
Vision, Modeling, and Visualization (2016)
M. Hullin, M. Stamminger, and T. Weinkauf (Eds.)

A Framework for Interactive Realtime Image Editing

Benjamin Hell, Moritz Mühlhausen, Marcus Magnor (TU Braunschweig)

L0 image smoothing image gradient thresholding and adding
regular grid

compute clusters and
mean values

register grayscale
brushstrokes on clusters

propagate brushstrokes
with matrix G

weight with matching
matrix D

register color brushstrokes
on clusters

propagate color
brushstrokes via matrix G

weight with matching
matrix D

Figure 1: Pipeline Overview: The illustration shows an overview of our complete pipeline. The first row corresponds to the major steps in the pre-computation
part, which has to be executed once in the beginning. The second and third row show the interactive part, which comes into play when working with user input,
where the second row shows the application of image segmentation, while the third one shows image recoloring based on colored user input.

Abstract
We present a complete framework for interactive image editing with a focus on quickly obtaining results based on user input
via brushstrokes. The goal is to show feedback to changing input in realtime while maintaining high quality output. We achieve
this by extracting vital information in the form of local color clusters and a corresponding locally linear structure from the
input image. With this information the problem of propagating any sort of features provided by user input can be executed
conveniently and very efficiently. One of the major merits of our approach is that the locally linear structure does not impose
any restrictions on the cluster structure. The fully automatically created structure essentially allows for a flexible scaling of
the overall computational cost for propagating user edits. If needed, a more detailed output can be obtained by enforcing the
creation of smaller clusters.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [IMAGE PROCESSING AND COMPUTER VISION]:
Segmentation—Edge and feature detection

1. Introduction

The task of Image editing is required to change a still picture
or video to suit the viewers needs or extract vital information

from it. In some cases algorithms can generate desired results au-
tonomously, but for many practical applications additional user in-
put is required to specify semantic connections that algorithms can-
not find or to make choices when there is no clear intention spec-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/vmv.20161348

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vmv.20161348

B. Hell & M. Mühlhausen & M. Magnor / Interactive Realtime Image Editing

ified otherwise (like choosing specific color tones to change, re-
gions to select, etc.). A common way to provide this information is
by using brushstrokes, as popularized by Levin et al. [LLW04], to
mark certain pixels in an image and provide additional color infor-
mation. Using brushstrokes and spreading this information in the
image regarding its underlying structure is commonly referred to
as edit propagation.

In many situations it is highly beneficial for the user to get
fast feedback to the input that has been provided. One reason
for that is the fact that brushstrokes usually have to be adjusted
or extended multiple times to achieve the desired result. Classi-
cal edit propagation approaches like Levin et al. [LLW04] and
Lischinski et al. [LFUS06] and more recent approaches like Farb-
man et al. [FFLS08], Chen et al. [CZZT12] and Xu et al. [XYJ13]
achieve high quality output but are not very efficient in terms of
computation time and most importantly are not designed with the
goal of being highly parallelizable. Nevertheless, many of their
ideas are applicable in a parallel setting or can be accelerated using
other speedup techniques. Our idea is to provide a scalable cluster
structure that establishes a high symbiosis when being combined
with Locally Linear Embedding, which has been used with much
success by Chen et al. [CZZT12] and was introduced by Roweis
and Saul [RS00].

The remainder of this paper is structured in the following way:
First, we complete the introductory part by mentioning additional
related work and our contributions. Section 2 then goes into de-
tail about all the mathematical modeling aspects of our pipeline
presented in Figure 1. Section 3 gives more details on how to actu-
ally solve the problems introduced before and provides pseudocode
for several algorithms, which is also intended to give an overview
of the programmatic design of our overall pipeline. Section 4 pro-
vides results and computation times for our approach and finally
Section 5 concludes the paper.

1.1. Related Work

Originally user brushstrokes were propagated locally according to
image gradients. A framework with user brushstrokes as input for
edit propagation algorithms was first introduced by Levin et al.
[LLW04] and was used for the purpose of colorization of images
and videos. Later Lischinski et al. [LFUS06] extended the frame-
work for tonal adjustments using image gradients for edge detec-
tion purposes. Pellacini and Lawrence [PL07] introduced a brush-
stroke based framework to edit measured materials. It is important
to note that these local propagation methods have problems with
fragmented image regions, requiring more user scribbles to gener-
ate pleasing results. Li et al. [LAA08] added pixel classification to
address this problem. At each pixel an affine combination of differ-
ent brushstrokes is considered. In contrast to that, An et al. [AP08]
propagated the user input with regard to all pixel pairs. Although
this solves the problem of disconnected regions, it is inefficient in
terms of computation time and memory usage. Liu et al. [LSS09]
came up with an edge-aware user guided selection with brush-
strokes, considering the local user interaction as a progressive pro-
cess to create the desired selection step by step. Solving a series
of local optimization problems in the user’s scribble direction, they
achieved real time interaction. Meanwhile, Xu et al. [XLJ∗09] ac-
celerated edit propagation algorithms using k-d trees: Rectangular

pixel clusters are introduced by dividing the image with a k-d tree.
Li et al. [LJH10] formulated the edit propagation problem as a ra-
dial basis functions interpolation problem. This resulted in better
memory and computation efficiency than in preceding work. Chen
et al. [CZZT12] introduced a two step edit propagation: Capturing
the manifold structure by using locally linear embedding [RS00]
and propagating the user input while maintaining this structure af-
terwards. Although computation times are higher than in the work
of Li et al. [LJH10], the results are better in regions with color
blending. Extending the work of Chen et al. [CZZT12], Ma and
Xu [MX14] were able to accelerate the computation by adapting
the number of neighbors for each pixel based on local complexity.
Furthermore, the authors used a similar built k-d tree to [XLJ∗09],
solving the edit propagation only on node corners and interpolat-
ing the values for other pixels. However, this approach needs addi-
tional user input if some details fall inside of k-d tree rectangles not
touching any node. This work is partially based on the approach of
Chen et al. [CZZT12] as well. In contrast to [MX14] our approach
introduces clustering of pixels that adapt to the local complexity.
This clustering is done before calculating the local linear depen-
dencies to lower the dimensionality of the problem.

1.2. Contributions

This paper contains the following contributions:

• We establish a gradient independent cluster based image struc-
ture for very fast edit propagations.

• We show a way to propagate user input in the form of brush-
strokes to incorporate global information in the edit propagation
workflow.

• We present a full pipeline for a cluster based interactive editing
process, which is fast enough to allow for realtime feedback to
user input.

1.3. Notation and Abbreviations
The following notation will be used in this paper.

Ω⊂ R2 : image domain

I : color feature vector in R3

‖.‖Lp(Ω),‖.‖p : Lp-norm, p-norm, ‖.‖ is 2-norm

.̃ : marks full 5D feature vector (color× location)

.̂ : denotes obtained optimal result

r : total number of clusters

Ci : i-th cluster, i.e. i-th set of accumulated pixels

|C| : number of pixels contained in cluster C

xC : pivot (location) of cluster C

gC : set of all brushstroke feature vectors on clusters

SC : set of all marked clusters

Nm
C : indices of all clusters in m-neighborhood of cluster C

Ñk
C : indices of all brushstroke clusters in k-neighborhood of cluster C

n : dimension of brushstroke feature vector and final output

W = (ŵi j) : weighting matrix representing locally linear structure

G : matrix of gaussian mixture model weights

D : diagonal matching matrix

El : l× l identity matrix

0Rl : zero vector in Rl

BV(Ω) : set of functions of bounded variation on Ω

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

102

B. Hell & M. Mühlhausen & M. Magnor / Interactive Realtime Image Editing

2. The Mathematical Model

This section deals with the modeling aspect of our pipeline shown
in Figure 1. Every single specific design choice we made is based
on computation time, scalability and output quality. It is important
to note that we put a special emphasis on fast computability, which
will also shine through in the simplicity of the introduced optimiza-
tion problems. The key to do this is the combination of the cluster
structure and the locally linear image structure. We make use of
two very important properties: Firstly, the locally linear structure
is preserved when going from pixel level to cluster level (cf. Fig-
ure 2) and secondly, it is independent of image gradients and does
not need any regular grid structure.

In the following we explain the mathematical details of every single
subproblem that is part of our overall workflow shown in Figure 1.
We take a look at all the parts that can be pre-computed before any
user interaction takes place and introduce the way we deal with user
input in the form of brushstrokes afterwards.

2.1. Pre-Calculation

The pre-calculation step consists of all the computations that are
not dependent on any user input, hence only need to be computed
once in the beginning (cf. first row in Figure 1). The first step in
this process is to analyze the structure of the image for local accu-
mulations of pixels with approximately the same intensity I. These
pixels will then be bundled into so called superpixels or clusters.
Afterwards a graph representing linear dependencies between these
clusters with regard to their pivot xC and mean color intensity IC is
established, which yields a structure independent of any sort of im-
age gradients and hence any sort of regular grid, which could limit
numerical computations later on.

2.1.1. Subdividing into Clusters

The goal of this section is to subdivide the image into local clus-
ters with respect to their 5D feature vectors (color× location). The
motivation behind finding locally coherent clusters containing pix-
els of approximately the same color becomes evident when looking
at the following steps in our pipeline 1. For the color cohesion prop-
erty of each individual cluster we use a very efficient edge detection
or image smoothing technique presented in [XLXJ11]. Basically
we solve the following L0-optimization problem

min
z∈BV(Ω)

λL0 ‖∇z‖L0(Ω) +‖z− I‖2
L2(Ω)

on grid
≈

λL0 ∑
x∈Ω

‖∇z(x)‖0 + ∑
x∈Ω

‖z(x)− I(x)‖2
(1)

where minimization of the L0-norm guarantees that the output im-
age represented by z is a thoroughly smoothed version of the input
image I. Dependent on the parameter λL0 , regions of actual inten-
sity change are vastly reduced. We consider the remaining locations
with actual intensity change the hard edges of the image that clus-
ters shall not pass. For local coherence we simply subdivide the
image into a regular grid and limit each cluster to the correspond-
ing grid cells. Combining the grid cells with the edge map obtained

pixel level cluster level

xC C

small feature difference
J
J

high feature difference

Figure 2: Locally Linear Structure Preservation: Observation of the lo-
cal neighborhood shows that the image structure in terms of 5D feature
vectors Ĩ (left) and ĨC (right), as defined in (4), is vastly preserved by the
clustering process. This means that the locally linear structure of an im-
age (cf. Section 2.1.2) is also preserved, which is the foundation of our
clustering-based edit propagation scheme.

from the L0-optimization process yields a cluster structure with the
aforementioned desired property.

We finally assign to each cluster C its pivot xC ∈ R2 as its location
vector and the mean intensity value of all pixels contained in the
cluster as its intensity IC:

|C| := ∑
x∈C

1, IC :=
1
|C| ∑

x∈C
I(x), xC :=

1
|C| ∑

x∈C
x (2)

2.1.2. Extracting a Locally Linear Image Structure

The goal of this section is to provide the mathematical details on
extracting structural information from 5D image data (pixel loca-
tion and color information), which should be preserved when prop-
agating user edits later on. For our purposes it is paramount that
this structure can be computed without forcing our previously in-
troduced clusters to form any sort of regular grid or have other re-
strictions like gradient based image measures would do (cf. Fig-
ure 2). We found the locally linear structure presented in [RS00] to
be perfectly suited for this task.

As we want to treat location information and color information dif-
ferently we define 5D feature vectors in the following way

Ĩ = Ĩ(x) :=
(

I(x)
0R2

)
+ τ

(
0R3

x

)
=

(
I(x)
τ x

)
(3)

where τ obviously balances the influence of color and location in-
formation. For feature vectors of clusters we define the obvious
extension

ĨC :=
1
|C| ∑

x∈C
Ĩ(x) =

(
IC

τ xC

)
, ĨC := {ĨC1 , . . . , ĨCr} (4)

with xC being the pivot of cluster C and r the number of clusters.

The problem of finding the locally linear structure at each cluster
Ci is given by the following optimization problem

argmin
wi=(wi1,...,wim)∈Rm

∥∥∥ĨCi − ∑
j∈Nm

Ci

wi j ĨCj

∥∥∥2
=
∥∥∥ ∑

j∈Nm
Ci

wi j
(
ĨCi − ĨCj

)∥∥∥2

s.t. ∑
j∈Nm

Ci

wi j = 1 (5)

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

103

B. Hell & M. Mühlhausen & M. Magnor / Interactive Realtime Image Editing

grayscale brushstrokes (segmentation)
S0 with gB = 0
QQ

SC
0
��

S1 with gB = 1��SC
1
��

color brushstrokes (recoloring)

S0 with gB ∈RRR3�
��

SC
0�
�S1 with gB ∈RRR3

��SC
1
��

Figure 3: Interpreting Brushstrokes (Illustration): In the top part
grayscale brushstroke values gB are registered on a pixel level with S0
(black) and S1 (gray) and extended to adjacent clusters to form the sets SC

0
and SC

1 . The same concept is the shown at the bottom for brushes carrying
color information. Note that for recoloring purposes a black brushstroke,
i.e. gB = (0,0,0)T , is used to keep regions of the picture untouched.

with Nm
Ci

being the set of indices of all clusters in the neighborhood
of cluster Ci. The neighborhood of a cluster contains the m near-
est clusters with respect to the euclidean distance of the clusters’
corresponding 5D feature vectors ĨC, i.e.

Nm
Ci := { j1, . . . , jm} ⊂ {1, . . . ,r}\{i}

with the property that for k = 1, . . . ,m (6)

‖ĨCi − ĨCjk
‖ ≤ ‖ĨCi − ĨCl‖ ∀l ∈ {1, . . . ,r}\{ j1, . . . , jm}

which implies |Nm
Ci
|= m (i = 1, . . . ,r).

Solving the optimization Problem (5) for each cluster Ci
(i = 1, . . . ,r) yields optimal weights ŵi j for j ∈ Nm

Ci
. These weights

represent the locally linear structure we were looking for. We store
them in the r× r matrix W := (ŵi j) by explicitly setting ŵi j := 0
for j ∈ {1, . . . ,r}\Nm

Ci
:

Wi j :=

{
ŵi j j ∈ Nm

Ci

0 otherwise
(7)

Note that because of r� m = |Nm
Ci
| the matrix W is sparse.

2.2. Interactive Edit Propagation

Doing all our computations on the cluster structure instead of on
the image pixel grid allows us to vastly reduce the dimensionality
of the problem. All further design choices have been made with
two goals in mind: Keeping computations efficient and being able
to execute them completely on the cluster level. This section will
derive our final edit propagation model, which is fully based on the
cluster structure and can be solved by computing the solution to a
linear system of equalities, which can be efficiently done on a GPU.

2.2.1. Interpretation of Brushstrokes

We register brushstrokes on a per pixel level and then map this in-
formation onto the corresponding clusters. The information carried
by a specific kind of brushstroke can be any sort of feature, in this

Ci

Cj

Q
Q
Q

S
S
E
E

Ñ3
Ci

QQT
T
T

Ñ3
Cj

Figure 4: Brushstroke Clusters and Neighbors: The image shows
two clusters Ci and Cj, with their corresponding brushstroke cluster 3-
neighborhoods Ñ3

Ci
and Ñ3

Cj
. The criteria for choosing neighborhoods de-

pends on the 5D image feature vectors IC and is given in (6).

paper we focus on grayscale values for image segmenation pur-
poses and color values for image color editing. For each pixel x we
set the corresponding brushsstroke intensity g as

g(x) :=

{
gB if marked by brushstroke with feature vector gB

0Rn otherwise (8)

with gB ∈ Rn being an appropriate feature vector, where we con-
sider the cases n = 1 for segmentation or grayscale images and
n = 3 for color editing. We define B to be the set of all l differ-
ent occurring brushstroke feature vectors gB, i.e.

B := {gB1 , . . . ,gBl} (9)

Having obtained the brushstroke information on a pixel grid level
we want to assign appropriate intensity values to the individual
clusters Ci (i = 1, . . . ,r) generated in Section 2.1.1. Due to the fact
that clusters have been generated with a limit on their spacial ex-
tent, it is safe to assume that one cluster contains only marked pix-
els by one single kind of brushstroke. To avoid problems in the rare
case of this assumption being violated, we just have to pick

gCi := g(y) with y = argmax
x∈Ci

‖g(x)‖ (10)

which means that we have the brushstroke intensity gCi = 0Rn for
clusters that do not contain any pixels marked by any brushstrokes.
We also define

gC := (gC1 , . . . ,gCr)
T ∈ Rr×n (11)

to be the vector of all brushstroke cluster intensities.

Finally, we define Si (i = 1, . . . , |B|), with B being the set of all
occurring brushstroke feature vectors defined in (9), to be the set of
all pixels marked by a brushstroke with the same intensity and S :=⋃

i=1,...,|B| Si the set of all marked pixels. Once again we extend
the whole concept to clusters and obtain the corresponding sets of
marked clusters SC

i and SC =
⋃

i=1,...,|B| S
C
i . For an illustration of

these definitions see Figure 3.

2.2.2. Brushstroke Propagation

As mentioned before, we have assigned the brushstroke intensity
gCi = 0Rn (cf. (10)) for clusters that do not contain any pixels
marked by any brushstrokes. In order to influence those unmarked

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

104

B. Hell & M. Mühlhausen & M. Magnor / Interactive Realtime Image Editing

clusters, especially if they are in close proximity to marked clus-
ters, it makes sense to propagate brushstrokes in the image, as has
been shown in [XYJ13]. The discussion about property (b) in Sec-
tion 2.2.3 will also go into more details about that.

To do so we apply a Gaussian Mixture Model (GMM) like weight-
ing process to the assigned brushstroke intensity values gC anal-
ogous to [XYJ13]. Our weighting process is solely influenced by
local color and position information given by the 5D feature vec-
tors ĨC defined in (4). The individual Gaussian mixture weights are
defined as

αi j := exp(−‖ĨCj − ĨCi‖
2/σ

2) (i, j = 1, . . . ,r) (12)

Given the brushstrokes and their corresponding features repre-
sented by gC it makes sense to define the "probability" for an ar-
bitrary brushstroke intensity distribution as

p
(
ḡCi |g

C) :=
1

∑

j∈ÑCi

αi j
∑

j∈ÑCi

αi j exp
(
−‖gCj − ḡCi‖

2/σ
2
)

(13)

with Ñk
Ci

being the set of the k nearest clusters (with respect to color
and position) contained within the set of brushstroke clusters SC be-
ing defined analogous to (6). For an illustration of Ñk

Ci
see Figure 4.

It can be shown that the vector maximizing probability (13) is

ḡCi :=
1

∑

j∈Ñk
Ci

αi j
∑

j∈Ñk
Ci

αi j gCj (14)

which we will consequently choose for brushstroke intensity values
on clusters that have not been explicitly marked, i.e. for all clusters
C /∈ SC. For a simpler matrix form notation we define the Gaussian
mixture matrix G to represent the weighting process (14) by

Gi j :=

αi j

∑

l∈Ñk
Ci

αil
j ∈ Ñk

Ci

0 otherwise
(15)

which has a similar structure to the locally linear structure matrix
W defined in (7) and hence is also sparse. This allows us to write
(14) in matrix form by considering each channel of gC, denoted by
gC

i (i = 1, . . . ,n), separately:

ḡC
i = GgC

i (16)

2.2.3. Propagating User Edits

When propagating brushstrokes we want the result zC :=
(zC1 , . . . ,zCr)

T ∈ Rr×n to have two basic properties:

(a) The propagated intensity values zC should exhibit the same lo-
cally linear structure as the underlying image, which is given by
the structure matrix W (cf. (5, 7)).

(b) Clusters in proximity (with respect to color and location) of
marked clusters should take on similar intensity values zC to
the ones specified by the corresponding brushstroke, i.e. gC

(cf. (10, 11)).

In order to obtain the desired results we once again consider a min-
imization problem, this time with two energy terms representing
properties (a) and (b) described above.

Let us consider property (a) first and assume that the optimal

weights have already been computed according to (5) and are stored
in matrix W according to (7). Then in order to obtain an output zC,
which exhibits the same locally linear structure, we just have to
minimize the energy term

T1(z
C) :=

r

∑
i=1

∥∥∥zCi − ∑
j∈Nm

Ci

wi j zCj

∥∥∥2
=

n

∑
i=1

∥∥∥(Er−W)zC
i

∥∥∥2
(17)

with zC
i = {(zC1)i, . . . ,(zCr)i} (i = 1, . . . ,n), where (zC)i denotes the

i-th component of the vector zC ∈ Rn. Note that n = 1 corresponds
to grayscale output and n = 3 to color output. Furthermore Er is
the r× r identity matrix and Nm

Ci
is the cluster m-neighborhood of

cluster Ci as defined in (6).

We now turn our attention to property (b). A simple and straight-
forward way would be to consider the energy term

∑
C∈SC

‖zC−gC‖2 (18)

which is considered in [CZZT12] (on a pixel level instead of clus-
ters) and basically guarantees that the output zC won’t deviate much
from the user input on clusters marked via brushstrokes given by
the set SC defined in Section 2.2.1. Obviously only clusters marked
by brushstrokes are influenced by this energy term. Unfortunately,
it turns out that in the case of sparse brushstrokes or a coarse clus-
ter structure this term leads to problems when relying on the lo-
cally linear structure to spread the brushstroke information (prop-
erty (a)). This has to do with the fact that the locally linear structure,
which is always represented by a network built from the neighbor-
hoods of every single cluster, might not connect all clusters with at
least one of the brushstroke clusters. If a cluster is not connected
via the aforementioned network, there is no information from the
brushstroke available to propagate to this cluster.

To overcome this shortcoming we first propagate brushstrokes ac-
cording to Section 2.2.2, which can be done separately for each
channel with the propagation matrix G as shown in (16). When
matching the output zCi with the propagated brushstroke intensity
ḡCi at cluster Ci we want to weight this matching operation accord-
ing to the cluster’s feature vector ĨCi (see definition (4)) in relation
to the feature vectors of the brush neighborhood Ñk

Ci
(see Figure 4).

The weight for cluster Ci is set to

dCi :=
1
|ÑCi |

∑
j∈ÑCi

αi j (19)

with αi j being defined in (12). This means that clusters with more
similar color information or in closer proximity to brushstroke clus-
ters will be given more incentive to match the propagated brush-
stroke information ḡC.

The corresponding diagonal matching matrix D is defined as

D = (Di j)i, j=1,...,r with Dii := dCi and Di j := 0 (i 6= j) (20)

The overall matching process is then given by

T2(z
C) :=

n

∑
i=1

(
zC

i −GgC
i
)T D

(
zC

i −GgC
i
)

(21)

Note that (18) is a special case of (21) and can be obtained by re-
stricting D to be the indicator matrix for the brushstroke cluster set
SC and setting G to be the identity matrix.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

105

B. Hell & M. Mühlhausen & M. Magnor / Interactive Realtime Image Editing

By combining (17) and (21) we arrive at the minimization problem
for the edit propagation step, i.e.

argmin
zC∈Rr×n

n

∑
i=1

λ
(
zC

i −GgC
i
)T D

(
zC

i −GgC
i
)
+
∥∥∥(Er−W) zC

i

∥∥∥2

(22)

with weighting factor λ > 0, G being defined according to (15), D
according to (20) and the locally linear structure weighting matrix
W being defined in (7). As is immediately evident, this problem can
be solved separately for each channel i = 1, . . . ,n.

3. Numerical Solution and Algorithm

In this section we show several numerical aspects of the individual
parts of our overall algorithm. We will also sum up certain key as-
pects of algorithms introduced in other papers in order to provide a
concise overview and introduce certain parameters our image edit-
ing pipeline depends on.

3.1. Solving the Pre-Calculation Problems

The first step in the pre-calculation step is to solve the L0-
minimization Problem (1) in order to detect relevant edges in the
image. Following the ideas of [XLXJ11], this is done by splitting
the problem into two separate subproblems. To do the separation
process a binding energy term is introduced into Problem (1), i.e.

min
z,v∈BV(Ω)

∑
x∈Ω

(
λL0‖v(x)‖0 +β‖v(x)−∇z(x)‖2 +‖z(x)− I(x)‖2

)
(23)

This problem is then solved by alternating optimization in the two
optimization variables z and v. Thresholding the gradient of the out-
put image yields the desired edge map.

Algorithm 1 L0 Edge Detection
1: procedure DETECTEDGES(image, λL0 , thresh)

2: set β := 0.03, κ := 2, maxIter := 100, βmax := 10000, I := image and initialize z := I
3: while i < maxIter && β < βmax do
4: v← argmin Problem (23) with z fixed
5: z← argmin Problem (23) with v fixed
6: set β = κ · β, i← i+ 1 . increase beta continuously

7: edgeMap := (‖∇z‖ > thresh) . threshold gradient map
8: return (edgeMap, z)

Having the information of relevant edges in the image available al-
lows us to build appropriate clusters. In our case appropriate means
locally coherent and edge aware. One additional requirement for
fast computation is once again parallelizability, which can be eas-
ily obtained by splitting the image in a regular grid and computing
clusters in each cell in a separate thread, which also yields local co-
herence of a cluster by restricting it to one grid cell (cf. Figure 1).

Algorithm 2 Create Clusters
1: procedure CREATECLUSTSERS(edgeMap, cellSize)
2: build regular grid = {celli} with celli of size cellSize2 and set clusters := ∅ . initialize
3: for i = 1, . . . , |grid| do . this can be executed in parallel
4: while celli\clusters 6= ∅ do
5: pick pixel x ∈ celli\clusters and create new cluster C = {x}
6: while C does not extend over edge in edgeMap do
7: pick pixel x ∈ celli\clusters according to edgeMap and set C← C∪{x}
8: set C← C\{x} and clusters← clusters∪C

9: return clusters

From the cluster structure we can then extract the corresponding
locally linear structure by solving Problem (5). As this problem
is a constrained convex quadratic problem we are able to obtain
one solution (there might be infinitely many) by solving the corre-
sponding KKT conditions, which are first order optimality condi-
tions. Due to the special structure of the problem this boils down
to just solving a sparse linear system of equalities. The procedure
is described in detail in [SR00], which is unfortunately lacking a
precise derivation of the aforementioned linear system of equations
from the KKT conditions.

Algorithm 3 Locally Linear Structure Computation
1: procedure LINEARSTRUCTURE(clusters, image, m, τ)
2: compute 5D features ĨC on clusters according to (4)
3: for i = 1,. . . ,r do . can be done in parallel
4: compute m-neighborhood Nm

Ci
according to (6)

5: ŵi ← argmin Problem (5)

6: from ŵi (i = 1, . . . , r) create matrix W according to (7)
7: return W

Algorithm 1, Algorithm 2 and Algorithm 3 constitute the full pre-
calculation part of our pipeline, hence they only have to be executed
once in the beginning.

3.2. Interactive Edit Propagation Algorithm

The processing of the user input starts with registering brushstrokes
and propagating them. This procedure has already been described
in detail in Section 2.2.1 and Section 2.2.2. The corresponding al-
gorithm is trivial and in a short form looks like

Algorithm 4 Brushstroke Enhancement
1: procedure ENHANCEBRUSHSTROKES(strokes, clusters, τ)
2: register graylevels g according to (8) from strokes
3: gC ← extend g to clusters following (10)
4: αi j ← compute Gaussian weights according to (12)
5: G← with αi j obtain the Gaussian mixture matrix from (15)
6: D← with αi j obtain the diagonal matching matrix from (19) and (20)

7: return (gC ,G,D)

The final step in our pipeline is the edit propagation itself. This
means that we have to solve Problem (22) separately for each chan-
nel i = 1, . . . ,n. Taking a closer look reveals that it is an uncon-
strained quadratic convex problem, which can easily be solved by
computing the solution to its first order optimality conditions. As
the problem is quadratic, the first order optimality conditions are
just a huge system of linear equations:

λD
(
ẑC

i −GgC
i
)
+(Er−W)T (Er−W) ẑC

i = 0Rr(
λD+(Er−W)T (Er−W)

)
ẑC

i = λDGgC
i

(24)

Note that we have successfully vastly reduced the number of equa-
tions by transferring the problem from a per pixel level to our clus-
ter structure. The edit propagation step is essentially the reason for
doing all the mentioned speedup measures (precomputation steps,
especially clustering, and brushstroke adjustments), because it is
the part of our pipeline that has to be executed every time the user
input is changed. Also important to note is that due to the local as-
pect of the neighborhoods Nm

Ci
the matrix W exhibits diagonal block

structure, which means that (Er−W)T (Er−W) is still a sparse
matrix, which makes solving system (24) more efficient in terms of

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

106

B. Hell & M. Mühlhausen & M. Magnor / Interactive Realtime Image Editing

computation time and memory usage. As the interactive edit propa-
gation part of the algorithm will be called every time the user input
changes (live editing), it makes sense to precompute this matrix and
store it in GPU memory. The edit propagation algorithm is

Algorithm 5 Edit Propagation
1: procedure EDITPROPAGATION(gC ,G,D,W, zC

init)
2: use precomputed sparse matrix (Er−W)T (Er−W)

3: for i = 1, . . . ,n do
4: solve equation (24) for ẑC

i with iterative method using initial solution zC
init

5: return ẑC

Overall, Algorithm 4 and Algorithm 5 are called every time the user
input in form of brushstrokes changes. As the drawing of brush-
strokes by the user is a continuous incremental process, the user in-
put will only deviate by a little bit in its new iteration. This means
that it is a good idea to reuse the most recently computed solution
ẑC as the initial solution zC

init for Algorithm 5 and use an iterative
linear solver.

4. Evaluation and Results

In this section we show the application of our algorithm in vari-
ous use cases, measure computation times in a realistic user input
driven environment and compare our approach to state of the art
methods in the field. All statistics were measured on an Intel Core
i5-4460, 3.20 GHz and 16 GB RAM PC with a NVIDIA GeForce
GTX 970 graphics card running Windows 10 64-bit with code foun-
dation written in C++ CUDA, running completely on the GPU.

As described in Section 2 and Section 3 our full clustering based
framework depends on the choice of certain parameters. The good
news is that most of these parameters can be fixed and all the oth-
ers only have to be adjusted for the specific kind of application
(like segmentation, recoloring, etc.) or if there is a certain user pref-
erence for the behavior of brushstrokes. For the following experi-
ments we fixed λL0 := 0.015, β := 0.03, κ := 0.03, maxIter := 100,
βmax := 10000 (Algorithm 1), cellSize := 10 (Algorithm 2) and
σ := 0.1, which turned out to be good choices in general. Setting
brush neighbors k := 3 (Algorithm 4) is a good choice in general,
too. This leaves only a few parameters that are worth mentioning
for actual variation by the user. One of the parameters users might
want to adjust depending on the image is τ (Algorithm 3 and Algo-
rithm 4), which balances the influence of color and location infor-
mation on the final output with respect to the given brushstrokes.
Theoretically it might make sense to choose different values for τ

in Algorithm 3 and Algorithm 4, but in practice we found this to be
unnecessary. In most cases we chose τ := 0.2. In addition to that
we do have the threshold parameter thresh (Algorithm 1) and the
number of neighbors m (for computing the locally linear structure),
which balance visual quality and computation time, depending on
the image at hand. Once again, thresh := 0.01 and m := 30 are good
choices for most cases. Depending on the amount of brushstrokes,
users might also want to change the parameter σ, which determines
a brushtroke’s influence on its surroundings.

Our approach can be used for segmenting images by using a dis-
crete set of graylevel brushstrokes. In the notation of this paper this
means that the brushstroke intensities gCi ∈R (i= 1, . . . ,r) (cf. Sec-
tion 2.2.1). In Figure 5 we show segmentation in multiple distinct

input ours Chen

Figure 5: Image Segmentation: Results with dense (first row) and sparse
(second row) input compared to the approach of Chen et al. [CZZT12].

input trimap pixel level cluster level

Figure 6: Image Matting: Our approach for classical image matting on
the alphamatting dataset [RRW∗09]. Pixel level means the output of our
approach without clustering. The results show the thresholded output of
our algorithm. On cluster level, problems occur when the intensity change
from foreground to background is almost nonexistent.

regions with sparse and dense input and compare results with the
approach of Chen et al. [CZZT12]. Due to the additional brush-
stroke propagation step (cf. Section 2.2.2) our approach shows bet-
ter performance with sparser input and regions that are not explic-
itly marked in comparison to [CZZT12]. Additionally, due to the
lack of fine details in the input image (no hair, etc.), our clustering
process has no detrimental influence on the visual quality of the
segmented output at all.

The presented approach is also applicable in the classic case of
image matting using a trimap as input as shown in Figure 6. To
incorporate trimaps into our workflow one simply has to specify
the black area and white area as brushstrokes of the correspond-
ing graylevel, so the only unmarked area is the gray region of the
trimap. It should be obvious that the clustering component of our
approach won’t be able to deliver much of a speedup as the trimap
already specifies vast regions that do not have to be computed and
the gray area usually exhibits rather delicate detail, which automat-
ically leads to a fine cluster structure according to Section 2.1.1.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

107

B. Hell & M. Mühlhausen & M. Magnor / Interactive Realtime Image Editing

input pixel level cluster level

Figure 7: Image Recoloring: Colored brushstrokes mark the pixels that
will be replaced with the specified color. Black strokes mark regions that
should be kept untouched. Pixel level is our approach without clustering.

input ours Chen Xu

Figure 8: Qualitative Comparison: Two challenging scenarios taken from
[XYJ13]. Both only provide sparse input and overlapping color vectors.
Global brush information propagation (used by our approach and even
more extensively in the approach of Xu) helps greatly in these scenarios.
Pixel level means the output of our approach without clustering. The results
show the thresholded output of the algorithms.

We can also achieve high quality output in case of image recolor-
ing as shown in Figure 7. Recoloring is done by choosing color
brushes, i.e. gCi ∈ R3 (i = 1, . . . ,r) (cf. Section 2.2.1), with black
user input corresponding to regions that should be kept untouched.
As usual, we solve Problem (22) for i = 1, . . . ,3 and given gC but
additionally solve the problem as a graylevel segmentation problem
with all color information treated as white, i.e. gB = 1, and black as
gB = 0. The segmentation part yields a mask that we apply to the
recolored result to reintroduce the original pixel information from
the input image in the background. We see our approach applicable
in a scenario where the user wants immediate feedback. According
to the results in Figure 7 a coarser cluster structure usually only
lacks the more detailed nuances.

Amongst the qualitatively best approaches for interactive image
segmentation are the approaches of Chen et al. [CZZT12] and es-
pecially Xu et al. [XYJ13]. So for further output quality compari-
son we show results compared to the aforementioned approaches in

rabbit sequence with labels rabbit sequence output

detailed timings for low resolution case (≈ 75K pixels)

mean timings for different image resolutions

Figure 9: Computation Time: Evaluation of the interactive part presented
in Section 2.2.3. We use whole sequences of continuous brushstroke input
to simulate real user input. The first table shows execution times in sec-
onds for each data set (four images with approx. 75K pixels each, thresh
for Algorithm 1 set to 0.01 and number of neighbors m set to 30) divided
in first (first time executing the edit propagation), min (minimum execution
time in sequence), max (maximum execution time in sequence) and mean
(mean value throughout sequence without first strokes). Using the same pa-
rameters, the second table shows mean timing values (without first strokes)
throughout the sequences for varying image resolutions.

Figure 8. Results from Xu et al. [XYJ13] are qualitatively superior,
but need much more computation time (cf. Figure 9) in contrast to
our realtime approach presented in this paper.

At last we show essential computation time measurements. To
achieve relevant measurements we simulate continuous user input
by passing a sequence of brushstrokes, constituting incremental
stroke updates, to our algorithm and evaluate different sequences
on four images (spring flower, teddybear leaves, rabbit), which have
been shown in different figures in this section. Figure 9 shows an
excerpt of the rabbit sequence and the central computation time ta-
ble for the interactive part of our algorithm. The pre-calculation part
always takes about a few seconds depending on the size and struc-
ture of the input image. We compare our approach to the approach
of Chen et al. [CZZT12], which we have implemented in the same
way as our algorithm. As memory consumption is much higher
for the latter approach than for ours we evaluate the algorithms
on medium sized images (spring_flower: 300× 200 pixels, rabbit:
300× 277 pixels, leaves: 300× 223 pixels, teddybear: 300× 270
pixels) to guarantee a fair evaluation, although our approach does
scale much better with increasing image resolution. Additionally,
we give an estimate of the computation time for the approach of
Xu et al. [XYJ13] by taking into account that its computational
complexity is identical to applying our approach on a pixel level
three to four times (according to the information provided by the
authors of the paper).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

108

B. Hell & M. Mühlhausen & M. Magnor / Interactive Realtime Image Editing

5. Conclusion

In this paper we have shown how to create a very fast image edit-
ing pipeline by using a locally linear image structure on clusters to
extract information from an input image. We have also shed some
light on how to actually propagate user input using the aforemen-
tioned data and sacrifice little to none of the visual quality by using
the cluster structure. For future work we are interested in consid-
ering further ideas of the approach of Xu et al. [XYJ13] and how
to incorporate them in an efficient way in our existing framework.
We believe that making the brushstroke propagation considered in
Section 2.2.2 dependent on the actual output of the edit propagation
is one key component for an even higher quality result.

Acknowledgment

The research leading to these results has received funding
from the European Unions Seventh Framework Programme
FP7/2007-2013 under grant agreement no. 256941, Real-
ity CG.

References
[AP08] AN X., PELLACINI F.: Appprop: All-pairs appearance-space edit

propagation. ACM Trans. Graph. 27, 3 (Aug. 2008), 40:1–40:9. 2

[CZZT12] CHEN X., ZOU D., ZHAO Q., TAN P.: Manifold preserving
edit propagation. ACM Trans. Graph. 31, 6 (Nov. 2012), 132:1–132:7.
2, 5, 7, 8

[FFLS08] FARBMAN Z., FATTAL R., LISCHINSKI D., SZELISKI R.:
Edge-preserving decompositions for multi-scale tone and detail manipu-
lation. In ACM SIGGRAPH 2008 Papers (New York, NY, USA, 2008),
SIGGRAPH ’08, ACM, pp. 67:1–67:10. 2

[LAA08] LI Y., ADELSON E., AGARWALA A.: ScribbleBoost: Adding
Classification to Edge-Aware Interpolation of Local Image and Video
Adjustments. Computer Graphics Forum (2008). 2

[LFUS06] LISCHINSKI D., FARBMAN Z., UYTTENDAELE M.,
SZELISKI R.: Interactive local adjustment of tonal values. ACM Trans.
Graph. 25, 3 (July 2006), 646–653. 2

[LJH10] LI Y., JU T., HU S.-M.: Instant Propagation of Sparse Edits on
Images and Videos. Computer Graphics Forum (2010). 2

[LLW04] LEVIN A., LISCHINSKI D., WEISS Y.: Colorization using op-
timization. ACM Trans. Graph. 23, 3 (Aug. 2004), 689–694. 2

[LSS09] LIU J., SUN J., SHUM H.-Y.: Paint selection. ACM Trans.
Graph. 28, 3 (July 2009), 69:1–69:7. 2

[MX14] MA L.-Q., XU K.: Efficient manifold preserving edit propaga-
tion with adaptive neighborhood size. Computers & Graphics 38 (2014),
167–173. 2

[PL07] PELLACINI F., LAWRENCE J.: Appwand: Editing measured ma-
terials using appearance-driven optimization. ACM Trans. Graph. 26, 3
(July 2007). 2

[RRW∗09] RHEMANN C., ROTHER C., WANG J., GELAUTZ M.,
KOHLI P., ROTT P.: A perceptually motivated online benchmark for
image matting. In Proceddings of the IEEE Conference on Computer
Vision and Pattern Recognition (2009). 7

[RS00] ROWEIS S. T., SAUL L. K.: Nonlinear dimensionality reduction
by locally linear embedding. SCIENCE 290 (2000), 2323–2326. 2, 3

[SR00] SAUL L. K., ROWEIS S. T.: An Introduction to Locally Linear
Embedding. Tech. rep., test, 2000. 6

[XLJ∗09] XU K., LI Y., JU T., HU S.-M., LIU T.-Q.: Efficient affinity-
based edit propagation using k-d tree. ACM Transactions on Graphics
28, 5 (2009), 118:1–118:6. 2

[XLXJ11] XU L., LU C., XU Y., JIA J.: Image smoothing via l0 gradient
minimization. ACM Trans. Graph. 30, 6 (Dec. 2011), 174:1–174:12. 3,
6

[XYJ13] XU L., YAN Q., JIA J.: A sparse control model for image and
video editing. ACM Trans. Graph. 32, 6 (Nov. 2013), 197:1–197:10. 2,
5, 8, 9

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

109

