tends
to increase with increasing depth in a pile, especially with
few iterations, we suggest the following simple treatment to
reduce the error. For every contact between particles i and j,
we correct the position of the particle which lies on top by
a larger quantity than the other, and weighting the effect by
the angle between contact normal and gravity. This has the
effect of artificially increasing the mass of the lower parti-
cle. The weighting factor ei, applied to the particle position
correction ∆pi← j, is defined as

ei = 1− ε(n · ĝ), (37)

where ĝ denotes the normalized gravity vector and ε ∈ [0,1]
denotes a global error reduction parameter which allows tun-
ing in the effect. The weighting factor ei can be seen as a
way to model the increase in effective mass further down
in a material pile. This very simple and efficient approach
yields good results as can be seen in Figure 5.

The proposed approach is loosely related to the shock
propagation technique proposed in [Erl05] and used to re-
solve inter-penetrations in stacks and piles. However, as op-
posed to the shock propagation technique, our approach is
a local heuristic. A global heuristic could be applied here
as well, which could model the effect of the increase in ef-
fective mass more accurately by looking at the graph dis-
tance of particles to some ground body in the contact net-
work, as in [Erl05], and computing the weight as a function

Figure 5: Slope angles produced by Gauss-Seidel (GS)
solver without error reduction and our P2 solver. Top: As
expected, GS performs slightly better with same iteration
count (iter). Bottom: P2 with error reduction (ε = 0.5) and
iter = 10 produces a slope angle close to GS with iter = 40.

of the latter. The advantage of the local heuristic compared
to the global heuristic is that the latter requires a contact
graph analysis as well as the concept of ground, which is not
the case for the local heuristic. It is thus more efficient and
flexible. Also it provides satisfying results in our application
which are visually feasible (see Fig. 5, bottom).

As an additional error reduction technique we introduce
particle sleeping. Once a particle almost comes to rest, that
is, the corrected particle position pi at the end of the step
is very close to the previous particle position xi, we do not
modify the particle position. This technique allows for the
simulation of very stable heaps, since it eliminates drift even
at a small number of solver iterations. However, it can not
be used when particles are transported in, e.g., a truck bed or
bucket, which is the case in our target application. Therefore,
we do not make use of this technique in our training simula-
tor. However, we are still able to simulate stable heaps, even
at low solver iterations, because we integrate our Parallel
Particles approach with a hybrid grid/particle soil simulation
framework [HBK09]. In this method particles are removed
and replaced by grid volume if they come to rest, therefore
leading to stable, drift-free slope angles (see Fig. 6).

8. Results

In this section we present simulation results of the pro-
posed granular material simulation approach Parallel Parti-
cles (P2). We integrated P2 with a Virtual Reality Earthmov-
ing training simulator based on CM Labs’ multi-body dy-
namics toolkit Vortex 6.2 [CM 14]. In the simulator we em-
ploy the hybrid particle/grid soil simulation approach from
[HBK09] which adaptively introduces particles into the sim-
ulation, replacing portions of the grid as required by the dig-
ging operations. Particles are removed from the simulation
and transformed back into grid volume once they settle.

All presented simulations ran at interactive to real-time
simulation rates and were obtained on an Intel Core i7-3770
CPU @ 3.40GHz with 4 physical cores. Figure 6 shows
various interactions of an excavator with a loam type soil.
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Figure 6: Excavator interacting with a frictious and cohesive loam type soil. Rightmost picture shows adhesive particles stuck
to the bucket, which need to be actively released by performing accelerating bucket motions.

Figure 7: Kinematic bulldozer blade pushing soil over long
distance, which yields physically plausible soil ridges.

It also depicts adhesive loam particles stuck to the bucket,
which need to be actively released by performing acceler-
ating bucket motions. We performed a bulldozing experi-
ment showing the formation of ridges due to particles flow-
ing sidewards out of the blade. The results can be seen in
Figure 7. Figure 1 shows performance results of P2 obtained
during the soil pile experiments (see Fig. 3). As can be seen,
the speed-up when using multiple threads is significant.

9. Conclusion and Future work

We presented a novel approach for the simulation of granular
material which yields fast and stable results. Important soil
dynamics effects, such as piling and sticking, are captured to
a physically plausible extend. The proposed contact dynam-
ics model supports kinetic and static Coulomb friction and
adhesion. Through the use of a simple regularization method
we were able to formulate a spring-damper constraint on the
position level which we use to model visco-elastic contacts.
We proposed a novel, parallel solver for Position Based Dy-
namics enabling the simulation of granular material at inter-
active to real-time frame rates. As such, the method proved
practical for use in an Earthmoving training simulator.

In the future, we would like to explore a GPU implemen-
tation of the approach. This would allow us to use more par-
ticles and gain in realism both in terms of physical accuracy
and visual fidelity.

The presented method proved sufficient for our applica-
tion. However, with our current solver, if more than one con-
tact is applied to a particle, the normal forces do not converge

to the actual spring-damper forces, even with many itera-
tions. This is likely caused by the too aggressive relaxation
through constraint averaging. Convergence can probably be
improved by performing actual mass-splitting as in Tonge et
al. [TBV12], weighting the position corrections accordingly,
which would produce a weighted instead of an ordinary av-
erage.
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