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Abstract
We present a method to separate a dichromatic reflection component from diffuse object colors for the set of rays in a 4D
light field such that the separation is consistent across all subaperture views. The separation model is based on explaining
the observed light field as a sparse linear combination of a constant-color specular term and a small finite set of albedos.
Consistency across the light field is achieved by embedding the ray-wise separation into a global optimization framework. On
each individual epipolar plane image (EPI), the diffuse coefficients need to be constant along lines which are the projections
of the same scene point, while the specular coefficient needs to be constant along the direction of the specular flow within
the epipolar volume. We handle both constraints with depth-dependent anisotropic regularizers, and demonstrate promising
performance on a number of real-world light fields captured with a Lytro Illum plenoptic camera.

Categories and Subject Descriptors (according to ACM CCS): I.4.4 [Image Processing and Computer Vision]: Restoration—I.4.8
[Image Processing and Computer Vision]: Scene Analysis—Color

1. Introduction

Many algorithms in computer vision are designed under the as-
sumption that the appearance of a scene point does not change
under different perspectives. However, this is clearly not the case
for most natural scenes which are usually not perfectly Lambertian,
and where surfaces can exhibit significant view-dependant specular
reflectance. Thus, conventional methods for image analysis often
fail on such scenes due to different motion of the specular high-
lights and actual physical points under change of view point.

To remedy this, current approaches often leverage that specu-
lar or glossy pixels can be decomposed under the assumption of a
dichromatic reflection model [Sha85], where the observed color of
a scene point is a sum of diffuse and specular components. Clas-
sical algorithms for specularity detection and removal for a single
image are however strongly limited by the fact that the image does
not contain information about scene geometry, and thus methods
have to rely on color information.

In this work, we assume that we have captured a light field of
the scene, so that we have immediate access to scene geometry.
Indeed, depth reconstruction from light fields is currently a very
active area of research [WG14, HRP13, TSW∗15, JSG16]. For our
purposes here, a light field is considered as densely sampled set of
images taken from a regular grid of view points inside a common
focal plane. By stacking these views and computing slices, one can
directly observe the depth of pixels, as it is inversely proportional to
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Figure 1: Center view of a light field. The epipolar plane image
along the dotted horizontal line is shown below, the one along the
vertical line to the right, respectively. Coordinates (x,y) are for the
image plane, coordinates (s, t) for the focal plane, so the complete
light field is defined on a four dimensional ray spaceR.

the shift of corresponding pixels when moving the camera, i.e. dis-
parity. The slices through stacks of views are called epipolar plane
images (EPIs), see figure 1.
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However, constancy of pixel intensity is valid only for Lamber-
tian surfaces, because specularity is view-dependent [SKS∗02]. A
natural way to deal with specularities is thus to separate the diffuse
component from the specular while preserving constancy along the
projections in the EPI only for the diffuse part. We model this in the
global variational framework [GW13]. The remaining challenge is
to enforce consistency of the specular part, which is the major focus
of our theoretical analysis. We base our model for regularization on
specular flow [AVaTZ07], which under certain practical assump-
tions can be computed directly from the estimated disparity.

Contributions. In this paper, we make the following main con-
tributions to apply reflection separation to light fields:

• We extend the sparse coding approach [AO14] for reflection sep-
aration on single views to light fields by embedding it in the vari-
ational framework [GW13] for consistent light field labelling.

• We propose a novel term for the specular coefficient in epipolar
volumes which is based on specular flow.

• We show how to optimize jointly for consistent diffuse and spec-
ular coefficients.

• We evaluate performance on Lytro datasets, and show improve-
ments compared to previous work, in particular the original ap-
proach [AO14] on single views as well as the alternative light
field based approach [TSW∗15].

2. Related work

There is a wide range of methods for specular removal from a single
image. Most of them are based on color statistics or rely on an addi-
tional knowledge about the scene. In [KSK87], they perform color
space analysis by clustering the diffuse and specular component
based on estimated illumination color. A similar approach was cho-
sen in [BLL96], where they analyze color variations on the object
based on hue, saturation, and brightness information. Another cat-
egory of approaches are neighbour based methods, where authors
additionally use spatial information [TI05, YCK06]. For an exten-
sive survey on specular removal techniques, we refer to [ABC11].
Our own work is based on the idea in [AO14], where the authors
use sparse non-negative matrix factorization to separate diffuse and
specular components from a single image. They represent the color
of every pixel as a sparse linear combination of a diffuse palette
and one specular color based on estimated light source color. The
amount of a certain color taken from the palette is controlled by
a sparse set of coefficients regularized with an L1 norm, and the
palette is iteratively optimized together with the sparse coefficients.

In our paper, we leverage that having a light field available makes
it much easier to separate diffuse and specular parts due to the dif-
ference in motion. Although the rich light field structure allows to
obtain a lot of information about scene geometry, there is not much
research in the area of light field specularity tracking and removal.
An analysis of glossy and specular surfaces in light fields was
done by [TSW∗15], where they analysed the dichromatic model
for light fields. They used the natural assumption for the diffuse
component to be photo-consistent, while the specular component
exhibits strong variance in subaperture views. However, in contrast
to our proposed approach, they do not incorporate exact motion
of specularities due to specular flow. In [LLK∗02], the authors an-
alyze diffuse-specular separation from an image sequence, which

gives a structure similar to a light field. Their histogram-based ap-
proach is built upon the assumption that diffuse pixels do not vary
from one view to the next, while specularities are view-dependent.
By calculating the difference of color histograms between views,
they localize specular regions. Another multi-view approach is pro-
posed in [SKS∗02], where they study the deviation from photo-
metric properties under presence of specularities on the EPI level.
In [PDCS13] they analyzed specularities as a part surface light field
estimation. Recently, Wang et al. [WCER16] proposed a method
for joint shape and reflectance estimation in light fields based on a
theory for differential appearance changes for single-lobe BRDFs.

3. Reflection model and sparse light field coding

We formulate reflection separation as a sparse coding problem, sim-
ilar to [AO14], but extended to the light field case. Our main con-
tribution is to formulate and impose spatial regularizers and con-
straints required for a consistent separation across all subaperture
views, and optimize for all of them in a unified global optimization
framework. In this section, we first review the ideas in [AO14] and
in particular adapt them to the light field scenario.

The basic approach to diffuse and specular separation is based
on the assumption of the dichromatic reflection model introduced
by [Sha85], and adopted by [TSW∗15] for light fields. The key
assumption is that the light field color L(rrr) of every ray rrr in 4D
rayspace is a sum L(rrr) = S(rrr) + D(rrr) of a specular and diffuse
term. Following the dichromatic model, the specular reflection is
given by S(rrr) = Scσ(rrr), where Sc is a globally constant RGB illu-
mination color, and σ(rrr) the specular coefficient for the ray rrr. The
assumption for the diffuse term is that the objects in the scene con-
sist of regions of different materials, thus it is drawn from a discrete
set of different RGB albedos {A1, . . . ,AK}. Thus,

L(rrr) = Scσ(rrr)+A1α1(rrr)+ · · ·+AKαK(rrr), (1)

where ααα(rrr) = (α1(rrr), . . . ,αK(rrr)) are the ray-wise diffuse coeffi-
cients. Ideally, we would like the visible material at every ray to
be unique, mathematically this means the counting norm ‖ααα(rrr)‖0
should be equal to one. All coefficients must also be non-negative.
However, as the counting norm is non-convex, we relax this con-
straint as well as assumption (1), and instead minimize for every
ray the L1 sparse coding energy

E(uuu(rrr),D) = λs ‖σ(rrr)‖1 +λd ‖ααα(rrr)‖1 +‖L(rrr)−Duuu(rrr)‖2
2 , (2)

where λs,λd > 0 are constants controlling the amount of sparsity
for the diffuse and specular coefficients, D =

[
Sc A1 · · · AK

]
is the global dictionary of specular and diffuse colors, the same for
every ray, and uuu(rrr) =

[
σ(rrr) ααα(rrr)

]T are the coding coefficients,
different for every ray.

Note that while the dictionary for specular color and basis albe-
dos is the same across the light field, equation (2) still leads to
independent coefficient estimates for every ray. To make the re-
sult spatially consistent and also consistent across all subaperture
views of the light field, we need to impose regularizers. The prin-
ciples behind light field consistency for both diffuse and specular
components will be discussed in the next section. Everything will
be integrated into a global variational model with additional spatial
regularization in section 5.
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Figure 2: Disparity-based regularization of diffuse components. For every 2D EPI, disparity induces a vector field along which any property
assigned to a 3D point remains constant [GW13]. This is leveraged in Lambertian depth reconstruction, where one can search for the
orientation of lines with constant color [WG14] (left and middle column). When moving the camera in s-direction, pixels shift only in x-
direction, thus regularization can be treated separately for every 2D EPI [GW13]. However, one can also stack all EPIs and regularize the
complete epipolar volume along a 3D vector field whose y-component is zero everywhere (right column). This is much faster as it reduces
computational overhead like calling CUDA kernels, and we can improve the runtime of the original method in [GW13] by a factor of ten.

4. Separation consistency based on depth and specular flow

As the diffuse and specular components follow different motions,
we require two different reguralizers on epipolar space. We encour-
age consistency with the estimated motion by anisotropic smooth-
ing in the respective direction. For this, we will first describe reg-
ularization of epipolar plane images and volumes along a vector
field in general, and then turn to the specialized models for the two
components.

Formally, EPIs are restrictions of a vector-valued function uuu to
a subset of the variables. If we fix s and x, then we obtain an EPI
uuusx in the variables (t,y), conversely, if we fix t and y, we obtain an
EPI uuuty in the variables (s,x). In this notation, uuust is the subaper-
ture view at view point coordinates (s, t). If we fix only a single
view point coordinate, we obtain epipolar volumes uuus(t,x,y) and
uuut(s,x,y), respectively. While in the previous work [GW13], it was
only necessary to regularize on 2D EPIs, correct regularization of
specular coefficients requires to work in epipolar volumes. We will
explain this in detail in the remainder of the section.

In the following, let eee be any epipolar plane image or volume.
Ideally, we want to impose constancy of every scalar component eeei
of the vector-valued function eee along the vector field vvv (two- or
three-dimensional depending on the dimension of eee). In practice,
this cannot be achieved exactly, as we have to deal with a discrete
approximation. We thus follow [GW13] and define an anisotropic
regularizer which for every point ppp only encourages constancy in
direction of the vector field vvv(ppp). It is defined as the anisotropic
total variation over all components,

Jvvv(eee) := ∑
i

∫
dom(eee)

√
∇eeeT

i (vvvvvvT )∇eeei dppp. (3)

It encourages smoothing into the direction of vvv, as it becomes larger
the more vvv is aligned with the gradient of the components eeei.

Consistency for diffuse components given a disparity map.
As each scene point has a unique diffuse color independent of the
view point, the diffuse coefficients ααα must be constant along pro-
jections of the same point. Projections belonging to the same points
manifest in the linear structure which is visible on the EPIs of a

Lambertian scene, see figures 1 and 2. The slope of the lines is re-
lated to disparity. Let d be the disparity map defined on rayspace
for the complete light field, then this disparity map induces a vec-
tor field

[
1 d

]T on each EPI along which the diffuse components
need to be constant. While disparity is technically a differential
quantity, this is in accordance with the usual meaning that a shift
of one unit in view point direction implies a shift of d of the re-
spective image coordinate for corresponding rays. See [GW13] for
more details.

In summary, the anisotropic regularizer (3) needs to be special-
ized to the diffuse component αv by applying it on every EPI with
smoothing in direction

[
1 d

]T . We thus obtain the regularizer Jd
as

Jd(ααα) =
∫

J[1 d]T (αααs,x)d(s,x)+
∫

J[1 d]T (αααt,y)d(t,y). (4)

In this form, the regularizer is a sum over contributions of 2D EPIs.
We note, however, that when shifting the view point in a single
direction, i.e. s, then the pixels shift only in x-direction, while shift
in y-direction is zero. This means that we can rewrite (4) as a sum
over contributions of 3D epipolar volume regularizers,

Jd(ααα) =
∫

J[1 d 0]T (αααs)ds+
∫

J[1 0 d]T (αααt)dt. (5)

While this form does not look considerably simpler, it is now uni-
fied with the regularizer for the specular component defined below.
Furthermore, it turns out that in the final implementation, it is about
ten times faster to deal with a single epipolar volume regularization
compared to the sum over all 2D EPIs.

Consistency for specular components given specular flow.
When moving the camera, the reflection follows a motion which
is different from the motion of surface points. This motion field is
called the specular flow. According to the specular motion model
proposed by Blake and Bülthoff [BB91], specularity displacement
depends on disparity, surface curvature, and baseline of the cam-
era. In the simple case of a specular sphere viewed along the ray
that passes through the sphere’s center, the specular motion vector
is proportional to the camera speed and radius of the sphere, and
inverse proportional to the square of the depth.
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Figure 3: Specular flow based regularization of specular components. Left column: synthetic renderings of the buddha2 light field [WMG13]
using the estimated depth map as a geometry proxy, with the camera shifting towards the right. Middle column: specular flow for differential
motion in positive s-direction, illustrating the differential shift of reflection patterns. Specular flow is a 2D vector field (ws,x,ws,y) in the
image domain (left column), which depends in a complex way on curvature and surface normals. Thus, specular components have to be
constant along the integral curves of the vector field (1,ws,x,ws,y)

T (right column), which can be encouraged with an anisotropic regularizer
on the epipolar volume in (s,x,y)-space. Similarly, one defines a second specular regularizer on (t,x,y) space for movement in t-direction.

A generic model for specular motion along an arbitrary sur-
face was studied by Swaminathan et al. [SKS∗02] and Adato et
al. [AVaTZ07]. Swaminathan et al. detect specular motion based
on deviations in EPI stripes, while Adato et al. recover 3D geome-
try from the specular flow motion. We do it exactly the other way
around, and infer the theoretical specular motion for the given dis-
parity map by specializing the approach detailed in [AVaTZ07].

Let f be the scene surface parametrized by (x,y) coordinates on
a view, which can be inferred from a calibrated light field camera
given the disparity estimate d. We assume a distant light source,
and first compute the reflection vector on the surface in spherical
angles according to [AVaTZ07], equation (5),

α = atan

(
2‖∇ f‖

1−‖∇ f‖2

)
, β = atan

(
fy
fx

)
. (6)

All derivatives are computed with a finite difference approximation
using filters with optimized rotation invariance [WS02]. For cam-
era motion in the direction of qqq parallel to the image plane, the
environment motion field ωωω can be approximated as

ωωω =

[
dα/dt
dβ/dt

]
=

[
∇α

T

∇β
T

]
dqqq. (7)

From this, we recover the specular flow www as www = J−1
ωωω with the

Jacobian

J =
1

||5 f ||(1+ ||5 f ||2)

[
fx fxx + fy fxy fx fxy + fy fyy
fx fxy− fy fxx fx fyy− fy fxy

]
. (8)

See e.g. [AVaTZ07], equations (7) and (8). An example for esti-
mated specular flow is shown in figure 3.

In this way, when shifting the view point in direction qqq =
[s 0]T , we obtain a specular flow wwws = (ws,x,ws,y). The meaning
of this flow field is that within the epipolar volume for constant
t, the specular coefficient should stay constant along the direction[
1 ws,x ws,y

]
. We thus need to regularize σt accordingly. Simi-

larly, we obtain for a shift in direction qqq = [0 t]T a second specular
flow wwwt = (wt,x,wt,y).

Having directions of specular flow computed, the regularizer Js
for the specular component σ can be written as anisotropic regu-
larization (3) of the epipolar volumes in the directions given by the
specular flow, i.e.

Js(σ) =
∫

J[1 ws,x ws,y]T (σt)dt +
∫

J[1 wt,x wt,y]T (σs)ds. (9)

In the following section, we will embed the regularizers encourag-
ing consistency of the specular and diffuse components in a varia-
tional optimization framework for the complete light field.

5. Final variational energy and optimization

When obtaining the separation for the complete light field, the un-
known is the function uuu :R→ R1+K of coefficients on ray space.
We optimize over all of the energies defined previously, in particu-
lar the ray-wise separation model based on sparse coding (2) over
all of rayspace, and epipolar plane consistency regularizer for the
diffuse component (5) and specular component (9). In addition, we
use the image-driven total generalized variation ITGV2 [RGPB12]
as a spatial regularizer on each individual subaperture view. In ef-
fect, this gives the final variational model

argmin
uuu=[σ ααα]

{∫
R

E(uuu(rrr),D)drrr + µdJd(ααα)+µsJs(σ) + . . . (10)

. . . + ρd

∫
ITGV2(αααst)d(s, t) + ρs

∫
ITGV2(σst)d(s, t)

}
.

Note that the overall energy is convex in uuu for a fixed dictionary D,
which we pre-compute before solving (10). The constants µd ,ρd
and µs,ρs are the smoothness weights for diffuse and specular reg-
ularization, respectively.

Initializing the dictionary. To estimate illumination color Sc
corresponding to the first column of the dictionary D, we use the
approch proposed by Yang et al. [YGL15]. The key idea presented
in their work is that most of natural images contain grey pixels
under a white light source. The authors identify those pixels with
an illuminant invariant measure (IIM), which is computed for local
image patches. As a necessary condition for a pixel to be grey, they
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Step 1: initialization

• Initialize dictionary D according to section 5.
• Allocate vector-valued functions uuu = [σ,ααα] on the subset C of views,

with σ(rrr) ∈ R, ααα(rrr) ∈ RK .
• Pre-compute the disparity map using [WG14], and the specular flow

fields for horizontal and vertical camera shifts, see section 4.
• For every ray rrr, pre-compute regularization orientation for dispar-

ity and specular flow for the regularizers (5) and (9) according to
section 4.

• Set step size τ = 1/(K +1).
• Set diffuse and specular smoothness weights µd ,ρd ,µs,ρs and dif-

fuse and specular sparsity weights λd ,λs.

Step 2: iterate until convergence

• gradient descent for data term in (2),

uuu(rrr)← uuu(rrr)−2τDT (Duuu(rrr)−L(rrr)).

• subgradient descent for sparsity norm in (2), i.e. a prox operator for
the L1-norm (shrinkage),

ααα(rrr)i← (ααα(rrr)i− τλd)+ sgn(ααα(rrr)i), i = 1, . . . ,K,

σ(rrr)← (σ(rrr)− τλs)+ sgn(σ(rrr)).

• subgradient descent for diffuse regularizer (5) and specular regular-
izer (9) using [PC11],

ααα← prox
τµd Jd

(ααα) and σ← prox
τµsJs

(σ).

• subgradient descent for the spatial regularizers as implemented
in [RGPB12], i.e. for every subaperture view (s, t) ∈ C,

αααst ← prox
τρd ITGV2

(αααst) and σst ← prox
τρsITGV2

(σst).

Note that the proximation operators for the diffuse and spatial regular-
izers separate into one each for the vertical and horizontal slit of the
crosshair, respectively.

Figure 4: Overview of the complete algorithm to solve the separation problem (10) with consistent regularization. To improve efficiency, we
follow [GW13] and only run it on a crosshair-shaped set C of views around the center view (sc, tc), i.e. C consists of all views (s, t) for which
s = sc or t = tc.

propose that the non-zero IIM is the same for all RGB channels.
Having grey pixels detected, they compute illumination color as the
mean RGB value of those pixels. The remainder of the dictionary
is initialized as an overcomplete basis of R3, where we interpolate
the RGB unit vectors to span K columns.

Optimizing for the coefficients. When optimizing for uuu with
fixed D, the energy (10) is convex. In principle, it fits the overall op-
timization framework for consistent light field assignment [GW13].
However, there are more regularizers to be taken into account and
there are two orientations to consider for the EPI regularization.
The technique is still the same and inspired by FISTA [BT09]: it-
erate over a gradient descent step for the differentiable part of the
energy, as well as an implicit subgradient descent step for every
convex term. As a reminder, if J is convex, then an implicit subgra-
dient descent step with step size τ > 0 starting from uuu is performed
by computing the prox operator [Roc97]

proxτJ(uuu) = argmin
www

{
‖www−uuu‖2

2
2τ

+ J(www)

}
. (11)

Thus, a subgradient descent step for total generalized variation or
anisotropic total variation amounts to solving an instance of L2-
denoising with the respective regularizer, while a subgradient de-
scent step for the L1 sparsity norm is computed with the shrinkage
operator Tµ, defined component-wise as [BT09]

proxτλ‖·‖1
(uuu)i = Tτλ(uuu)i := (|uuui|− τλ)+ sgn(uuui). (12)

We solve all denoising subproblems with the primal-dual algo-
rithm [PC11] with diagonal pre-conditioning. For a comprehensive
overview, all steps of the algorithm are summarized in figure 4.

6. Experimental evaluation

To demonstrate the capability of our method on real-world scenes,
We captured multiple light fields under different natural or syn-
thetic lighting with the Lytro Illum light field camera.

We compare our method to two different approaches. First, the
original single view approach proposed in [AO14], which we ex-
tended to the light field setting in order to show that having the
light field structure helps with getting better results. Although sug-
gested parameter settings are given in their paper, we adapted them
to the individual light fields to obtain results as good as possible.
As input to their method, we give the center view of the light field.
The second method we compare to is [TSW∗15], a state-of-the-art
approach for specular separation tailored specifically to light fields.
We kept default parameters as it was recommended by the authors
and evaluated results of their implementation.

Our method requires a precomputed disparity map, which is cal-
culated on the input light field with the first order structure ten-
sor [WG14] and regularized with image-driven TGV [RGPB12].
The Lytro Illum was calibrated using [DPW13].

Results can be observed in figures 5 and 6. Parameters are deter-
mined empirically and individually for each light field. Note that all
results for the specular component have been normalized to make
them more visible, so diffuse and specular part do not sum up to
the input. We will briefly comment on each individual dataset. On
the dataset Bowl, both previous methods failed on specular high-
light removal because illumination has a very similar color to the
that of the surface, while our method could successfully differenti-
ate between the two motions using specular flow. However, we can
see some bluish artifacts in the diffuse component, which are due
to channel saturation in the input images, making the exact additive
model partially invalid. Improving this will be investigated in up-
coming work. On the Swan dataset, we obtain very good results in
comparison to [TSW∗15], as their method cannot successfully han-
dle regions with larger specularities. However, the original method
provides quantitatively similar results. On both, Dragon and Owl,
our method gets a better diffuse component than [AO14], as well
as a better specular component in comparison to [TSW∗15]. Very
promising results are obtained on Leaf, where despite a very noisy
pre-computed disparity map we obtained a very reliable diffuse
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component. Strongly filtering the disparity map before computing
the specular flow helped here. Finally, on the Rose dataset, our re-
sults are significantly better than [TSW∗15]. Compared to [AO14],
we have a much less noisy diffuse component due to our proposed
regularization, but a very similar result for the specular component.

In summary, in most cases we obtained a similar or better spec-
ular component, with usually substantial improvements for the dif-
fuse one. Compared to [TSW∗15], our method is more accurate in
regions with larger specularities and more reliable than the origi-
nal method [AO14] due to our contributions of diffuse and specular
flow reguralization based on the light field structure.

7. Conclusion

We propose a method for specular detection and removal in light
field domain. Our approach leverages the geometry of light fields
in order to obtain more robust results. In particular, we embed the
previous approach [AO14], which is based on the idea that the ob-
served color is a sparse linear combination of a few diffuse ba-
sis colors and a single specular color, in a global optimization
framework for light field labelling [GW13]. Here, we regularize
the diffuse component based on disparity, and propose a novel reg-
ularization scheme for the specular component based on specular
flow [AVaTZ07]. In many experiments on real-world light fields
captured with the Lytro Illum, we demonstrate that we outperform
both the original method [AO14] as well as the state-of-the-art ap-
proach [TSW∗15] for specular removal in light fields.
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Figure 5: First set of results comparing our method to the previous single view method [AO14] as well as a light-field based ap-
proach [TSW∗15]. All results for specular terms are normalized for better visibility, so specular and diffuse terms do not sum up to the
input. Note that frequently, previous methods recover a specular term which is qualitatively acceptable, but much too dark, so that the diffuse
component stays the same. See section 6 for a detailed discussion.
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Figure 6: Second set of results comparing our method to the previous single view method [AO14] as well as a light-field based ap-
proach [TSW∗15]. All results for specular terms are normalized for better visibility, so specular and diffuse terms do not sum up to the
input. Note that frequently, previous methods recover a specular term which is qualitatively acceptable, but much too dark, so that the diffuse
compoent stays the same. See section 6 for a detailed discussion.
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