
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2014)
J. Bender, C. Duriez, F. Jaillet, and G. Zachmann (Editors)

A Parallel Architecture for IISPH Fluids

Felix Thaler Barbara Solenthaler Markus Gross

Department of Computer Science, ETH Zurich, Switzerland

Abstract
We present an architecture for parallel computation of incompressible IISPH simulations on distributed memory
systems. We use orthogonal recursive bisection for domain decomposition and present a stable and fast converging
load balancing controller. The neighbor search data structure is derived such that it optimally fits into the parallel
pipeline. We further show how symmetry aspects of the simulation can be integrated into the architecture. Simul-
taneous communication and computation are used to minimize parallelization overhead. The seamless integration
of these parallel concepts into IISPH results in near linear scaling for large-scale simulations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.1 [Computer Graphics]: Hardware Architecture—Parallel Processing;

1. Introduction

The visual quality of a particle-based fluid simulation de-
pends on the spatial resolution which is used to repre-
sent the fluid. High-resolution simulations result in more
complex surface and flow structures and dissipation arti-
facts are decreased. Recent work therefore aimed at in-
creasing the performance of high-resolution, incompressible
solvers, for example by improving the pressure computa-
tion [SP09, ICS∗13, MM13] or by leveraging spatial adap-
tivity [APKG07, SG11, HS13]. Today’s solvers such as the
implicit incompressible SPH method (IISPH) [ICS∗13] are
capable of simulating several million particles resulting in
stunning fluid effects and thus demonstrate that particle-
based models have emerged to be a competitive technique
for fluid animation [IOS∗14].

Despite the prominent advantages of the IISPH method,
the solver is much more complex compared to the standard,
compressible SPH model used for example in [MCG03].
Hence, the inclusion of parallelization strategies to further
improve the performance is not straightforward, especially if
distributed memory platforms are considered. Furthermore,
existing data structures for parallel execution of standard
SPH on distributed systems such as in [FE08] cannot be di-
rectly applied to the incompressible IISPH method.

This paper aims at filling this gap by introducing a seam-
less integration of a parallel architecture into IISPH. Our
implementation is targeted at distributed memory platforms
using the standard message passing interface MPI and or-

thogonal recursive bisection ORB for domain decomposi-
tion. We use simultaneous communication and computation
to minimize parallelization overhead. A robust load balanc-
ing controller is introduced that shows fast convergence, and
we further demonstrate how neighbor search and symmetry
aspects can be embedded into the parallel pipeline. Our re-
sults show near linear parallel scaling for IISPH simulations
with up to 22 million particles.

2. Related Work

SPH Methods. Compressible SPH models [Mon92] have
been used for interactive simulations of fluids for graphics
applications in [MCG03]. Since then, many methods have
been presented targeted at improving the performance.
Various works addressed the problem of efficient pres-
sure computation in incompressible particle methods,
e.g. [SP09, BLS12, ICS∗13, MM13]. To our knowledge,
the state-of-the-art solver IISPH [ICS∗13] is one of the
fastest solvers for incompressible SPH. Thus, our work
is using IISPH and shows how parallel architectures can
be seamlessly integrated. Other strategies to increase the
performance include adaptive methods [APKG07, OK12]
and multi-scale models [SG11, HS13]. They follow the idea
to allocate computing resources to interesting regions of
the fluid only. A complete overview of SPH in Computer
Graphics is given in the state-of-the-art report in [IOS∗14].

GPU Implementations. In [HKK07] a single GPU
implementation using OpenGL is proposed. All simulation

c© The Eurographics Association 2014.

DOI: 10.2312/vriphys.20141230

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vriphys.20141230


F. Thaler et al. / A Parallel Architecture for IISPH Fluids

data including the neighbor search data structure is stored
in texture memory. The SPH algorithm follows closely the
one introduced in [MCG03]. A newer method proposed
in [GSSP10] uses NVIDIA’s CUDA for a more specialized
GPU implementation. An efficient usage strategy of shared
memory is introduced, which transfers particle data from
global memory to shared memory during the computation
of particle interactions. Several different optimization
strategies for GPU-based SPH solvers are discussed
in [DCGG11]. This includes the reduction of the cell size
used for neighbor lookup to reduce code divergence, min-
imizing global memory lookup by storing all particle data
of the current cell in shared memory, as well as grouping
of neighbor cells to simplify neighbor search. Common to
all these publications is that standard, compressible SPH
solvers are considered but no predictor-corrector schemes
for incompressible fluids as used in this work.

Multi-core CPU Implementations. A multi-core CPU
implementation using fine-grained domain decomposition
and a master-slave communication model was proposed
in [HWT11]. Good scaling is reported, but no more than
eight cores are considered. In [IABT11] a parallel imple-
mentation of predictive-corrective incompressible SPH
(PCISPH) [SP09] is introduced. For neighbor search a
parallel compact hashing implementation is proposed, but
still a small amount of serial code is used to build the data
structure. To get better locality of data accesses, particles
are sorted by their Z-indices every 100th time step. With
130K particles, a speedup of about 10 was achieved on a
system with 24 cores using PCISPH. General optimization
strategies for SPH simulations on modern CPUs are again
discussed in [DCGG11]. The proposed optimizations cover
– besides parallelization – cache locality, SIMD vectoriza-
tion and optimization of symmetric force computations.

Distributed Memory Implementations. For distributed
memory platforms different parallelization strategies are
needed, as only memory of the current processor is di-
rectly accessible. For short-range interactions as found
in SPH domain decomposition methods are well suited.
In [FE07] such a system for mixed discrete element and
SPH simulations is proposed. Orthogonal recursive bisec-
tion (ORB) [Fox88] is used for domain decomposition. For
communication, a master-slave model is introduced, where
the master manages the data transfers between worker
nodes. Load balancing is carried out by a hierarchical
proportional-integral (PI) controller. Neighbor search is
performed by hierarchical clustering, supporting adaptive
particle sizes. A speedup of about 11 is achieved for
a one million particle simulation using 16 processors.
In [FE08], the same approach is described in more detail.
The measurements show a convergence to a balanced state
of the PI-controller-based load balancer in about 3000 time
steps. Our work is closely related to [FE08]. In contrast, we
apply ORB to the more complex IISPH solver with constant

0

1

3

7 8

4

2

5 6

(a) ORB tree

4

7 8
5

6

(b) Domain decomposition

Figure 1: ORB tree and domain decomposition. (b) shows
the cell types for process 8 used for communication: inner
(blue), outer (red) and neighbor (yellow) cells.

particle sizes [ICS∗13] and show how load balancing and
communication concepts can be seamlessly integrated into
pressure projection schemes. Our load balancing controller
differs from [FE08] as a faster convergence is achieved and
the controller is easier to set up.

Probably the fastest SPH solver available today was intro-
duced in [DCVB∗13], making efficient use of GPU clusters.
Here, a much simpler domain decomposition algorithm is
used, i.e., the domain is just split along one axis. Still, this
is probably the first work which enables SPH simulations
with more than one billion particles to be computed within a
reasonable amount of time. A classical weakly compressible
SPH algorithm (WCSPH) [Mon92, BT07] is implemented.

3. Parallel Architecture

3.1. Recursive Domain Decomposition

We use Orthogonal Recursive Bisection (ORB) [Fox88] for
spatial domain decomposition to distribute the particles to a
constant number of computation nodes. The simulation do-
main is split recursively, and the subdomains corresponding
to the leaf nodes represent the processes (see Figure 1). This
domain decomposition scheme might also be seen as a kd-
tree based splitting where leaf nodes contain several parti-
cles.

The division boundary on each level of the tree is axis-
aligned and each process manages therefore a box-shaped
subdomain. The division boundaries are placed such that all
processes have approximately equal load. We follow [FE08]
where the boundary position is determined by sampling the
particles on a uniform grid. In this step, data from the neigh-
bor search data structure can be reused. Distribution func-
tions are then used to compute normalized cumulative parti-
cle density functions for the three spatial dimensions. When
the best boundary position for each axis is found, the cost
of the communication used on this axis can be estimated by
counting the particles in the cells adjacent to the new di-
vision boundary candidate. The division boundary with the
smallest number of adjacent particles is finally chosen to re-
duce communication costs during attribute synchronization.

c© The Eurographics Association 2014.

120



F. Thaler et al. / A Parallel Architecture for IISPH Fluids

Algorithm 1: Loop with nonblocking communication.
start synchronization of attribute b;
foreach inner particle i, neighbors j do

compute attribute ai depending on b j;

wait for synchronization of attribute b;
foreach outer particle i, neighbors j do

compute attribute ai depending on b j;

3.2. Communication

Efficient communication is an important part of the algo-
rithm. As we focus on simulations with constant particle
sizes (and thus constant support radii), only particles with
a distance to a process’ subdomain smaller than the sup-
port radius may be influenced by the particles owned by that
process. In combination with a cell-based neighbor search
algorithm we can classify the cells into three categories as
shown in Figure 1, (b): Inner cells (blue) do never inter-
act with particles from other processes’ sub-domains. Outer
cells (red) are adjacent to a sub-domain of any other process,
and neighbor cells (yellow) are inside a sub-domain owned
by a foreign process. Only particles in the own inner, outer
and neighbor cells must be known by each process, other
particles are therefore not stored locally.

To compute a particle attribute a, the loop traverses only
cells owned by the respective process, i.e., inner and outer
cells but not neighbor cells. If the computation of a depends
on some other particle attribute b of neighbor particles, a
synchronization of b between the processes is needed. For
this, each process needs to send his outer particle data to and
receive neighbor particle data from its neighbor processes.
To avoid idle time, computation and communication is done
simultaneously. As the inner cells are totally independent of
the neighbors’ data, it is possible to compute the inner cells’
data during the communication. This is done by splitting the
loop into two loops, one traversing the inner and one travers-
ing the outer cells. This is outlined in Algorithm 1.

3.3. Load Balancing Controller

For an optimized performance idle states of processes should
be avoided and thus work load needs to be continuously
redistributed. In [FE07] and [FE08], boundaries of subdo-
mains are shifted on each level of the ORB tree and thus
particles are reassigned to neighboring domains. A hierar-
chical proportional-integral (PI) controller is used, taking as
input the difference of waiting times of the processes on each
level of the tree, and returning the position of the boundary
division (rounded to cell boundaries of the neighbor search
structure). As shown in [FE08], the discretized version of the
analytical controller equation can be approximated as

xl+1
inner = xl

inner +P(∆wl
inner−∆wl−1

inner)+ I∆t∆wl
inner, (1)

where l denotes the time step index, xinner is the position
of the boundary of the inner node, and ∆winner is given as

wle f t −wright , which is the difference of the waiting times
of the right and left children. P and I are parameters of the
proportional integral controller. Typically, conservative val-
ues need to be used to prevent instability. This leads, how-
ever, to slow convergence, which is also reflected in [FE08]
where a well balanced situation is not found before the first
3000 time steps.

To improve the convergence we propose a robust heuristic
controller. As in [FE08], the controller is hierarchically orga-
nized and uses the same controller in- and outputs. Division
boundaries are moved by a linear factor of the waiting time
difference of the child nodes. Again, the results are rounded
to the nearest cell boundary. To minimize the probability of
overshoots and instabilities, the correction of the splitting
position is limited to a given maximum value. We compute
the position of the boundary as

xl+1
inner = xl

inner + r, (2)

where

r =


K∆wl

inner

∣∣∣K∆wl
inner

∣∣∣≤ rmax

rmax K∆wl
inner > rmax

−rmax K∆wl
inner <−rmax.

(3)

The two controller parameters K > 0 and rmax > 0 define
the speed and the maximum correction at one load balanc-
ing step. The parameters depend on the frequency of the load
balancing steps. However, default parameters with rmax lim-
ited to one cell and K equals to one lead to good results. To
minimize load balancing overhead but still get a balanced
tree fast, we perform load balancing every 10th to 50th time
steps. This frequency is scene dependent and in our imple-
mentation defined empirically by the user. In the future the
need for load balancing might be recognized automatically
depending on the current load imbalance. It is also advanta-
geous to fully rebuild the ORB tree when topology has sig-
nificantly changed, reducing the amount of transferred parti-
cle data during synchronization.

The computation of the new split positions is very effi-
cient, as no knowledge is needed about the current parti-
cle distribution. Only the waiting times of the processes are
used. The time intensive part of load balancing is indeed the
communication, namely the redistribution of the particles.
In fact this leads to minimal overhead in load balanced situ-
ations and is thus quite favorable.

3.4. Neighbor Search

We employ a neighbor search algorithm that is ideally fit-
ted for use in conjunction with ORB. It is a combination of
compact hashing as proposed in [IABT11] and any index
sort method, preferably Z-index sort. Similar to index sort
algorithms, the particles are always sorted by cell indices.
While standard methods use an array of all cells in the do-
main with pointers to the respective particles, we only store

c© The Eurographics Association 2014.

121



F. Thaler et al. / A Parallel Architecture for IISPH Fluids

full cells. To allow for fast neighbor search nevertheless, an
additional hash table is used, mapping cell indices to cells
in the array of full cells. While the hashing and memory re-
quirements are similar to compact hashing, the sorted par-
ticle storage makes it better suited for distributed memory
implementations where cell-based communication is used,
as the particle data for a cell is stored in contiguous memory.

A distinct data storage for fluid and boundary particles
(representing solids and domain boundaries [AIS∗12]) is
used. This simplifies communication as only fluid attributes
need to be synchronized. For neighbor search two data struc-
tures are kept, one for fluid and one for boundary particles.

3.5. Symmetry Optimizations

As in SPH forces are symmetric between two neighbor-
ing particles [DCGG11], we integrate symmetry optimiza-
tions into our parallel solver. The cell-based neighbor search
can be modified accordingly by looping over 14 neighbor
cells instead of 27 in three dimensions. For outer cells, i.e.,
cells adjacent to the subdomain boundary, stencils must be
adapted accordingly to ensure that all cells of neighbor pro-
cesses are employed in the computation.

Note that calculations for the current cell in the loop are
not yet finished when moving on to the next cell as neigh-
bor cells still contribute. In other words, calculations on a
given cell in the loop can influence cells that have already
been visited before. There are two possibilities to solve this
problem: First, the order of cell traversal could be changed.
This limits the traversal to simple linear loops as used with
linear index mapping. Second, dependencies on values com-
puted in the current loop are prevented. This allows arbitrary
loop sequences but requires that some loops are split into
two separate traversals. We make use of the loop splitting in
the parallel fluid implementation discussed in Section 4.

4. Implementation of Parallel IISPH

In implicit incompressible SPH (IISPH) a density invari-
ance condition is employed and the pressure field is com-
puted iteratively with relaxed Jacobi. The algorithm can be
split into three steps: Prediction of advection using non-
pressure forces, pressure solve and time integration. Our par-
allel implementation follows closely the algorithm outlined
in [ICS∗13]. For more details on the algorithm we refer to
the aforementioned paper. For each of the three steps we in-
troduce the parallel implementation in the following.

The prediction of the advection is outlined in Algorithm
2. In contrast to [ICS∗13], the density must be computed in a
separate loop due to the dependency of the viscous and sur-
face tension forces on neighbor particles’ densities ρ. The
second loop, where the intermediate velocities vadv and dis-
placements dii are evaluated, is split in an inner and outer
part. During the computations on the inner cells the density

Algorithm 2: Parallel IISPH: Prediction of advection.

foreach particle i do
compute density ρi;

// divided into inner and outer loop

start synchronization of density;
foreach inner particle i do

compute vadv
i and dii;

wait for synchronization of density;
foreach outer particle i do

compute vadv
i and dii;

// divided into inner and outer loop

start synchronization of vadv and dii;
foreach inner particle i do

compute ρ
adv
i and aii;

wait for synchronization of vadv and dii;
foreach outer particle i do

compute ρ
adv
i and aii;

Algorithm 3: Parallel IISPH: Pressure solve.

l← 0;
while ρ

l
avg−ρ0 > η∨ l < 2 do

// divided into inner and outer loop

start synchronization of pressure;
foreach inner particle i do

compute ∑ j di j pl
j;

wait for synchronization of pressure;
foreach outer particle i do

compute ∑ j di j pl
j;

// divided into inner and outer loop

start synchronization of ∑ j di j pl
j;

foreach inner particle i do
compute intermediate sum ∑ j 6=i ai j pl

j;

wait for synchronization of ∑ j di j pl
j;

foreach outer particle i do
compute intermediate sum ∑ j 6=i ai j pl

j;

// used due to symmetry optimization

foreach particle i do
compute pl+1

i ;

compute global ρ
l+1
adv ;

l← l +1;

is synchronized with neighbor nodes. Analogously, the next
loop is split into an inner and outer part to compute the pre-
dicted density ρ

adv and coefficients aii. The pressure solve is
shown in Algorithm 3. The original algorithm of [ICS∗13]
consists of two loops over all particles; one for summing
up di j pl

j , which is the movement of particle i caused by the
neighboring pressure value p j, and the second for computing
the pressure pl+1

i . We source out some of the computations

c© The Eurographics Association 2014.

122



F. Thaler et al. / A Parallel Architecture for IISPH Fluids

Algorithm 4: Parallel IISPH: Time integration.

start synchronization of pressure;
foreach inner particle i do

compute pressure forces;

wait for synchronization of pressure;
foreach outer particle i do

compute pressure forces;

// used due to symmetry optimization

foreach particle i do
integrate;

redistribute particles to nodes;
update neighbor search and communication structures;

into separate loops due to optimization of symmetric cal-
culations and better spatial locality of variables in memory.
Further, due to the dependencies on previous loops’ neigh-
bor data, we split up the first two loops of Algorithm 3 in
an inner and outer part. And last, the time integration and
particle redistribution is computed as shown in Algorithm 4.

5. Results and Discussion

Scaling and Performance. For a dam break scenario with
different resolutions ranging from 0.4M to 22M particles we
measured the scaling performance using eight cluster nodes,
each of them with four sockets and 2.5GHz quad core pro-
cessors, leading to a maximum number of 128 cores. The
results for parallel IISPH are shown in Figure 2. The per-
formance of parallel IISPH scales nearly linearly up to 64
processes. The best scaling is reached with 22M particles.
With smaller particle counts it can be observed that com-
munication overheads dominate, i.e., synchronization of the
outer particles’ attributes need more time than looping over
the inner particles. The same effect is observed if too many
processes are used, i.e., with a small ratio of inner to outer
particle count per process.

The average computation time per time step for different
particle numbers is shown in Figure 3. For 64 processes and
22M particles, for example, the computation time per time
step is approximately 10s.

Load Balancing. The resulting domain decomposition
of one simulation step of the dam break example is shown
in Figure 4. Each color corresponds to one process. The
proposed heuristic-based controller allows a fast conver-
gence to a well balanced tree: In this example, convergence
was reached after 50-100 simulation steps. In Figure 5
the differences to the average waiting time of all MPI
processes are shown. The dam break simulation was run
on two computing nodes with 48 cores each, leading to
a total of 96 cores. The influence of the periodical tree
rebuilds (every 50th load balancing step / 1000th time
step) can be seen clearly, as the waiting time differences

6.2 Scaling

1

16

32

48

64

80

96

112

128

1 16 32 48 64 80 96 112 128

sp
ee

du
p

processes

0.4 million particles

0.9 million particles

3.0 million particles

22.9 million particles

Figure 6.3: Strong scaling of IISPH. Speedup achieved using different number of processes for several
distinct particle counts. Even for many processes a good speedup is achieved for a large
enough number of particles.

to the bad memory locality.

6.2 Scaling

The strong scaling performance was measured using eight cluster nodes, each of them with four
sockets and quad core AMD Shanghai processors with 2.5GHz each, leading to a maximum
number of 128 cores. The results for IISPH and WSPH are shown in Figure 6.3 and Figure
6.4 respectively. The scaling performance of Highflow3D behaves excellent, even when using a
high number of nodes, given a large enough particle count. With too many processes and thus a
small particle count per process, the communication overhead is too large, i.e. synchronization
of the outer particles’ attributes need more time than looping over the inner particles. As IISPH
performs more computationally expensive operations during the particle traversal than WSPH,
the scaling behaves better for IISPH.

The scaling of the simulation times dependent of the particle count is not shown here, but it
behaves linearly, which is expected as all parts (including radix sort) have linear complexity.

Figure 6.5 shows the average waiting times, depending on the number of processes. The IISPH
simulation used for measurement is the same as in the strong scaling graph in Figure 6.3 with 0.4
million particles. The minimum waiting time is reached with 48 processes, which corresponds
to the maximum scaling achieved. When using less than 48 cores, there are too many particles
lying on node boundaries, i.e. particle attribute synchronization needs too much time. On the
other hand, when more than 48 processes are used, the computations on the inner particles take
not enough time to fully overlap the communication. WSPH shows a very similar behavior, but
the optimal process count is somewhat lower, as it is less computationally intensive.

33

Figure 2: Scaling of our parallel IISPH implementation for
different numbers of processes and particle counts. IISPH
shows a nearly linear scaling up to 64 processes.6.3 Symmetry Optimization

0.1

1

10

100

1000

1 16 32 48 64 80 96 112 128

co
m

pu
ta

tio
n

tim
es

[s
]

processes

0.4 million particles

0.9 million particles

3.0 million particles

22.9 million particles

Figure 6.6: IISPH average computation times per time step.

For completeness, the average computation times per time step are given in Figure 6.6 and
Figure 6.7 for IISPH and WSPH respectively.

6.3 Symmetry Optimization

Symmetry optimization, i.e. the removal of duplicate particle interaction calculations, is worth-
while for IISPH and WSPH. For both algorithms the achieved speedup when using symmetry
optimization is nearly 1.5. Similar results were reported in [?] on GPUs. There is only a
marginal difference for IISPH and WSPH. While IISPH uses more non-symmetric interactions,
a big part of the calculation is still symmetric, e.g. they can still benefit from symmetric ker-
nel and gradient evaluations. Further the time for the neighborhood lookup is saved and better
cache usage is achieved even for totally asymmetric interactions. Hence the benefits of WSPH
compared to IISPH are negligible in context of symmetry optimization.

6.4 Load balancing

Load balancing is an important part of the ORB algorithm, without it, no proper scaling could
be achieved. Indeed, the proposed heuristic-based controller seems to allow a fast convergence
to a well balanced tree. In Figure 6.8 the differences to the average waiting time of all MPI
processes in an example simulation are shown. The simulation was run on two compute nodes
with 48 cores each, leading to a total of 96 cores.

The influence of the periodical full tree rebuilds (every 1000th time step in the example) can be
seen easily, as the waiting time differences are increased in the same frequency as well. The
used tree construction algorithm is able to distribute the particles evenly, but can not guarantee

35

Figure 3: Average computation time per time step in parallel
IISPH for different numbers of processes.

are increased in the same frequency as well. The used tree
construction algorithm is able to distribute the particles
evenly, but cannot guarantee fair communication costs,
hence some load balancing steps are needed to go back to a
fully balanced state.

Further it may be noticed that load balancing seems to
work better in the later stages of the simulation. This is
due to the very regularly positioned particles of the initial
state: The perfectly cell-aligned particles may lead to very
abrupt changes of waiting times when division boundaries
are moved by only one cell. This makes it very difficult for
the controller to reach a well balanced state, while in later
stages of the simulation the particles are distributed much
more randomly, so small modifications on the boundary po-
sitions lead to small changes of the waiting times, too.

Note that we omit a comparison to the PI-controller of
[FE07, FE08] as no controller parameters could be found
that worked well in general. Only a slow balancing could
be achieved without loosing stability. The slow convergence
(3000 steps are stated in [FE08]) is especially problematic
for simulations with large changes in the particle distribution
(such as in the dam break scenario) as they need periodic tree
rebuilds to keep the communication minimal.

c© The Eurographics Association 2014.

123



F. Thaler et al. / A Parallel Architecture for IISPH Fluids

Figure 4: Domain decomposition for one simulation step of
the dam break example. Each color represents one process.

6 Performance Evaluation

0.01

0.1

1

10

100

1000

1 16 32 48 64 80 96 112 128

co
m

pu
ta

tio
n

tim
es

[s
]

processes

0.4 million particles

0.9 million particles

3.0 million particles

22.9 million particles

Figure 6.7: WSPH average computation times per time step.

se
co

nd
s

load balancing steps

-1.5

-1

-0.5

0

0.5

1

1.5

0 100 200 300 400 500 600

Figure 6.8: Waiting times differences. Shown are differences of waiting times of all 96 processes to the
average, measured during a 12h IISPH simulation with 5.7 million particles. The proposed
robust controller and a constant time steps size were used. The differences in waiting times
between the processes is very small in general, i.e. load balancing works very well. The
periodical outliers are due to the regular ORB tree rebuilds.

36

Figure 5: Waiting time differences of all 96 processes to the
average. ORB rebuilds are well visible as periodical outliers.

6. Conclusion

We have presented a parallel framework suitable for state-of-
the-art incompressible SPH schemes such as IISPH. We have
shown that these modern SPH algorithms can be efficiently
parallelized to use the full power of current distributed mem-
ory hardware. To leverage the parallelism of cluster com-
puters, ORB was used for domain decomposition. A novel
heuristic load balancing controller for ORB was introduced,
which gives faster convergence to a balanced state than pre-
vious solutions and thus leads to lower simulation times.
With the use of simultaneous communication and compu-
tation, the overhead of communication between the compute
nodes was minimized. Using our implementation, good scal-
ing was achieved on large-scale simulations.

References
[AIS∗12] AKINCI N., IHMSEN M., SOLENTHALER B., AKINCI

G., TESCHNER M.: Versatile rigid-fluid coupling for incom-
pressible SPH. ACM Transactions on Graphics (Proceedings
SIGGRAPH) 30, 4 (2012), 72:1–72:8. 4

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L.:
Adaptively sampled particle fluids. In ACM Transactions on
Graphics (Proc. SIGGRAPH) (2007), vol. 26, pp. 48:1–48:7. 1

[BLS12] BODIN K., LACOURSIRE C., SERVIN M.: Constraint
fluids. IEEE Transactions on Visualization and Computer Graph-
ics 18, 3 (2012), 516–526. 1

[BT07] BECKER M., TESCHNER M.: Weakly compressible SPH

for free surface flows. In Proc. of Symposium on Computer Ani-
mation (2007), pp. 209–217. 2

[DCGG11] DOMINGUEZ J. M., CRESPO A. J. C., GOMEZ-
GESTEIRA M.: Optimization strategies for parallel CPU and
GPU implementations of a meshfree particle method. arXiv e-
print 1110.3711, 2011. 2, 4

[DCVB∗13] DOMINGUEZ J., CRESPO A., VALDEZ-BALDERAS
D., ROGERS B., GOMEZ-GESTEIRA M.: New multi-GPU im-
plementation for smoothed particle hydrodynamics on hetero-
geneous clusters. Computer Physics Communications 184, 8
(2013), 1848–1860. 2

[FE07] FLEISSNER F., EBERHARD P.: Load balanced parallel
simulation of particle-fluid dem-sph systems with moving bound-
aries. In Proceedings of Parallel Computing: Architectures, Al-
gorithms and Applications (2007), 37–44. 2, 3, 5

[FE08] FLEISSNER F., EBERHARD P.: Parallel load-balanced
simulation for short-range interaction particle methods with hi-
erarchical particle grouping based on orthogonal recursive bisec-
tion. International Journal for Numerical Methods in Engineer-
ing 74, 4 (2008), 531–553. 1, 2, 3, 5

[Fox88] FOX G. C.: A graphical approach to load balancing and
sparse matrix vector multiplication on the hypercube. In Nu-
merical Algorithms for Modern Parallel Computer Architectures,
no. 13. 1988, pp. 37–61. 2

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PA-
JAROLA R.: Interactive SPH simulation and rendering on the
GPU. In Proc. of Symposium on Computer Animation (2010),
pp. 55–64. 2

[HKK07] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.:
Smoothed particle hydrodynamics on GPUs. In Proceedings of
Computer Graphics International (2007), pp. 63–70. 1

[HS13] HORVATH C. J., SOLENTHALER B.: Mass preserving
multi-scale SPH. Pixar Technical Memo 13-04, Pixar Animation
Studios, 2013. 1

[HWT11] HOLMES D. W., WILLIAMS J. R., TILKE P.: A frame-
work for parallel computational physics algorithms on multi-
core: SPH in parallel. Advances in Engineering Software 42, 11
(2011), 999–1008. 2

[IABT11] IHMSEN M., AKINCI N., BECKER M., TESCHNER
M.: A parallel SPH implementation on multi-core CPUs. Com-
puter Graphics Forum 30, 1 (2011), 99–112. 2, 3

[ICS∗13] IHMSEN M., CORNELIS J., SOLENTHALER B., HOR-
VATH C., TESCHNER M.: Implicit incompressible SPH. IEEE
Trans. on Visualization and Computer Graphics (2013). 1, 2, 4

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B.,
KOLB A., TESCHNER M.: SPH Fluids in Computer Graphics.
In Eurographics 2014 - STARs (2014), pp. 21–42. 1

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proc. of
Symposium on Computer Animation (2003), pp. 154–159. 1, 2

[MM13] MACKLIN M., MUELLER M.: Position based fluids.
ACM Trans. on Graphics (Proc. SIGGRAPH) 32 (2013), 1–5. 1

[Mon92] MONAGHAN J.: Smoothed particle hydrodynamics.
Ann. Rev. Astron. Astrophys. 30 (1992), 543–574. 1, 2

[OK12] ORTHMANN J., KOLB A.: Temporal blending for adap-
tive SPH. Computer Graph. Forum 31, 8 (2012), 2436–2449. 1

[SG11] SOLENTHALER B., GROSS M.: Two-scale particle sim-
ulation. ACM Transactions on Graphics (Proceedings SIG-
GRAPH) 30, 4 (2011), 72:1–72:8. 1

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible SPH. ACM Transactions on Graphics (Proceed-
ings SIGGRAPH) 28 (2009), 40:1–40:6. 1, 2

c© The Eurographics Association 2014.

124


