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Abstract
This paper presents a new method for simulating particles for computer graphics and video games, based on
an improved Jacobi solver and a hybrid approach between velocity time stepping and position based dynamics.
Current constrained dynamics solvers use relaxation iterative methods like Gauss-Seidel or Jacobi. We propose
a new iterative method based on a minimum residual variant of the Conjugate Gradient algorithm and show that
it can be formulated as an improvement to the Jacobi method. We also describe an adaptation of position based
dynamics to better handle contact and friction and allow tight two way coupling with velocity level methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically Based Modeling

1. Introduction

Particle systems can be used to model all kind of mechan-
ical phenomena including granular matter, fluids, cloth, de-
formable objects and even rigid bodies. Granular matter has
been used extensively in visual effects and computer gener-
ated animations such as Spiderman or Rise of the Guardians
[ABC∗07]. Cloth and soft bodies in general are now ubiqui-
tous in movies and becoming more so in games. This is why
the simulation methods still need to become faster and more
robust in order to handle a growing number of objects.

In this paper we present a unified approach to simulating
granular matter and cloth using a constrained dynamics ap-
proach. Our hybrid dynamics method offers tight coupling
between all simulated objects as all constraints are treated in
the same solver loop. Also our improved Jacobi solver shows
convergence similar to the popular Gauss-Seidel method,
thus allowing for more efficient parallel implementations.

2. Related work

Granular matter has been an area of research in computa-
tional mechanics for decades. The method of choice is usu-
ally the discrete element method (DEM) which treats the
granules as elastic billiard balls. The DEM method was used
in graphics too [BYM05, ATO09, Har07]. Another approach
was a continuum based one, considering the granular matter
a special kind of fluid [ZB05,NGL10]. This was followed by
a Lagrangian version derived from the smooth particle hy-
drodynamics method for simulating fluids [AO11, IWT12].

An alternative to DEM is the non-smooth constrained dy-
namics approach where the particles are considered fully
rigid and this is the path we are following. In fact the method
was developed for the more general case of rigid bodies, but
that can be turned into an advantage given the granules can
have any shape other than spherical [BYM05]. A great deal
of articles have been written on the subject of multi-body dy-
namics with contact and friction [ST96,AH04,AT10,Lac03],
many in the computer graphics community [Bar94, Erl07,
BETC14, TBV12, KSJP08], and some explicitly on the sub-
ject of granular flow [TA10, RA05, LSB10].

Rigid bodies can be simulated with other methods than
constrained dynamics, e.g. the penalty method [BZX14].
Other approaches consider the rigid body as a collection of
particles and contact forces are computed using DEM or in
other ways [TSIHK06,Jak01]. The particles can move under
rigid transformations [Har07] or be constrained together to
form a composite rigid object [Cou12, MMCK14].

Cloth has been traditionally simulated as a mass-spring
model [Pro96] and great effort has been put into mak-
ing the simulation stable at large time steps [BW98]. In
games position based dynamics is usually preferred (PBD)
[Jak01, MHHR07, GHF∗07]. The approach in [BBD09] and
[How11] is similar to our hybrid algorithm, but has sepa-
rate passes for velocity and position. Volumetric deformable
objects can be modeled by connecting the particles together
in a lattice fashion, by adding internal pressure or through
shape matching [MHHR07, BMOT13]. A unified particle
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based simulator using constraints is described in [Sta09].
Many similar approaches to ours involving PBD are pre-
sented in a couple of recent papers [MMCK14, DCB14].

Iterative methods are currently the preferred way of
solving constrained mechanical systems for real-time. Using
exact methods can become infeasible when adding contact
and friction for more than a few hundred bodies [BETC14].
The fastest and most robust iterative method used in the
present is Gauss-Seidel (GS) [Cat05, Erl07]. GS also knows
improvements such as line search with conjugate directions
[SHNE10a] or subspace minimization [SHNE10b].

Jacobi is another relaxation method, closely resembling
GS, but it converges slower and needs modifications to re-
main stable. Still it is preferred to GS for parallel implemen-
tations as it can process each constraint independently of the
others [TBV12].

The Conjugate Gradient (CG) method has a good reputa-
tion for solving linear systems as it has better convergence
than matrix splitting methods like Jacobi or GS [Saa03].
Even though it was used for implicit integration of mass-
spring models [BW98] it has never gained traction in con-
strained dynamics simulations. There have been attempts
at using it [RA05], but many argued against its applica-
bility to efficient simulations mainly due to erratic conver-
gence [Erl07,Ton12,Mor05]. Our method is based on a min-
imum residual variant of gradient descent algorithms as it
gurantees decreasing residual energy and is more stable. Af-
ter optimizing it we arrived at a version of Jacobi with im-
proved convergence. A minimum residual method (GPMIN-
RES) was used in [HATN12] but it is only one of several
methods described, it is more complex than ours and it was
chosen for a different reason, i.e. to handle positive semi-
definite matrices. The line search Jacobi algorithm offers
similar improvements [TBV12, CPS92], but we found little
resemblance in the mathematical formulation to our method.

3. Preliminaries

3.1. Constrained dynamics

The mathematical formulation of the constrained dynamics
of a particle system has the form of a differential comple-
mentarity problem (DCP) [ST96]:

Mv̇ = JT
λλλ+F, (1)

ẋ = v, (2)

Cb(x) = 0, (3)

Cu(x)≥ 0,λλλu ≥ 0, (4)

λλλ
T
u Cu(x) = 0, (5)

where M is the mass matrix, v is the generalized velocity, x is
the generalized position, F is the generalized external force,
λλλ are the Lagrange multipliers, C(x) is the vector constraint
function and J =∇C(x) its Jacobian. For a particle system
the mass matrix is a block diagonal matrix made up of d×d

square element matrices Mi = diag(mi), where d is the num-
ber of space dimensions and mi are the particle masses. The
constraint function is split in two, C = (Cb Cu)

T : bilateral
(equality) constraints and unilateral (inequality) constraints.
The same goes for the Lagrange multipliers λλλ = (λλλb λλλu)

T ,
and the Jacobian J = (Jb Ju)

T .

The system (1)-(5) can be discretized using a semi-
implicit integrator (a low-order symplectic Euler scheme
that closely preserves energy) and through constraint lin-
earization, resulting in a mixed linear complementarity prob-
lem (MLCP) known as velocity time-stepping [AH04]:

v(k+1) = v(k) +hWJT
λλλ+hWF, (6)

x(k+1) = x(k) +hv(k+1), (7)

0 = Jbv(k+1) +
γ

h
Cb(x

(k)), (8)

0≤ Juv(k+1) +
γ

h
Cu(x(k))⊥ λλλu ≥ 0, (9)

where the superscript between brackets indicates the value
at time tk or tk+1 = tk + h, h is the time step, W = M−1,
J = ∇C(x(k)), γ ≤ 1 is the Baumgarte stabilization factor
[Cat05], and the perpendicularity symbol indicates comple-
mentarity like in (5).

3.2. Coulomb friction

Unilateral constraints are mostly used to model non-
penetrating contact and can also be used to model friction.
This is why we differentiate between normal and tangen-
tial constraints (Cn,Ct ) and their corresponding Jacobians
(Jn,Jt ) and multipliers (λλλn,λλλt ). By looking at a single con-
tact point we identify the following elements: a contact nor-
mal n and two tangential vectors t1 and t2 forming an or-
thonormal frame, a contact force made up of a normal com-
ponent preventing penetration Fn = λnn and a friction force:

Ft = λt1 t1 +λt2 t2, (10)

and a relative tangential velocity vt , whose magnitude we’ll
denote by vt (sliding speed).

We can now express the Coulomb friction model as con-
sisting of two laws [BETC14, ST96]: dynamic friction - if
the bodies are sliding (vt 6= 0) the friction force acts against
the tangential velocity and has the expression

Ft =−µλn
vt

vt
, (11)

and static friction - if the bodies are sticking (vt = 0) the
contact force has to be inside the friction cone defined by

Ft =
√

λ2
t1 +λ2

t2 ≤ µλn. (12)

The two laws can be summed up together using the prin-
ciple of maximum dissipation [BETC14]:

(λt1 λt2)
T = arg min

Ft≤µλn

(Ft ·vt). (13)
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Equation (13) applied to all the contacts in the system to-
gether with the MLCP in (6)-(9) form a differential varia-
tional inequality (DVI) problem [AT10].

One way of solving the DVI is to discretize the friction
cone as a polyhedral cone (faceted pyramid) and convert the
problem to a linear complementarity problem (LCP) [ST96].
To get from this model to the one used in computer graphics
and video games that uses iterative solvers we need to make
the following simplifications [PNE10]: use a square pyramid
defined by the directions t1 and t2, use box constraints for
friction (λλλt ≤ |µλλλn|) and contact (0 ≤ λλλn ≤ ∞), and drop
the principle of maximum dissipation. In the end we get a
box linear complementarity problem (BLCP) [Cat05]:

y = Aλλλ+b, (14)

λλλlo ≤ λλλ≤ λλλhi, (15)

where

A = hJWJT , (16)

b = Jv(k) +hJWF+
γ

h
C(x(k)), (17)

assuming Ct(x) is always 0, and λλλlo and λλλhi are the lower
and upper bounds of the Lagrange multipliers as described
in the box constraints above. For a more rigorous comple-
mentarity formulation see [Lac03, PNE10].

3.3. Position based dynamics

The DCP without unilateral constraints (1)-(3) is called a dif-
ferential algebraic equation (DAE) or a differential equation
on a manifold [HLW06]. A different way other than (6)-(8)
of discretizing the DAE is through a nonlinear formulation at
position level with implicit constraint directions [GHF∗07]:

x(k+1) = x̃+∆x, (18)

v(k+1) = ṽ+ 1
h

∆x, (19)

Cb(x
(k+1)) = 0, (20)

where

ṽ = v(k) +hWF, (21)

x̃ = x(k) +hṽ, (22)

∆x = h2W∇CT
b (x

(k+1))λλλ. (23)

The values ṽ and x̃ represent the unconstrained velocity and
position integration steps.

The system (18)-(20) can be solved through projection
[HLW06], which in turn can be expressed as a series of se-
quential quadratic programming (SQP) steps [GHF∗07]. In
result we get a Newton process for solving equation (20):

0 = C(xl)+h2JlW(Jl)T
λλλ

l
, (24)

xl+1 = xl +h2W(Jl)T
λλλ

l
, (25)

where the superscript l indicates the iteration number, x0 =
x̃, and Jl = ∇C(xl). The position based dynamics (PBD)
method employs nonlinear iterative solvers for (20) [Jak01,
MHHR07]. PBD can also handle contact and friction as de-
scribed in [ST96] by adding equations (4)-(5) to (18)-(20) in
order to form a nonlinear complementarity problem (NCP).

3.4. Iterative methods

The most popular methods for solving the BLCP (14)-(15)
are relaxation or matrix splitting methods. They are widely
used for solving large sparse linear systems [Saa03] and they
have been adapted for LCPs using projection [CPS92]. We
will further denote the projection step through the function:
proj(λ) = clamp(λ,λlo,λhi) and consider h included in λλλ.

3.4.1. Projected Jacobi

Projected Jacobi has the form:

λλλ
l+1

= proj(λλλl−ωD−1rl), (26)

where l denotes the iteration number, D = diag(A), rl =

Aλλλ
l
+ b is the residual vector and ω < 2/ρ(A) is a factor

that assures convergence. In order to simplify the algorithm,
the velocities are updated at each iteration:

vl+1 = vl +WJT
∆λλλ

l+1
, (27)

where ∆λλλ
l+1

= λλλ
l+1−λλλ

l is the magnitude of the corrective
impulse. One can also divide this impulse by the number of
incident constraints to the current body being updated (nbi )
and omit ω altogether from (26). Using (27) for the veloc-
ity time stepping problem in (14)-(17) we can also derive a
simpler expression for the residual:

rl = Jvl +δδδ, (28)

where δδδ = γ

h C(x0) can be precomputed (x0 = x(k)). The
residual is thus nothing else than the relative velocity along
the constraint direction plus a position stabilization term δδδ

depending on the position at the beginning of the time step
x0 and the Baumgarte factor divided by the time step.

3.4.2. Projected Gauss-Seidel (PGS)

PGS is very similar to Jacobi with the difference that it uses
the updated velocities right away, speeding up convergence:

λ
l+1
i = proj(λl

i−
ω

di
r̄), (29)

where i is the body index, ω ≥ 1 is a successive over-
relaxation (SOR) factor, and di = Dii is the inverse effective
mass seen by the constraint, e.g. for a constraint between
two particles di =

1
mi1

+ 1
mi2

, where i1 and i2 are the parti-
cle indices. The residual r̄ is computed based on the most
up-to-date velocities v̄ = (vl+1

1 . . .vl+1
i−1 vl

i . . .v
l
n)

T .

c© The Eurographics Association 2014.

127



M. Frâncu & F. Moldoveanu / Improved Jacobi Solver

4. Minimum residual methods

In this section we will present a couple of methods inspired
by the Conjugate Gradient algorithm and in the end describe
a way of improving the convergence of the Jacobi method,
making it comparable to Gauss-Seidel.

4.1. Projected Minimum Residual

The Steepest Descent (SD) algorithm for solving linear sys-
tems [She94] has the following update rule:

λλλ
l+1

= proj(λλλl−α
lrl), (30)

where for α we use the formula from the Minimum Residual
(MR) method [Saa03]:

α
l =

(rl)T Arl

(Arl)T (Arl)
. (31)

We found that α needs to vary smoothly in order to prevent
erratic converge and also that for stability reasons α≤ α0 =
1/ρ(A) must hold. We tried setting α to a close estimate of
α0 instead of (31) (computed at the beginning of the frame
using the power iteration method for determining the largest
eigenvalue of a matrix) and found it to be a robust optimiza-
tion. Note also the similarity with Jacobi where the value of
α differs for each constraint and can be written as

αi =
ω

di
. (32)

This is why the two methods have similar convergence rates.

4.2. Projected Conjugate Residuals

The Conjugate Gradient (CG) makes an improvement over
SD by adding a descent direction and an extra update step:

λλλ
l+1

= proj(λλλl−α
ldl), (33)

dl+1 = rl+1 +β
l+1dl , (34)

where again we use a formula for β from the Conjugate
Residuals (CR) method [Saa03]:

β
l+1 =

(rl+1)T Arl+1

(rl)T Arl . (35)

We found experimentally that β grows very rapidly from 0
to 1 and then stays almost constant. Also clamping it below
1 improved stability (see Figure 1). Given that the choice of
β is not unique [HZ06], we chose to approximate (35) with:

β
l = min

(
a
(

l
lmax

)b

,1

)
, (36)

where a≥ 1 and b < 1 and lmax is the maximum number of
iterations. We obtained very good results and an even more
stable simulation. In order to increase convergence one can
make β grow steeper by lowering b and increasing a, but this
may introduce jitter. We found a = 1 and b = 0.6 to be good

values. Both CR and the power function optimized version
have very good convergence, similar to Gauss-Seidel or even
better in many cases (see Figure 2).
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Figure 1: Plot of β over 20 iterations of the CR solver: origi-
nal formula clamped below 1 (blue) and power function ap-
proximation (red) - PBD simulation.
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Figure 2: Plot of the total stretching at equilibrium of a
50x50 piece of cloth relative to the number of iterations for
GS (red) and optimized CR (blue).

4.3. Improved Jacobi

If we set α fixed in the CR method just like we did for MR
we can make the following simplification by using the de-
scent direction (34) from the previous iteration:

∆λλλ
l+1

=−αdl =−α(rl +β
ldl−1) =−αrl−β

l
∆λλλ

l
. (37)

This way we don’t need to store the descent direction any
more and we get a simpler version of CR. We still have to
provide a value for α and we could use α0, but we can make
things even simpler by using the values from (32) and obtain
a version of Jacobi with increased convergence:

λλλ
l+1

= proj(λλλl− ω

di
rl−β

l
∆λλλ

l
), (38)
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(a) µ = 0.1
(b) µ = 0.2

(c) µ = 0.3
(d) µ = 0.4

Figure 3: Sand piles formed by dropping 3000 particles using VTS with different friction coefficients (15 iterations, γ = 0.5).

where ω ≤ 1. We tested this improvement on GS too, but
we had to lower the value of ω a lot in order to stabilize the
simulation. Also our focus is on the Jacobi method as it is
easier to paralellize.

5. Handling friction

The most popular way to handle friction in games and com-
puter graphics is to use the square pyramid model [Erl07].
We chose not to do the simplification in [Cat05] (constant
normal push) in order to have accurately coupled friction.
This approach adds two tangential constraints for friction at
each contact and so performance is affected.

Another way of solving the DVI (6)-(9), (13) is by casting
it to a cone complementarity problem (CCP) [AT10]. In sim-
ple words this reduces to calculating the friction impulse that
zeros the tangential velocity and projecting it to the smooth
cone [Ton12]. In order to do this we need to add a relaxation
term to (9):

0≤ Juv(k+1) +
γ

h
Cu(x(k))−µ

√
v2

i,t1 + v2
i,t2 ⊥ λλλu ≥ 0, (39)

or equivalently to each component of b (17) and replace it
with b′ in (14):

b′i = bi−µvi,t , (40)

where vi,t = ‖vi‖ is the tangential sliding speed at the ith
contact and vi = (vi,t1 vi,t2)

T . As it works along a single di-
rection, using a CCP approach can prove to be faster. We
found that even without the relaxation term in (40) there are
no noticeable convergence issues.

The last resort for optimizing friction is to apply it at the
end, usually in a single iteration, as a post-processing step
like in [MHHR07]. This process can be viewed as a simple
kind of staggered approach [KSJP08, BETC14] and it usu-
ally generates weak and unrealistic friction forces.

6. Hybrid dynamics

The position based dynamics (PBD) method is very well
suited for simulating complex articulated structures like
cloth, where the constraint directions are rapidly changing.
The velocity time stepping (VTS) method (14)-(15) cannot
handle these situations properly as it’s computing the Jaco-
bian only at the initial time tk. PBD offers the best accuracy
for bilateral constraints and that is why we would like to use
it to minimize position drift and for coupling with cloth.

PBD can handle contacts by iteratively solving the NCP
(18)-(20) as a sequence of LCP sub-problems [ST96, Jak01,
MHHR07]. Some authors and engines use it as a post-
processing stabilization step [AH04]. But it does suffer from
a couple of drawbacks: the calculated impulses are usu-
ally too high unless a high collision tolerance is used, and
the friction forces are very roughly approximated after the
solver has completed [Jak01,MHHR07]. Some existing PBD
simulators already address these problems like for instance
[MMCK14], but our hybrid approach is different.

Regarding the first problem we noticed that the impacts
in VTS are handled more inelastically than PBD. That is be-
cause the VTS solver tries to bring the normal velocity close
to zero immediately, while penetration is eliminated over the
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(a) Bunny (b) City (c) Hourglass

Figure 4: Granular matter falling over or trough various meshes.

course of many frames. On the other hand PBD applies any
impulse necessary to zero the constraint error. So, in order to
soften the impacts, we choose to use relative velocities too
(along the constraint directions) and relax the enforcement
of position corrections inside PBD.

Also in order to accommodate friction inside the PBD
solver we need to explicitly update the velocities at each it-
eration. In [Jak01] velocities are implicitly updated by the
fixed time step Verlet integrator, while in [MHHR07] they
are approximated at the end by a finite difference.

Finally, in order to address both issues we need to accu-
mulate the normal and friction forces over all iterations and
properly clamp them as in [Cat05]. For this purpose we con-
sider that the constraint directions don’t change at every it-
eration and we clamp the impulse magnitudes directly. The
end result is a hybrid method between VTS and PBD that
we called Sequential Positions (SP). We present a pseudo-
code description in Algorithm 1 using our improved Jacobi
method, but any other iterative method could be used.

The two constants kv and kc can vary between 0 and 1 and
control the mix between the velocity and position error. If
kv = 0 and kc = 1 we get PBD, and if kv = 1 and kc = γ we
get a sort of nonlinear VTS. We experimented with different
other values and found that for example kv = 0.1 can in many
cases soften the impacts of PBD. The relaxation factor ω is
the same as in (38) and has to be provided as input. The same
goes for the mixing coefficients kv and kc, and a and b for
approximating β. Although they provide flexibility, we hope
to reduce the number of tweakable constants in the future.

One modification we could make to Algorithm 1 is to de-
lay the first integration update of positions until after a few
velocity iterations (with kv > 0). This would make sure that
the constraint violations are not as big as it would normally
happen for PBD and the contact impulses are smaller too.

Algorithm 1 Sequential Positions (using improved Jacobi)
Unconstrained velocity step v = ṽ using (21)
Unconstrained position step x = x̃ using (22)
Detect collisions
for l = 0 to lmax−1 do

Compute β(l) using (36)
for each constraint Ci do

Compute position error δ =Ci(x)
Compute constraint direction Ji =∇Ci(x)
Compute velocity error ν = Jiv
α = ωme, where me = 1/di is the effective mass
r = kvν+ kc

h δ

Compute ∆λi using α,β and (38)
λ̄ = λi
λi = proj(λi +∆λi)
∆λi = λi− λ̄

end for
v = v+WJT

∆λλλ

x = x+hWJT
∆λλλ

end for

Overall, when dealing with contacts, we found the method
to show its strength over VTS only at large number of iter-
ations (see Figure 10 and the Results section). As a fallback
one could precompute the constraint error and direction for
this kind of constraints and also make the algorithm faster.
But the main advantage of the method is that it permits very
tight two way coupling between cloth and colliding particles.

7. Further optimization

We believe that our improved Jacobi method can profit from
even more optimizations, like for instance sleeping poli-
cies [BETC14]. We tried warm starting [Cat05] and found
that it helps improve convergence, but not as dramatically
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as for GS. Our parallel implementation of the algorithm is
a straightforward clone of Jacobi plus the improvement in
(37). We used C++ and OpenCL for our implementation.
The algorithm runs in two passes: a loop over all the con-
straints computing the required impulses and a loop over
all the particles accumulating and applying these impulses.
For the second pass we use adjacency lists for each particle.
This approach permitted us to exploit multi-core architec-
tures and simulate more particles in real time. Still we be-
lieve our method can be optimized even further. For exam-
ple it could be used in a block solver like in [TBV12] where
each block can be solved using GS in the local memory of a
GPU compute unit.

8. Applications

8.1. Granular matter

Granular matter is a material with very curious properties
as it sometimes behaves like a solid and other times like
a fluid [JNB96]. For example, due to static friction piles
of grains maintain their shape, but if the angle of repose
is reached avalanches can be triggered. For similar reasons
sand in an hourglass flows at a steady rate as the pressure
doesn’t increase indefinitely with height as in the case of
hidrostatic pressure. We attempted to reproduce such be-
haviour with our methods and you can see the resulting sand
piles in Figure 3. Notice how the angle of repose increases
with the value of the friction coefficient.

Collision detection between particles is done at discrete
times using a grid to prune the possible intersecting candi-
dates, followed by sphere-sphere tests. We allow a small tol-
erance in our tests in order to catch potential changes in the
constraint active set while the solver is running. The colli-
sion tolerance is more important for stabilizing PBD when
used for particle collisions, even if increasing it means more
constraints to solve per frame. This is again why we think
SP is a better method as it needs lower tolerance, especially
when we integrate the positions after at least a pure velocity
iteration. Note also that in PBD collision detection is done
after the unconstrained integration step and before the solver,
while in VTS and SP it is done right before the solver as
there are no position updates at that time.

We also implemented collisions with triangle meshes, ei-
ther static or dynamic (see coupling with cloth below). For
this we used the same grid to filter point-triangle candidates
and then performed point-triangle or ray-triangle tests (in
order to prevent tunneling). You can see in Figure 4 some
simulations we did of particles falling over meshes and an
hourglass. We chose the VTS simulation method here as it
performs better and is more stable at low iteration count. Al-
though all of our tests involved convex object shapes (i.e.
spheres) we are confident that the methods described apply
just as well for arbitrary concave bodies, as is the case of
rigid bodies, which we plan to address in a future paper.

8.2. Cloth

Cloth is modeled many times as a particle system connected
with stretching, shearing and bending springs [Pro96]. In
our case we replace the springs with hard constraints that
can be softened in the case of shearing and bending using
a stiffness parameter like in [MHHR07]. Note that the con-
strained dynamics methods correspond in theory to infinitely
stiff springs so there is no need for specifying the true elas-
tic stiffness of the material. Behaviour corresponding to low
stiffness, e.g. under-critically damped oscillations, can only
arise because of numerical inaccuracy of the iterative solvers
or due to the aforementioned stiffness factors.

We applied to this cloth model our improved Jacobi itera-
tive method using PBD and the results were very good. We
also used the SP method and the biggest gain was its very
accurate friction model. You can see a comparison between
PBD and SP for handling friction in Figure 5. For PBD we
applied friction after the position solver using constant ver-
tical push, while in SP we recomputed the friction impulse
at every iteration using the updated normal impulse.

(a) (b)

Figure 5: Cloth falling freely over a sphere with friction co-
efficient µ = 0.5: (a) using the SP method the cloth remains
stable on the sphere and (b) using the PBD method the cloth
falls very quickly off the sphere.

Another advantage of SP is that it permits us to solve both
cloth and particles with frictional contact in the same itera-
tive method, allowing direct two way coupling. We present
some results in Figure 6 where the cloth bounces the parti-
cles up several times until they reach a steady state together.
We performed the same kind of mesh collision tests as de-
scribed in the previous section, but contact response was dif-
ferent in order to allow coupling. We used barycentric coor-
dinates [Jak01] and a modified impulse [BFA02] in order to
correct the positions and velocities of the triangle vertices.

9. Results

First we tested the accuracy of our improved Jacobi method
on bilateral constraints only. Our test scenario consisted of a
100x100 piece of cloth falling from a horizontal position and
hanging by two corners. The simulation used a PBD method
with a timestep of 16 ms, one substep and 15 iterations. You
can see the evolution in time of the system for three different
solvers in Figure 7. Clearly our method performs better.
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Figure 6: Simulation of 1000 particles falling on a 20x20 piece of cloth fixed at its corners (using the SP method).
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Figure 7: Plot of constraint error (L1 norm) for PBD cloth
simulation with different solvers (frame number on the hori-
zontal axis): Gauss-Seidel (blue), SOR (green) with ω= 1.2,
and improved Jacobi (red) with ω = 0.5, a = 1 and b = 0.6.

Next we measured the positional errors for unilateral fric-
tionless constraints by dropping 3000 particles in a box us-
ing a VTS method. As you can see from the results (Figure
8), the improved Jacobi method is not always more accurate
than GS and we had to tweak it (a = 2) in order to get bet-
ter results. Still, even without tweaking, our method behaves
similarly to GS and at a similar cost (see Table 1) without
having its drawbacks: constraint order bias and batching for
parallel implementations [Har09, TBV12].

Gauss-Seidel Improved Jacobi
Cloth 39 ms 51 ms
Particles 5.2 ms 6.5 ms

Table 1: Frame time measurements made on a Intel Core i7
3770 CPU (single-threaded) for the two presented scenarios:
hanging cloth (PBD) and falling particles (VTS).

We also tested heterogeneous mass values with large ra-
tios between them and found that improved Jacobi handles
them just as robustly as GS. Adding friction to the mix
may introduce jitter but it can be alleviated by lowering
ω. You can see the results of a falling particles simulation
with inverse mass values between 0.01 and 1000 and fric-
tion (µ = 0.2) in Figure 9.
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Figure 8: Plot of unilateral constraint error (L1 norm) for
3000 particles falling in a box (VTS, γ = 0.5): Gauss-Seidel
(blue), improved Jacobi with ω = 0.5, a = 1 and b = 0.6
(red), improved Jacobi with a = 2 (green), and Sequential
Positions using GS with kc = 1 and kv = 0.1 (purple).
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Figure 9: Plot of unilateral constraint error (L1 norm) for
3000 particles in a box with varying masses and friction: GS
(blue), improved Jacobi (red) with ω = 0.4, a = 1, b = 0.6.

In our falling particles experiments we used 15 iterations
and one substep at 60 Hz, but the iteration count can be set
even lower without breaking our method. For very low it-
eration numbers we recommend decreasing ω and b more
in order to avoid jitter. Of course high velocities and small
object sizes can put even GS in difficulty. In this situations
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Figure 10: Plot of relative velocity along constraints relative
to the number of iterations for 1000 particles falling in a box
with contact and friction: Gauss-Seidel (blue), improved Ja-
cobi (red) with ω = 0.5, a = 1 and b = 0.6, and Sequential
Positions using GS with kc = 1 and kv = 0.1 (green).

increasing the number of iterations doesn’t always work and
we need to lower the time step, i.e. add more substeps.

In order to measure convergence per frame for both VTS
and SP methods we switched to using the velocity error.
We present results from frame 100 (Figure 10) for 1000
falling particles with friction (60 iterations per frame). Again
improved Jacobi behaves very similarly to GS. Also our
SP method converges better than VTS, but only for a high
enough number of iterations. You can see in Figure 8 that
the positional error of the SP-GS method is also good but,
for the visual aspect, impacts may require softening.

10. Conclusions

We have presented a new iterative method for solving con-
strained dynamics based on the Conjugate Residuals and Ja-
cobi methods and showed that it has very good convergence
properties, similar to Gauss-Seidel. In many cases, espe-
cially for bilateral constraints, our method provides more ac-
curate solutions for a lower number of iterations than GS. We
have also proposed a new solver scheme that we called Se-
quential Positions acting as a hybrid between position based
dynamics and velocity time stepping methods. SP handles
friction better, provides a mechanism for mixing between
PBD and VTS and softens the impacts. It also allows direct
two way coupling between cloth and rigid particles.

11. Future work

We would like to use more accurate modeling for rolling
friction and focus more on rigid bodies. Another goal is to
improve collision detection and include it together with our
improved Jacobi solver in a unified GPU physics pipeline.
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