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Figure 1: (From left to right) The Sheared Cylinder, the Muscle Gnome, the Dolphin, the Breakdancing Teddy, and the T Shape are all
models whose complex balance is made possible by using movable masses and optimization with our method.

Abstract

We present an algorithm to balance 3D printed models using movable embedded masses. As input, the user provides a 3D model
together with the desired suspension, standing, and immersion objectives. Our technique then determines the placement and
suitable sizing of a set of hollow capsules with embedded metallic spheres, leveraging the resulting multiple centers of mass to
simultaneously satisfy the combination of these objectives. To navigate the non-convex design space in a scalable manner, we
propose a heuristic that leads to near-optimal solutions when compared to an exhaustive search. Our method enables the design
of models with complex and surprising balancing behavior, as we demonstrate with several manufactured examples.

1. Introduction

In recent years, 3D printing has become mainstream, allowing peo-
ple to create customized objects while requiring little knowledge
of the underlying technology or professional 3D modeling pack-
ages. This has been made possible by the proliferation of low-cost
3D printers, but also by the research on computational methods
that provide easy and intuitive control over the physical behav-
ior of the printed object. One recurrent research problem in this
context is the design of balance and optimization of various iner-
tial properties. Most of the previous attempts rely on placing the
center of mass at the right location to obtain the desired static be-
havior [PWLSH13, BWBSH14, MAB∗15]. With a single realizable
center of mass, however, it is often physically impossible to optimize
multiple objectives, making these solutions inherently limited. The
simple sheared cylinder in Figure 2 exemplifies this limitation: it is
impossible to enforce balance on both bases of the cylinder with a

single center of mass since no point within the convex hull projects
within both support polygons (convex hulls of the respective contact
points).

In this paper, we overcome this limitation by introducing em-
bedded movable masses inside the 3D printed model. This leads
to the final object having different centers of mass depending on
its pose, which we leverage to simultaneously optimize a combi-
nation of balancing objectives. We parameterize our design space
using capsule-shaped voids carved out inside the object. Inside each
capsule, we place a metallic ball that switches locations from one
end to the other depending on the object’s orientation relative to the
direction of gravity. While this idea is conceptually simple, turning
it into a practical system requires carefully accounting for various
3D fabrication constraints, e.g., the capsules may not overlap and
must be enclosed inside the object. Since placing these capsules and
determining their size is a challenging design task, we devise a non-
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Figure 2: The Sheared Cylinder can only balance on both its ends
with an embedded movable mass, because a single center of mass
cannot project inside both support polygons.

linear constrained optimization that assists the user in achieving a
combination of balancing objectives simultaneously. Moreover, the
number of capsules adds a discrete component to this optimization.
To parry this problem, we propose an effective heuristic leading to
quasi-optimal solutions while avoiding an exhaustive search of the
design space. Our system additionally supports articulated models,
which we can balance in several poses. We demonstrate how our
framework can be used to produce 3D objects with various com-
binations of balancing objectives, such as standing under gravity,
suspension, as well as immersion in liquid.

2. Related work

Fabrication-oriented design. Modern advanced manufacturing
technologies have triggered the development of computational de-
sign tools that aid engineers and non-expert users alike with the
digital design of physical models. We complement these techniques
with a method to optimize rigid and articulated models to stably
stand, suspend, or float in several, user-specified poses.

Balancing. The existence of homogeneous, convex models with a
particular number of stable and unstable equilibria has interested
theorists for decades (see, e.g., [VD06]). Most prominent exam-
ples include Schoenhut’s classic Rolly-Dolly toy [Sch09], the more
recent Weeble R© toy that wobbles back and forth, and the Göm-
böc, all of which exhibit only a single stable equilibrium. Recent
efforts focus on optimizing the mass distribution of non-convex,
custom shapes to stably stand [PWLSH13], spin [BWBSH14], right
themselves [MAB∗15, ZHL∗16], or float in full [MHR∗16] or par-
tial [WW16] immersion. We propose an alternative formulation for
static balancing objectives which leads to stability improvements,
and further address the challenge of combining several competing
objectives simultaneously.

To optimally distribute mass, Prévost et al. [PWLSH13] pro-
pose voxel carving and handle-based deformation, and Bächer et
al. [BWBSH14] use an adaptive voxel discretization and cage-based
deformation. Musialski and colleagues introduce a reduced-order
approach on offset surfaces [MAB∗15] and a projection on local
subspaces [MHR∗16] for improved efficiency. Like Christiansen
and colleagues [CSB15], we use sparse patterns and infill to aid
balancing. Unlike all previous efforts, however, we support pose-

dependent, static balancing with several centers of mass instead of a
single one, enabled by embedded, movable masses.

Modeling objects with movable masses. We are only aware of a
few works on the design of objects with embedded movable masses.
Akulenko et al. [ABKN06] describe the motion control of a cylinder,
and Bolotnik and Figurina [BF08] discuss the optimal control of
the rectilinear motion of a rigid body using movable masses. While
their techniques focus on the more challenging problem of motion
control, their treatments are tailored to models of particular shape
or restricted number of masses and do not directly generalize to
arbitrary shapes or articulated input.

Articulated models. Bächer et al. [BBJP12] describe techniques
to convert a skinned character to an articulated toy model, while
Cali and colleagues [CCA∗12] design such jointed models from a
static input using a rigging interface. The output of these techniques
serves as input to our balancing approach.

3. Overview

Our goal is to allow novice users to create 3D printable objects
that meet a complex set of balancing objectives. To this end, we
introduce the idea of placing movable masses inside a 3D shape
to allow for multiple centers of mass depending on the object’s
pose. We devise a practical parameterization of the design space and
provide an optimization method to navigate this space.

Our method takes as input a (potentially articulated) 3D model
and a set of balancing objectives. Our optimization automati-
cally determines the number, size, and placement of capsules
inside the shape to minimize the corre-
sponding balancing energy. Each capsule
encloses a metallic ball whose location
depends on the pose of the model. Our
system outputs an object that is ready for
fabrication using 3D printing and off-the-
shelf steel balls to be inserted during the
printing process (see inset, right).

4. Balancing with movable masses

With embedded movable masses, we have the unique capability to
satisfy multiple balancing objectives simultaneously. Depending
on the pose of the model, the masses will be at different locations,
resulting in different centers of mass. With a single center of mass,
most objectives would be incompatible. Therefore, we introduce an
optimization able to handle a multitude of objectives.

4.1. Balancing objectives

Standing under gravity. While our tool interfaces with previously
introduced static balancing objectives [PWLSH13, BWBSH14], we
propose a variation that leads to improved stability of the resulting
equilibria.

Given the current center of mass c, Prévost et al. [PWLSH13]
propose to first perpendicularly project it onto the plane containing
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the support polygon, then minimize the distance between the pro-
jected center and the boundary of the support polygon, shrunk by
a safety margin. In contrast, Bächer and colleagues [BWBSH14]
force the center of mass to project to the “center” of the support
polygon, penalizing its height for increased stability.

While sufficient for many cases, these objectives may lead to
suboptimal solutions, especially if we aim to find the best trade-off
between several competing balancing objectives. Given the support
polygon of a given pose, we propose to minimize the maximal “top-
pling” angle θi (see Figure 3 left for an illustration) where i denotes
the edge index of the convex polygon. The “toppling” angle corre-
sponds to the signed angle between the negative gravity direction
−g, and the plane containing c and the edge i, with negative values
indicating fulfillment of the objective. By favoring smaller angles,
we minimize both the abscissa and ordinate of the projection of c
onto the a and −g axes, indicated in red and green in Figure 3, re-
spectively (a is the normalized cross product between g and the edge
segment). Hence, we combine the advantages of the two previously
proposed alternatives in a single objective.

Note, however, that this objective is continuous but only C0.
Hence, it is ill-suited for descent-based optimization. To overcome
this limitation, we use a common smooth maximum function instead:

fbal(c) =
∑i θi eβθi

∑i eβθi
(1)

with a large positive β (in practice we choose β = 100).

Interestingly, we can turn a balance into an imbalance objective
by simply flipping the sign of fbal, allowing users to imbalance
previously balanced configurations and vice versa, thereby providing
them with a previously unseen level of control over static balancing.

Suspension by a string. For a model suspended by a string from a
ceiling (see Figure 3 middle), the model remains in the desired pose
only if the center of mass c lies on the line through the attachment
point s in the user-specified direction of gravity g. Hence, it is natural

-g
cθi
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s

c
g

cbuo

c
g

Standing Suspension Immersion

Figure 3: Balancing objectives (from left to right). Standing under
gravity: the toppling angle θi (in yellow) for an edge i is the signed
angle between the negative gravity −g and the plane containing the
edge and the center of mass c. Suspension by a string: the model
is optimized when the vector between the center of mass and the
suspension point aligns with the gravity. The corresponding angle
serves as our objective. Immersion in a fluid: the metric is again
the angle between the center of mass and the gravity. Addition-
ally, the mass constraint (Equation 3) and the stability constraint
(Equation 5) represented as a light red disk must also be satisfied.

to minimize the angle between c− s and g:

fsus(c) = arccos((c− s) ·g). (2)

The suspension point s is given as input by the user.

Immersion in a fluid. A fully immersed object remains stable,
if the net force and torque acting on the model evaluate to zero.
However, the pressure difference in the liquid leads to an upward
pointing force acting on the center of mass cbuo of the displaced
fluid—also known as the center of buoyancy—with magnitude equal
to its weight. This force counteracts the gravitational force fG, acting
on the center of mass c of the model with magnitude equal to its
weight. Setting the net force to zero leads to a mass constraint

m−ρFVM = 0, (3)

where ρF denotes the fluid’s density and VM the model’s volume.

To form the rotational equilibrium condition, it is convenient
to choose cbuo as the reference point, leading to a net torque
(c− cbuo)× fG. This net torque evaluates to zero whenever the
vectors c− cbuo and fG point in the same or opposite direction,
motivating our balancing objective

fbuo(c) = arccos((c− cbuo) ·g). (4)

Note that the translational equilibrium is unstable, and—because
it is impossible to manufacture a model at the precision necessary
to fulfill the mass constraint exactly—the fabricated model rises or
sinks independently of how carefully we place it in the surround-
ing fluid. The rotational equilibrium is, however, stable as long as
fbuo(c) is smaller than π

2 and the distance between the two centers
cbuo and c is non-zero. Our objective fbuo(c) already penalizes vio-
lations of the first rotational stability criterion, and we introduce an
additional inequality constraint

‖c− cbuo‖2 ≥ d2
min (5)

to enforce a minimal distance dmin between cbuo and c, referred to
as the buoyancy stability constraint.

If the objective fbuo evaluates to zero, the desired pose is rota-
tionally stable. Therefore, when thrown into a container with the
targeted fluid, the fabricated model rectifies its orientation to match
this pose, but as explained previously may rise or sink [MAB∗15].
An interesting extension is floating [WW16] with stable translational
equilibria. Our objective and constraints could easily be extended to
enable such floating/partial immersion optimization.

Combining objectives. In contrast to previous balancing ap-
proaches, our method aids with the design of models with a multi-
tude of centers of mass, each calibrated to meet a single or several
balance or imbalance objectives. With our technique, we can further
optimize the mass distribution to, e.g., support stable standing in
one and suspension in another pose of a single model.

Given an input model, a user specifies a combination of standing,
suspension, and immersion objectives fi by selecting for each a
corresponding pose T. This transformation T(x) = Rx+ t defines
the desired orientation of the model w.r.t. the world coordinate
system. To jointly optimize objectives fi, we could minimize their
sum ∑i fi. By doing so, however, we would favor an on-average,
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overall smaller objective over further reducing the objective fi with
the highest value, i.e., the most visible deviation from the user’s
intent. We therefore minimize the maximum fi with the same smooth
maximum function we used for fbal:

f = ∑i fi eα fi

∑i eα fi
(6)

with a large positive α (in practice we use α = 100). If several im-
mersion objectives are present, only one mass constraint is necessary,
while we keep a buoyancy stability constraint for each.

4.2. Adding movable masses

To support several centers of mass, we propose a two-step manufac-
turing process where we 3D print models and add metallic balls to
internal channels, which we call capsules. Because capsules cannot
be seen from the outside, their convexity is pivotal so that the balls
are correctly routed towards the capsules’ ends when the model is
brought into target poses. Hence, we propose to use linear capsules
for the routing of movable masses.

Mass-related quantities. To discuss the effect of capsules on a
model’s mass properties, we first give formulas for these properties.

The center of mass ck and mass mk of an entity k with constant
density ρk can be expressed with volume integrals over the enclosed
domain Ωk:

ck =
bk
Vk

and mk = ρkVk (7)

where

bk =
∫

Ωk

[x,y,z]>dV and Vk =
∫

Ωk

1dV (8)

with Vk referring to the volume of k.

Note that we can transform these volume integrals to surface
integrals using the divergence theorem, resulting in closed form
expressions for simple volumes such as spheres and capsules and
analytical expressions for triangle meshes. For the reader’s conve-
nience, we include relevant mass-related quantities in Appendix A.

Given the masses mk and centers of mass ck of a set of individual
components k, the center of mass c of their combination is

mc = ∑
k

s(k)mk ck with m = ∑
k

s(k)mk, (9)

where the sign function s(k) returns 1 if we add component k and
−1 if we subtract it.

Application to our problem. We use two materials with different
densities for fabrication: a printer material with density ρP and
metallic balls with dominant mass per unit volume ρB� ρP.

To balance our input model M, we introduce capsules C j of
radii rC j and with cylinder start and end positions pC j and qC j , each
containing a ballB j . Using the definitions above, the mass properties
of this system are:

mc = ρP

(
VMT(cM)−∑

j
VC j T(cC j )

)
+ρB ∑

j
VB j T(cB j ) (10)

cb

ca

M1

M1

M0

B0

B0

C0

C0

Tb
1Ta

1
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Figure 4: Optimizing articulated models. We show two poses Ta
i

(left) and Tb
i (right) of our Muscle Gnome, consisting of two com-

ponentsM0 andM1. A single capsule C0 is embedded inM1, i.e.,
σ(0) = 1. Dependent on the pose, the ball B0 is at either end of
the capsule. The model has two different centers of mass, ca and cb,
optimized to balance (left) or imbalance (right) in respective poses.

with mass

m = ρP

(
VM−∑

j
VC j

)
+ρB ∑

j
VB j . (11)

Depending on the pose, the ball centers sit at either end of the
capsule (compare left and right configurations in Figure 4). At the
transition between these configurations, there is a discontinuity that
leads to non-smooth objectives, violating a pivotal requirement for
descent-based optimization. To overcome this limitation, we smooth
this discontinuous step, as described in more detail in Appendix A.

If the targeted printer has an infill option, we include it as a param-
eter in our optimization, as it significantly enlarges our design space.
To this end, we multiply the mass properties belonging to the model
M with a scale factor. Alternatively, we could pair our capsule
optimization with either voxel-carving [PWLSH13, BWBSH14] or
surface offsetting [MAB∗15].

4.3. Articulated models

For articulated models, the model itself is split into several com-
ponentsMi, each positioned with an objective-dependent pose Ti,
again given as a rigid transformation. Note, however, that in this
case the translational parts of the transformations matter when posi-
tioning components with respect to one another. Equations 10 and
11 therefore become

mc = ρP

(
∑

i
VMi Ti(cMi)−∑

j
VC j Tσ( j)(cC j )

)
+ρB ∑

j
VB j Tσ( j)(cB j )

(12)

with mass

m = ρP

(
∑

i
VMi −∑

j
VC j

)
+ρB ∑

j
VB j , (13)
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where σ( j) maps each capsule j to its assigned component. We keep
this assignment fixed throughout the optimization. See Figure 4 for
an explanatory illustration.

4.4. Ensuring fabricability

To ensure fabricability, we prevent overlaps between pairs of cap-
sules, as well as capsules and model components using constraints.
At first glance, it seems most reasonable to control the distance
between closest points. This metric, however, has a discontinuous
first derivative. To overcome this limitation, we quantify the distance
between any two point pairs xCi and xC j on the capsules’ cylinder
axes and constrain them to be greater than the sum of radii:

‖xCi −xC j‖ ≥ rCi + rC j . (14)

To prevent intersections with component boundaries, we follow a
similar approach, adjusting our distance metric:

dMσ( j)
(xC j )≥ rC j , (15)

where dMi is the closest distance to the component Mi. For
fast evaluations of distance queries, we pre-compute discrete, per-
component distance fields, sampled over uniform grids, then tricubi-
cally interpolate the distances of the 64 grid points around a given
query point. The gradient of this distance field can be computed
analytically and has the advantage of being smoother than a trilinear
interpolation.

In practice, we use 32 samples per capsule to evaluate these
constraints, with two samples placed at their end points. Because
the number of constraints does not scale well with the number of
capsules, we reduce the number of samples if we optimize with a
larger number of capsules. Alternatively, we could add one-sided
penalties to the objective with a cutoff, enabling early culling of
distant sample pairs.

For fabrication, we rely on fused deposition modeling (FDM).
Many FDM technologies support the fabrication of curvature-bound
overhangs without the need for a supporting structure. This enables
fabrication of our models with embedded metallic balls without the
need for introducing cuts nor relying on a manual assembly after
fabrication. We can simply pause the printer, place a ball, and then
resume printing. To enable this placement during printing, we need
to guarantee that the two end points are at least a radius length rC j

apart, leading to additional constraints

‖qC j −pC j‖
2 ≥ r2

C j . (16)

For technologies other than FDM, manual cutting and assembly is
unavoidable, rendering the above constraints unnecessary.

4.5. Placing capsules

Placing capsules is challenging for several reasons: the design space
delimited by the boundary of the modelM is non-convex for all
but the most simple shapes. Hence, solutions depend on the initial
capsule placement. Secondly, the optimal number of capsules is
unclear. To avoid an exhaustive search on capsule placements and
a treatment of the number of capsules as a discrete parameter, we
propose the heuristic detailed below. It is based on two main obser-
vations: if we initially place capsules onto an approximate medial

Figure 5: Without optimization, our T Shape only stands stably in
the natural orientation (middle). With two embedded capsules, the
model also stands stably on its two sides (left, right).

axis, solutions get reasonably close to an exhaustive search in a
convex neighborhood around the starting point. And to identify the
optimal number of capsules, it is reasonable to start with a capsule
per member of a convex partitioning ofM, then remove capsules
that collapse to a small radius after an optimization step, indicating
that they are not needed.

Loosely following these observations, we summarize our heuristic
that works well in practice:

(a) We compute a skeleton of our input modelM using mean curva-
ture skeletons [TAOZ12].

(b) We then break the skeleton into segments at all branch points and
identify the segments’ midpoints. These midpoints serve as initial
positions of capsules. If a more conservative approach is desired,
one could further split the skeleton at high curvature points.

(c) We minimize our balancing objectives f with these initial set of
capsules, then mark for removal the capsules that did not grow
from an initially small, user-specified radius. We remove the
marked capsules, but only at most 50 percent of the remaining
capsules. And even if no capsule was marked for removal, we
remove at least one. We then rerun the optimization with reset
capsule parameters and continue this process until no capsules
remain.

(d) We finally present all solutions that fulfill the objectives. While a
solution with minimal objective value is preferable for stability, a
smaller number of capsules is easier to manufacture. This trade-
off depends on external criteria, and we therefore let the user
choose the preferred solution.

In Section 5, we compare our heuristic to results of an exhaustive
random sampling of the entire design space.

In summary, we minimize our objective f with a fixed number of
capsules in each step. Besides an optional infill percentage, our un-
knowns include the capsules’ positions pC j and qC j , and their radii
rC j . The resulting non-linear programming problem is constrained
by buoyancy constraints (Equations 3 and 5) and fabricability con-
straints (Equations 14, 15, 16, and 22).

5. Results

We have used our technique to optimize a multitude of objects with
a variety of balancing objectives, all shown in Figure 1 and detailed
in this section. For fabrication, we rely on an Ultimaker 2.

In Figure 2 we show a toy example to emphasize the importance
of movable masses. The two extruded support polygons of our
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Figure 6: Using only two capsules we can optimize the Breakdanc-
ing Teddy to stand steadily in six surprising orientations.

Sheared Cylinder do not intersect. Hence, it is physically impossible
to balance this model on its two ends with a single center of mass.

Figure 5 shows our T Shape, which by default stands in the natu-
ral orientation T and its opposite

T

but not on the sides T and T . Note
that the orientation

T

is trivially balanced because the orthographic
projection of any point inM onto the respective support polygon
plane is contained in this convex polygon. Hence, any attempt of
imbalancing this configuration is destined to fail. By adding a single
capsule at the junction, we can balance the model in all four orien-
tations. And by adding a second capsule, we can further increase
stability: we can tilt the initially horizontal ground plane by at least
13 degrees (compared to 8 degrees for a single capsule) before the
model topples over in any of the three non-trivial orientations.

Our method is able to umpire the competition between numer-
ous objectives, as we illustrate in Figure 6 with our Breakdancing
Teddy. This character stands stably in a total of six poses. In Table 1
we summarize statistics and compare our heuristic to the results of
an exhaustive search. From these numbers we can deduce three main

Table 1: The skeleton of the Breakdancing Teddy has 9 branches.
Our heuristic optimizes and removes capsules until none are left.
The optimized results for 9 and 4 capsules are discarded because
there are more stable solutions (i.e., smaller f ) with fewer capsules.
For the exhaustive search, we report energies and toppling angle for
the best set out of 360 random samples. The last column lists the
ranking of the solution found by our heuristic with respect to these
360 sets (1 being the best and 360 the worst solution).

Our heuristic Exhaustive search

# capsules
Opt. time

(sec)
Energy f Max top.

angle
Energy f Max top.

angle
Ranking

�9 10 −8.33e−3 −4.22 −9.21e−3 −4.62 324/360
7 3.8 −8.96e−3 −4.50 −9.22e−3 −4.61 111/360
5 24 −8.85e−3 −4.50 −9.17e−3 −4.57 100/360

�4 7.7 −8.55e−3 −4.34 −9.07e−3 −4.55 136/360
3 3.9 −8.70e−3 −4.46 −9.07e−3 −4.50 57/360
2 0.7 −8.28e−3 −4.21 −8.98e−3 −4.44 61/360
1 0.05 −8.00e−3 −4.03 −8.26e−3 −4.11 86/360
0 0.02 −2.14e−3 −0.79

Figure 7: The Dolphin combines a full immersion objective (left)
with a suspension (right).

Figure 8: The Muscle Gnome is an example of an articulated model.
Though the two poses look symmetric, the model stands stable when
brought into the left-tiled pose but tipples over in the right-tilted
pose.

points: firstly, already a single capsule leads to significant improve-
ments in stability compared to only optimizing the infill. The latter
leads to a tolerance of less than a degree for a tilted ground plane –
a value clearly insufficient when taking manufacturing imprecisions
into account. Secondly, our heuristic provides near-optimal solutions
within seconds. For the exhaustive search we use 360 random sets
for each considered number of capsules. Our solutions get close
to the optimal toppling angles found by the exhaustive search, im-
plying that our heuristic provides a scalable alternative with a high
success rate.

With our Dolphin (see Figure 7), we showcase how different
types of objectives can be jointly minimized by our technique. This
model suspends and immerses in desired orientations.

In contrast to previous techniques, our method can balance articu-
lated models in various poses, as we illustrate in Figure 8 with a set
of two poses for our Muscle Gnome. Due to symmetry, one expects
the same behavior when bringing the character into sideways tilt-
ing poses. We balance one pose and imbalance the other (see also
Figure 3), leading to a surprising behavior.

Implementation. To precompute grid point to mesh distances, we
use Jacobson et al.’s winding numbers [JKSH13] available in LI-
BIGL [JP∗16]. For minimizing our non-linear objectives, we rely on
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the KNITRO optimization library [BNW06] with analytical deriva-
tives. Overall, precomputations take less than a minute for 3D mod-
els with up to 180k triangles. This includes the skeleton extrac-
tion [TAOZ12, The16].

Limitations. We have demonstrated the viability of our approach
with numerous examples. However, our method is not without limi-
tations. Navigating our design space is an utterly challenging task
because it exhibits a mix of discrete and continuous components,
paired with non-convexity. While our heuristic approach scales and
results in solutions close to the ones found by exhaustive search, a
more thorough and principled evaluation remains. Finding globally
optimal solutions within a reasonable amount of time is, however,
close to impossible due to the non-linearity of our objectives and
the non-convexity of the underlying design space. Moreover, if the
objectives are too difficult – either individually or collectively – with
respect to the geometric constraints, a feasible solution might not
exist.

6. Conclusion and future directions

We presented a computational technique for the design of models
capable of balancing in several user-defined poses. In contrast to
previous techniques, we proposed to embed calibrated capsules with
metallic balls to support a multitude of centers of mass. Our method
enables the optimization of a mixture of standing, suspension, and
immersion objectives for one and the same model. Furthermore, we
support balancing of articulated models.

While we use capsules and metallic balls for balancing, we would
like to investigate the use of granular materials such as sand or
fluids to meet our balancing objectives. This would, however, shift
the focus towards simulation-based design. As another interesting
direction, we would like to extend our method to design dynamically
balanced models. Lastly, a design system for the full spacetime
control [WK88] of physical models through optimal conversion
between potential and kinetic energy is an interesting but ambitious
extension of our work.
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Appendix A: Mass-related quantities

For computations of mass properties for triangulated solids we
refer the reader to the supplemental material by Bächer and col-
leagues [BWBSH14].

The volume and center of mass of homogeneous capsules C j and
balls B j can be readily computed from their parameters rC j , pC j ,
and qC j :

VC j =
4
3

πr2
C j +πr2

C j‖qC j −pC j‖ and VB j =
4
3

πr2
C j , (17)

cC j =
1
2
(pC j +qC j ) and cB j = (1−κ)pC j +κqC j , (18)
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where the latter depends on the orientation of the overall model as
explained below.

For a given pose, the position of the ball B j is a function of the
angle between the gravity direction and the capsule axis

cB j = (1−κ)pC j +κqC j , where (19)

κ =

{
0 if z < 0
1 if z > 0

, with z =
g ·Rσ( j)(qC j −pC j )

‖qC j −pC j‖
. (20)

To remove the discontinuity we instead use a sigmoid function

κ =
1

1+ e−γ z , (21)

where γ is a sufficiently large number.

To avoid convergence to a solution where a ball is not clearly
located at either end for the desired poses, we add constraints

(arccos(z)− π

2
)2 ≥ φ

2
min , (22)

where φmin is a tolerance angle (in practice 3 degrees are sufficient).
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