
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2014)
J. Bender, C. Duriez, F. Jaillet, and G. Zachmann (Editors)

Continuous Collision Detection Between
Points and Signed Distance Fields

Hongyi Xu and Jernej Barbič

University of Southern California, USA

Abstract

We present an algorithm for fast continuous collision detection between points and signed distance fields. Such
robust queries are often needed in computer animation, haptics and virtual reality applications, but have so far
only been investigated for polygon (triangular) geometry representations. We demonstrate how to use an octree
subdivision of the distance field for fast traversal of distance field cells. We also give a method to combine octree
subdivision with points organized into a tree hierarchy, for efficient culling of continuous collision detection tests.
We apply our method to multibody rigid simulations, and demonstrate that our method accelerates continuous
collision detection between points and distance fields by an order of magnitude.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically
based modeling

1. Introduction

Given a query point x from some region of space, such as a
bounding box enclosing the geometry, the distance field is
a scalar function that gives the minimum distance from x to
the geometry. Distance fields sampled on regular 3D grids
are a popular datastructure in computer graphics [JBS06],
and have been used in many applications, such as collision
detection and morphing. Distance fields can be signed or
unsigned. Signed distance fields store the sign specifying
whether the query point is inside/outside of the object. Rep-
resenting surfaces by a distance field is advantageous since
there are no restrictions about the topology [TKH∗05].

Distance fields have been employed to detect collisions,
especially for rigid bodies, and even self-collisions. Their
power originates from the fact that distances to the near-
est geometry can be approximated for arbitrary query lo-
cations by simple trilinear interpolation in O(1) time, in-
dependent of the geometric complexity of the object. How-
ever, existing methods only applied distance fields to dis-
crete collision detection. Continuous collision detection is
regarded as more robust as it finds the exact contacts of dy-
namically simulated objects between two successive time
steps. Previous methods focused on explicit surface repre-

sentations such as polygonal (triangular) geometry and pair-
wise face/vertex and edge/edge continuous collision detec-
tion tests. We propose a continuous collision detection al-
gorithm between points and implicit surfaces represented
by distance fields. Assuming a linear trajectory of points
and the distance field object during each timestep, the in-
tersection(s) with a distance field isosurface can be detected
by checking a line segment against a signed distance field.
We accelerate this process using a spatial octree subdivi-
sion of the distance field, storing the minimum and maxi-
mum distance values for octree subtrees. This enables a fast
traversal of the distance field grid cells. We also demon-
strate how to combine a sphere hierarchy of points (we use
the nested point tree [BJ08]) with the fast grid traversal.
This can effectively cull unnecessary continuous collision
detection tests, especially in physically based simulations.
Our experiments demonstrate that we can achieve signifi-
cant speedups using our acceleration techniques. We demon-
strate the effectiveness of our algorithm using rigid body
contact simulations. Inspired by the continuous penalty force
model [TMOT12], we present a contact resolution method to
match our continuous collision detection algorithm. In addi-
tion to forces [TMOT12], our method also computes contin-

c© The Eurographics Association 2014.

DOI: 10.2312/vriphys.20141218

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vriphys.20141218


Hongyi Xu & Jernej Barbič / Continuous Collision Detection Between Points and Signed Distance Fields

uous penalty torques and damping forces. Our contributions
include:

• an algorithm for continuous collision detection between
points and distance fields, via line segment vs distance
field intersection tests,

• fast grid traversal using a spatial octree subdivision of the
distance field,

• point-tree traversal algorithm for continuous collision de-
tection culling,

• continuous penalty contact and damping model to be em-
ployed in concert with our continuous collision detection.

2. Related Work

Numerous approaches have been investigated to detect colli-
sions between interfering objects; see, for example, the sur-
vey [TKH∗05]. Collision detection can be categorized into
discrete and continuous. Discrete methods only check for
collisions at specified time instances. For a greater compu-
tational cost, continuous collision detection provides more
robustness by detecting all the collisions between two dis-
crete time instances [BFA02, RKLM05, TCYM09, TMT10,
BEB12]. Most of the existing continuous methods work
by computing the roots of polynomial functions, to resolve
the continuous collisions between basic pairs of polygo-
nal primitives such as triangle/vertex or two edges. Colli-
sions between analytical implicit and parametric functions
that deform in time can be resolved using interval arith-
metics [SWF∗93, RKC02]. The equations become cubic
when linearly interpolating vertex motion [Pro97, BFA02,
TMOT12]. Continuous collision between such pairs of prim-
itives is sensitive to numerical error and the employed toler-
ances, requiring special care [BB09,Wan14]. Different from
these polygon-based methods, we detect continuous colli-
sions between implicit functions and points, by intersecting
distance fields against line segments. The complexity of our
algorithm depends on the number of points and the distance
field resolution, but is independent of the underlying trian-
gular geometry.

A distance field datastructure can rapidly provide the dis-
tance to any isosurface for any location in space. There-
fore, signed distance field can quickly detect collisions, and
have been used in many rigid-rigid [HXB14] and rigid-
deformable simulations [BMF03, FSG03, BJ08]. These pre-
vious methods were, however, designed for discrete collision
detection, whereas we perform continuous collision detec-
tion. Ray tracing for implicit isosurface rendering has been
well studied [PSL∗98,NMHW02,MKW∗04]. Specially, On-
jřej [Jam10] proposes a method to ray-trace isosurfaces rep-
resented by distance fields. Similarly, we also traverse dis-
tance fields using straight lines to detect collisions with im-
plicit surfaces. In contrast to rendering, however, we perform
intersections between line segments and distance fields, as

opposed to semi-infinite rays and distance fields as in ray
tracing. This difference is substantial because in typical
physically based simulations, line segments between consec-
utive timesteps are usually short and the point positions ex-
hibit a lot of temporal coherence. In addition, instead of us-
ing two-level sparse grid blocks as in [Jam10], we accelerate
the traversal using an octree hierarchy with multiple levels.
Point tree hierarchies have been previously applied to dis-
crete collision detection [BJ08,GSM∗12]. We combine hier-
archies of points with our distance field octree-based traver-
sal, for fast continuous collision detection.

3. Continuous Collision Detection

We now describe how we perform continuous collision de-
tection between point-sampled objects and signed distance
fields. Both the point-sampled object and the distance field
object undergo arbitrary rigid body motion. Given a distance
field φ : R3 → R and a scalar value σ , the isosurface (level
set) corresponding to σ is defined as Sσ = {p |φ(p) = σ}.
In contrast to general implicit functions, distance fields also
provide the Euclidean distance to the zero isosurface. The
penetration depth of a point at time t is determined by trans-
forming the point position at time t into the frame of refer-
ence of the distance field object at time t, and looking up
the signed distance value. Therefore, we study the trajectory
r(t) of the point in the frame of reference of the signed dis-
tance field object, for tmin ≤ t ≤ tmax, where tmin and tmax
are the start and end of the timestep, respectively. The task
of continuous collision detection is to determine the time(s)
when r(t) crosses the isosurface Sσ , for some chosen σ ∈R.
Typically, we will use σ = 0, but other values of σ will also
be useful when combining our algorithm with a bounding
volume hierarchy of points.

For general rigid body motion, the trajectory r(t) during the
time interval t ∈ [tmin, tmax] is a cycloide and not a polyno-
mial function of t. As commonly done with continuous colli-
sion detection, we assume that it can be reasonably approxi-
mated by a line segment, r(t) = o+(t−tmin)d, where o∈R3

is the start position and d ∈ R3 is the direction, for

o = r(tmin), d =
r(tmax)− r(tmin)

tmax− tmin
. (1)

Point continuous collision detection therefore amounts to
checking for collisions between a line segment and the
isosurface of the signed distance field. Specially, for t ∈
[tmin, tmax], we want to detect all the roots of φ(r(t)) = σ ,
and identify the subintervals of [tmin, tmax] where φ(r(t)) ≤
σ . Note that for some applications of continuous collision
detection, only the first time of contact is needed. We can,
however, also detect all the intersecting subintervals, which
is needed for our continuous contact force and torque im-
pulse calculation (Section 4).

c© The Eurographics Association 2014.

2



Hongyi Xu & Jernej Barbič / Continuous Collision Detection Between Points and Signed Distance Fields

3.1. Line Segment vs Distance Field Cell Intersection

In practice, the distance field is sampled on a regular three-
dimensional grid. The grid partitions the distance field box
into uniformly-sized cells whose corners are the grid points.
Starting from o, we successively traverse the grid cells along
the line segment. We identify the next grid cell using a
3D discrete differential analyzer algorithm [AW∗87], simi-
lar to Bresenham’s algorithm for rasterizing line segments
into pixels. This algorithm is fast because it can identify
the next cell only with integer arithmetics (avoids floating-
point). When visiting a cell, we first check whether the cell
contains the isosurface, by comparing the distances at the
eight cell corner grid points to σ . If all the values are greater
or smaller than σ , we can proceed to the next cell. Other-
wise, a test for intersection is performed, and, if the line
segment intersects the isosurface, the intersection point is
calculated.

We detect the intersection point thit by finding the roots of
φ(r(thit)) = σ . Distance fields are sampled discretely on the
grid, and we can approximate the distance function at any
location inside the cell using trilinear interpolation of the
values at the eight grid cell vertices. We first interpolate
the distance values φin = φ(r(tin)) and φout = φ(r(tout)) at
points where the line segment enters and exits the cell. If
the signs of φin−σ and φout−σ differ, the line segment has
crossed the isosurface; otherwise we skip this cell. Because
distance data beyond the resolution of each individual cell
is not available, we assume that there is a single intersection
point inside each cell, and we discover it using bisection, as
follows. We first approximate thit as the time when the line
connecting values φin and φout crosses the isosurface σ ,

thit = tin +(tout− tin)
φin−σ

φin−φout
. (2)

Next, we select the interval [t1, t2] from the two subintervals
[tin, thit] and [thit, tout] such that φ(r(t1))−σ and φ(r(t2))−σ

have different signs. We repeat this process until φ(r(thit))
has converged to σ , or the maximum number of iterations is
exceeded. In our implementation, we set the maximum num-
ber of iterations to 5. The bisection is illustrated in Figure 1.

To assemble all the intervals where the line segment inter-
sects the isosurface, we maintain a time list and a sign flag.
The sign flag is initialized to the sign of φin−σ . If it is neg-
ative, we add tin to the list. When traversing the cells along
the line segment, once an intersection has been found, we
update the sign flag and also add thit to the list. If the sign
flag is negative at the end of the line segment, we also add
tout to the list. Finally, pairs of successive elements in the list
form the colliding subintervals of [tmin, tmax].

3.2. Octree-based Acceleration of the Cell Traversal

The cell traversal is initiated by intersecting the line
segment with the bounding box of the distance field.

Figure 1: Finding the intersection of the line segment and
isosurface: Left: line segment passes through a cell that con-
tains the isosurface. Right: finding the root of φ(r(t)) = σ .

Figure 2: Octree-based
cell traversal.

If the line segment does not
intersect the bounding box,
then definitely there will be
no intersection with the iso-
surface. Otherwise, we start
the traversal at the cell that
contains the line segment’s
entrance into the distance
field bounding box. If the
line segment starts inside
the grid, we start from the
cell that contains the start-

ing point. We terminate the traversal when we exit the
bounding box or the end of the line segment is reached. In
practice, only a small portion of the cells contains the isosur-
face and so intersection tests are not needed for the majority
of cells. Consecutively, we can skip several cells, e.g., when
far away from the surface. We formally exploit this observa-
tion using an octree. We precompute a spatial octree datas-
tructure for the entire distance field grid, where each oc-
tree node contains two values: the minimum and maximum
distance value φmin and φmax inside the node subtree. The
root node stores the minimum and maximum of the entire
distance field grid, and we continue partitioning the nodes
into 8 octants until reaching the grid cell size. Note that the
distance interval [φmin,φmax] at each node must be a sub-
interval of its parent node interval. Therefore, in practice, we
construct the octree in a bottom-up manner starting from the
grid cells and proceeding to the root. When a line segment
reaches a new cell, we traverse the octree starting from the
root and find the largest block of cells we can safely skip. We
can skip all the cells in a subtree if σ ≤ φmin or σ ≥ φmax.
We analyze the time and memory to compute and store the
signed distance fields and the distance field octree in Table 1.

3.3. Intersection Between Point Sphere Trees and
Distance Fields

In this section, we discuss how to perform continuous col-
lision detection between a collection of points organized
into a sphere hierarchy, and the distance field. At each

c© The Eurographics Association 2014.

3



Hongyi Xu & Jernej Barbič / Continuous Collision Detection Between Points and Signed Distance Fields

signed distance field distance field octree
resolution time memory time memory

1283 1.9 sec 8.2 MB 0.01 sec 34.2 MB
2563 6.8 sec 64.8 MB 0.09 sec 273.6 MB
5123 45.6 sec 518.0 MB 0.65 sec 2.14 GB

10243 347.0 sec 4.1 GB 4.88 sec 17.1 GB

Table 1: Computation times and memory for the signed dis-
tance field and distance field octree. Bunny model.

Figure 3: Continuous collision detection using a sphere
hierarchy: (a) detecting continuous collisions between the
bounding sphere and the zero isosurface, (b) computing in-
tersections of the line segment with the isosurface Sσ .

timestep, naive continuous collision detection could proceed
by traversing the points linearly (point by point). The traver-
sal can be greatly accelerated using a bounding volume hi-
erarchy. We use the nested bounding sphere hierarchy pre-
sented in [BJ08]. Each node in the hierarchy covers all the
points in its subtree. Our algorithm traverses the hierarchy
in breadth-first order. For each traversed tree node, it needs
to find continuous collisions between a bounding sphere and
the zero isosurface (see Figure 3, a). This test is equivalent
to forming a line segment originating at the center of the
node and checking whether it collides with the isosurface
Sσ , where σ equals the radius of the bounding sphere (see
Figure 3, b). If there is no collision between the line seg-
ment and Sσ , no point in the subtree can collide, and the
entire subtree can be skipped. Otherwise, all the children of
the node are added to a list for further traversal. Note that for
a non-leaf tree node, we do not need to find the intersection
intervals; we can terminate the check as soon as we establish
that a collision exists.

4. Continuous Penalty Contact

In this section, we give a continuous penalty force model be-
tween points and a distance field that can be used in conjunc-
tion with our continuous collision detection. Our method
was inspired by [TMOT12] who investigated triangle vs tri-
angle contact, whereas we address points and distance fields,
and also extend the model to continuous contact torques, as
well as damping forces and torques. At any moment of time,

we can evaluate the penalty contact force and torque as

F =−kdN, τ = r×F, (3)

where k > 0 is the contact penalty force stiffness, d is the
signed distance field value, N is the point’s outward nor-
mal in the world coordinate system, and r is the torque han-
dle. The handle is typically the vector joining the center of
mass and the current point position. The force is non-zero
only when d < 0, i.e., point is in contact. The penalty force
F and torque τ vary continuously during the time interval
[tmin, tmax]. The net impulse I and angular impulse M are

I =
∫ tmax

tmin

F(t)dt =−
∫ tmax

tmin

kd(t)N(t)dt, (4)

M =
∫ tmax

tmin

τ(t)dt =−
∫ tmax

tmin

r(t)×
(

kd(t)N(t)
)

dt. (5)

Since the penetration depth d is 0 when the objects are dis-
joint, we can split this integral into the contact subintervals,

I =
n

∑
i=1

∫ ti
max

ti
min

−kd(t)N(t)dt, (6)

M =−
n

∑
i=1

∫ ti
max

ti
min

r(t)×
(

kd(t)N(t)
)

dt. (7)

By analogy with Euler integration, the impulse and angular
impulse in Equation 6 can also be interpreted as the integral
of a constant contact force and torque. Thus, the constant
force and torque are simply the time-averages of the contin-
uous penalty forces and torques,

F∗ = I/(tmax− tmin), (8)

τ
∗ = M/(tmax− tmin). (9)

Similarly, we also integrate the damping impulse and angu-
lar impulse,

ID =
∫ tmax

tmin

FD(t)dt =

=
∫ tmax

tmin

kD

(
vA(t)+ωA(t)× rA(t)− vB(t)−ωB(t)× rB(t)

)
dt,

(10)

MD =
∫ tmax

tmin

τD(t)dt =
∫ tmax

tmin

r(t)×FD(t)dt, (11)

where kD > 0 is the damping coefficient, and v and ω are the
linear and angular velocity, respectively.

We timestep the rigid bodies using the explicit symplectic
Euler integrator [HLW03]. Starting from time tmin, we first
integrate the rigid object forward to tmax under the contact
and damping forces and torques F∗ and τ∗ computed dur-
ing the previous timestep that ended at tmin. We also add
the other external forces and torques such as user forces and
gravity. This produces the position and orientation of the ob-
ject at time tmax. We then execute continuous collision de-
tection for the linear trajectory between tmin and tmax and
integrate the impulses I and M using Equations 6 and 7. Us-
ing Equations 8 and 9, we then obtain the contact force F∗

c© The Eurographics Association 2014.

4



Hongyi Xu & Jernej Barbič / Continuous Collision Detection Between Points and Signed Distance Fields

and torque τ∗ to be applied during the next timestep start-
ing at tmax. The time-varying normals and handles N(t) and
r(t) can be obtained either by linear interpolation of the cor-
responding values at tmin and tmax (constant velocity during
the timestep) or by an Euler step of the rigid body dynam-
ics forward from tmin with timestep t− tmin (constant accel-
eration). Because continuous collision detection dominates
the timestep computation time, such Euler substepping of
the rigid body does not introduce a significant overhead. We
evaluate all integrals numerically using the midpoint rule,
with N = 20 subintervals.

5. Results

Our experiments were performed on an Intel Xeon 2.9GHz
CPU (2x8 cores) machine with 32GB RAM, and an GeForce
GTX 680 graphics card with 2GB RAM. We computed the
signed distance fields using an octree-based method using
8 threads [XB14]. Table 1 gives the computation times and
memory sizes for the signed distance field and the distance
field octree for the bunny model (777 vertices). The memory
sizes of the signed distance field and distance field octree,
as well as the distance field octree computation time only
depend on the resolution, and scale linearly with resolution.
The computation time of the signed distance field depends
on the complexity of the surface mesh, in addition to resolu-
tion. In our experiments, we always precompute the signed
distance field and load it from a disk file. We construct the
distance field octree at runtime, which only imposes a small
additional computational overhead (Table 1).

All of our objects carry a pointshell and a signed dis-
tance field, and the continuous collision detection and
contact computation is performed twice, with each ob-
ject assuming either role. The points are either set to
the vertices of the object, or precomputed using parti-
cle repulsion [BJ08]. In the first experiment, we ran-
domly sample 106 pairs of points in the distance field
box and generate line segments between them. For each
line segment, we execute continuous collision detection
against the zero isosurface of the signed distance field of
the bunny (Figure 4). We compute the signed distance
fields at four different resolutions: 1283,2563,5123,10243.
In Table 2, we compare the performance between uni-
form grid traversal and octree-accelerated grid traversal.

Figure 4: Signed dis-
tance field slice (bunny).

The results demonstrate that the
octree-accelerated grid traversal
reduces the continuous collision
detection computation time by
13× for high-resolution signed
distance fields. With higher
resolution, the computational
cost increases almost linearly
with resolution for uniform
grid traversal, whereas octree-
accelerated grid traversal time

resolution uniform grid traversal octree-accelerated
1283 12.7 sec 12.0 sec
2563 38.8 sec 13.1 sec
5123 97.2 sec 15.4 sec
10243 274.3 sec 21.4 sec

Table 2: Computation times using uniform and octree-
accelerated grid traversal. Bunny model.

Figure 5: Simulation of bunnies, china bowls and dragons
using continuous collision detection and continuous contact
resolution.

increase much more slowly. Therefore, the speedup becomes
more significant as the resolution of signed distance field in-
creases.

In the second experiment, we compute 10243 signed dis-
tance fields for the bunny, china bowl and dragon models.
In the 3× expanded space of the distance field box, we sam-
pled 1,000 pairs of random position and orientations for the
point-sampled object. We then perform continuous collision
detection against the zero isosurface. We compare the per-
formance of using a sphere tree hierarchy on points tree
versus linear (point-by-point) traversal. Table 3 shows that
point tree traversal gives a 3×-75× speedup over the point-
by-point collision detection.

In the third experiment, we applied our continuous collision
detection and contact to rigid body simulations. We drop
one object onto another fixed object and compare the perfor-
mance of point-by-point continuous collision detection ver-
sus using point tree. We resolve the collisions between the
objects as well as against the static ground plane. We report
the time for continuous collision detection between the ob-
jects. The ground is represented as a simple implicit function

c© The Eurographics Association 2014.

5



Hongyi Xu & Jernej Barbič / Continuous Collision Detection Between Points and Signed Distance Fields

model #points linear hierarchy
bunny 777 1.8 sec 0.7 sec

china bowl 2,072 3.4 sec 0.3 sec
dragon 437,645 761.2 sec 9.9 sec

Table 3: Continuous collision detection computation times
for synthetic randomly sampled rigid body configurations.
We compare linear (point-by-point) traversal vs using a
sphere point hierarchy.

model #points #frames linear hierarchy
bunny 777 2,600 8 sec 2.5 sec

china bowl 2,072 2,000 20.3 sec 4.5 sec
dragon 437,645 1,160 671.6 sec 2.6 sec

Table 4: Continuous collision detection computation times
during a physically based simulation. We compare linear
(point-by-point) traversal vs using a sphere point hierarchy.

φ(p) = py, where py is the y coordinate of point p. Figure 5
gives the simulation results for the bunny, china bowl, and
dragon simulations. Table 4 shows that using the point-tree
traversal, we can accelerate continuous collision detection
by 3×-250× . The acceleration becomes more significant
when the number of points increases. Note that in physi-
cally based simulations, objects typically do not overlap with
each other because the contact response separates them. In
the synthetic random-sampling strategy (Table 3), however,
objects may overlap severely, with most of the points in con-
tact, which is a situation where a tree hierarchy cannot help
much. Therefore, the speedup of using the point tree in phys-
ically based simulation is typically much larger than in the
synthetic case.

In the fourth experiment, we compare the stability of our
method to discrete collision detection with discrete forces
and torques (Figure 6). Our method uses continuous col-
lision detection with continuous forces and torques. For a
fixed stiffness level, the maximum stable timestep is 3×
larger in our method. We then fixed this timestep, and de-
creased the stiffness of the discrete method until it became
stable. This caused a 2.75× larger maximum penetration
depth for the discrete method compared to our method.
We also made a comparison between the maximum sta-
ble timestep for both methods, under the same stiffness
and matching the maximum penetration depth. Our results
demonstrate that our continuous method has a 2.6× larger
maximum stable timestep.

6. Conclusion

We presented an efficient algorithm for continuous collision
detection between points and distance fields. We described
a method for computing the intersection between a line seg-
ment and an implicit surface defined by a signed distance

Figure 6: Stability comparison. (a) continuous collision de-
tection with continuous forces and torques at 3× timestep;
(b) discrete collision detection with discrete forces and
torques at 1× timestep; (c) discrete collision detection with
discrete forces and torques at 3× timestep (explosion).

field. We also demonstrated how to apply two acceleration
techniques: octree-based grid traversal and the point-tree.
We integrated our method with continuous penalty-based
contact, and successfully applied it to rigid body simulation.
Although our octree requires additional memory, it can be
computed quickly and substantially accelerates continuous
collision detection. Our method suffers from the general lim-
itation of point-sampled collision detection, namely the pos-
sibility that unsampled sharp features may cause deep pene-
trations. In the future, we would like to use adaptive distance
fields to save the memory. Another extension would be to
apply our algorithm to non-linear (polynomial) point trajec-
tories, especially for rigid-body simulation where the linear
trajectory assumption may not hold for large timesteps. We
would also like to simulate deformable distance fields, dy-
namically update the precomputed octree data structure, and
apply our method to haptic rendering.

Acknowledgements: This research was sponsored in part
by the National Science Foundation (CAREER-53-4509-
6600, IIS-1422869), Sloan Foundation, USC Annenberg
Graduate Fellowship to Hongyi Xu, and a donation of two
workstations by the Intel Corporation.

References

[AW∗87] AMANATIDES J., WOO A., ET AL.: A fast voxel traver-
sal algorithm for ray tracing. In Proceedings of EUROGRAPH-
ICS (1987), vol. 87, pp. 3–10. 3

[BB09] BROCHU T., BRIDSON R.: Numerically robust continu-
ous collision detection for dynamic explicit surfaces. Tech. rep.,
University of British Columbia, 2009. 2

[BEB12] BROCHU T., EDWARDS E., BRIDSON R.: Efficient ge-
ometrically exact continuous collision detection. ACM Trans.
Graph. 31, 4 (2012), 96:1–96:7. 2

c© The Eurographics Association 2014.

6



Hongyi Xu & Jernej Barbič / Continuous Collision Detection Between Points and Signed Distance Fields

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Robust
Treatment of Collisions, Contact, and Friction for Cloth Anima-
tion. ACM Trans. on Graphics 21, 3 (2002), 594–603. 2

[BJ08] BARBIČ J., JAMES D. L.: Six-dof haptic rendering of con-
tact between geometrically complex reduced deformable models.
IEEE Transactions on Haptics 1, 1 (2008), 39–52. 1, 2, 4, 5

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simulation
of Clothing with Folds and Wrinkles. In Proc. of the Symp. on
Comp. Animation 2003 (2003). 2

[FSG03] FUHRMANN A., SOBOTKA G., GROSS C.: Distance
fields for rapid collision detection in physically based modeling.
In Proceedings of GraphiCon (2003), pp. 58–65. 2

[GSM∗12] GLONDU L., SCHVARTZMAN S. C., MARCHAL M.,
DUMONT G., OTADUY M. A.: Efficient collision detection for
brittle fracture. In Proc. of the Symp. on Comp. Animation 2012
(2012), Eurographics Association, pp. 285–294. 2

[HLW03] HAIRER E., LUBICH C., WANNER G.: Geometric nu-
merical integration illustrated by the störmer–verlet method. Acta
Numerica 12 (2003), 399–450. 4

[HXB14] HONGYI XU Y. Z., BARBIČ J.: Implicit multibody
penalty-based distributed contact. IEEE Transactions on Visu-
alization and Computer Graphics 20, 9 (2014). 2

[Jam10] JAMRIŠKA O.: Interactive ray tracing of distance fields.
The 14th Central European Seminar on Computer Graphics
(2010). 2

[JBS06] JONES M., BÆRENTZEN J., SRAMEK M.: 3D distance
fields: a survey of techniques and applications. IEEE Trans. on
Visualization and Computer Graphics 12, 4 (2006), 581–599. 1

[MKW∗04] MARMITT G., KLEER A., WALD I., FRIEDRICH H.,
SLUSALLEK P.: Fast and accurate ray-voxel intersection tech-
niques for iso-surface ray tracing. In Proc. of Virtual Reality,
Modeling, and Visualization (2004), vol. 4, pp. 429–435. 2

[NMHW02] NEUBAUER A., MROZ L., HAUSER H., WE-
GENKITTL R.: Cell-based first-hit ray casting. In Proc. of the
Symposium on Data Visualisation (2002), Eurographics Associ-
ation, pp. 77–ff. 2

[Pro97] PROVOT X.: Collision and Self-Collision Handling in
Cloth Model Dedicated to Design Garments. In Graphics Inter-
face (1997), pp. 177–189. 2

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C.,
SLOAN P.-P.: Interactive ray tracing for isosurface rendering. In
Proceedings of the conference on Visualization’98 (1998), IEEE
Computer Society Press, pp. 233–238. 2

[RKC02] REDON S., KHEDDAR A., COQUILLART S.: Fast con-
tinuous collision detection between rigid bodies. In Computer
graphics forum (2002), vol. 21, pp. 279–287. 2

[RKLM05] REDON S., KIM Y. J., LIN M. C., MANOCHA D.:
Fast continuous collision detection for articulated models. Jour-
nal of Computing and Information Science in Engineering 5, 2
(2005), 126–137. 2

[SWF∗93] SNYDER J. M., WOODBURY A. R., FLEISCHER K.,
CURRIN B., BARR A. H.: Interval methods for multi-point col-
lision between time-dependent curved surfaces. In Proc. of ACM
SIGGRAPH 93 (1993), pp. 321–334. 2

[TCYM09] TANG M., CURTIS S., YOON S.-E., MANOCHA D.:
Interactive continuous collision detection between deformable
models using connectivity-based culling. IEEE Trans. on Visual-
ization and Computer Graphics 15 (2009), 544–557. 2

[TKH∗05] TESCHNER M., KIMMERLE S., HEIDELBERGER B.,
ZACHMANN G., RAGHUPATHI L., FUHRMANN A., CANI
M., FAURE F., MAGNENAT-THALMANN N., STRASSER W.,

VOLINO P.: Collision Detection for Deformable Objects. Com-
puter Graphics Forum 24, 1 (2005), 61–81. 1, 2

[TMOT12] TANG M., MANOCHA D., OTADUY M. A., TONG
R.: Continuous penalty forces. ACM Trans. Graph. 31, 4 (2012),
107:1–107:9. 1, 2, 4

[TMT10] TANG M., MANOCHA D., TONG R.: Fast continuous
collision detection using deforming non-penetration filters. In
Proc. ACM Symp. on Interactive 3D Graphics and Games (I3D)
(2010), pp. 7–13. 2

[Wan14] WANG H.: Defending continuous collision detection
against errors. ACM Trans. on Graphics (SIGGRAPH 2014) 33,
4 (2014). 2

[XB14] XU H., BARBIČ J.: Signed distance fields for polygon
soup meshes. In Proc. of the Graphics Interface Conference
(2014), pp. 35–41. 5

c© The Eurographics Association 2014.

7


