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Abstract
Images of scenes which contain reflective or transparent surfaces are composed of different layers which are
observed at different depths. Analyzing such a scene requires separating the image into its individual layers,
which remains a challenging and important problem. While the problem is very much ill-posed when only a single
image is considered, recent work has shown that depth estimation for two layers becomes quite tractable when
one instead captures a 4D light field of the scene. In this paper, we propose a novel variational approach to layer
separation which is based on these ideas. We formulate a linear generative model to reconstruct the light field
from disparity and luminance information for the individual layers on the center view. Comparing the model with
the observerd data yields a convex variational problem for layer reconstruction, which can be solved to global
optimality with a primal-dual scheme. Layer disparity is estimated in a first step, for which we improve upon a
model based on second order structure tensors on the epipolar plane images. In contrast to previous work, the
resulting approach is robust enough to be able to deal with light fields from the Lytro Illum camera, for which we
obtain a compelling separation of the reflectance layer in real-world scenes.

Categories and Subject Descriptors (according to ACM CCS): I.4.4 [Image Processing and Computer Vision]:
Restoration—I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Shape

1. Introduction

Partially reflecting and transparent surfaces are omnipresent
in the real world. Images of such surfaces will typically show
a complex mixture of multiple layers. For example, when
looking through a window, one will usually observe objects
behind, as well as the reflection of objects in front of the
window, resulting in two superimposed layers with different
luminance. In cases of textured or very dirty glass, one might
even get contributions of a third layer. Separating those lay-
ers again is a very difficult problem, but also an important
step when dealing with real-world data, as many algorithms
based on feature detection and correspondence search re-
quire Lambertian surfaces.

Given only a single image, separating the different lay-
ers is a highly ill-posed problem and in some cases even
complicated for a human observer to solve. Therefore, most
existing methods use multiple images of the same scene
captured under different imaging modalities. These include
focus stacks to estimate the different superimposed lay-
ers [SKB00], using a polarizer to vary the intensity of the
reflection [SSK99, KTS14] or statistical approaches which

maximize the probability that the estimated layers gener-
ate the input data [FA99, BBZZ03]. One notable approach
is even capable of separating the two layers from a single
image [LZW04] by finding a decomposition that minimises
the total number of edges and corners. However, this idea
reqiures that only limited amount of texture is present in the
image. Gai et al. [GSZ12] learn a statistical descriptor of
real world images and are capable of estimating the number
of superimposed layers as well as reconstucting those lay-
ers from two images only. The prior assumption is that the
different layers perform rigid motions, and the method oth-
erwise relies on learning image statistics to be successful.

Another main class of approaches to layer separation uti-
lizes multiview stereo images and estimates separate motion
fields between the input images for the individual layers.
These employ a generative model, where the layers that are
to be estimated are warped and superimposed according to
the inter-frame motion estimates to form the candidate ob-
served images. In an energy minimization framework, both
layer motion as well as layer images are then optimized to
match the input images [SAA00, TKS06, SKG∗12].
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Figure 1: Comparison of layer separation with ground truth (top row) versus estimated (bottom row) disparity. Areas which
are masked out from the respective estimates as no reflection was determined are shown in blue. Layers can only be recovered
up to a constant offset (see main text), which leads to intensity variations. In regions where reliable disparity estimation for
both layers is possible, however, the result is quite accurate and close to the actual ground truth.

In our paper, we utilise a related approach, which is how-
ever adapted to match the specific structure of a 4D light
field in the two-plane parametrization. In particular, we will
demonstrate that a single shot from a plenoptic camera is
sufficient to separate the superimposed layers. While es-
timating layers and their individual motions looks like a
chicken-and-egg problem at first glance, it turns out that in
the 4D light field setting, the disparity of each individual
layer in the scene can be reliably estimated using a second
order structure tensor on the epipolar plane images. This ap-
proach was previously proposed in [WG13], and allows to
perform layer disparity estimation as a pre-processing step
to layer separation.

Contributions. While the focus of our work lies in the
actual separation of the layers once individual disparity has
been estimated, we also propose improvements to the multi-
layer disparity estimation algorithm [WG13]. Specifically,
the previous work dealt with the estimates from different
slices through the 4D light field volume (epipolar plane im-
ages) in a heuristic manner, while we give a theoretical justi-
fication that they can be merged into a single tensor. Exper-
iments demonstrate that this substantially increases robust-
ness, in particular for real-world data.

Our main contribution is a novel variational model for
layer separation given the disparity information of the in-
dividual layers. In our framework, we identifiy the pixels
in each view that correspond to a certain position in the
respective layers and formulate a generative model which
composes the complete 4D light field from individual lay-
ers on the center view. It turns out that this leads to a
deconvolution-like problem to obtain the layers. A varia-

tional energy minimization framework then balances the dif-
ference of the model to the observation with state-of-the art
regularization terms. Optimization is performed with a well-
known first order primal-dual scheme using optimal pre-
conditioning [CP10,PC11]. We demonstrate the precision of
our approach on multiple synthetic and Gantry data sets with
ground truth available. In addition, we demonstrate in ex-
periments with 4D light fields from a Lytro Illum plenoptic
camera [Ng06] the feasibility of the approach for real-world
data sets.

2. The 4D Light Field and Epipolar Plane Images

We first briefly review notation commonly used in light field
analysis, and describe the problem of layer motion estima-
tion in the context of epipolar plane images. In light field
imaging, we usually resort to the two-plane parametriza-
tion [LH96] to parameterize the rays captured by a light
field camera. A useful way to visualize this 4D represen-
tation is as a collection of pinhole cameras with focal points
in a common plane Π and common image plane Ω, see fig-
ure 2. The focal plane Π is parameterized by spatial coordi-
nates (s, t), the image plane Ω by angular coordinates (x,y).
The 4D light field L is then a map describing the luminance
of each ray (x,y,s, t) passing through both planes,

L : Ω×Π→ R,
(x,y,s, t) 7→ L(x,y,s, t).

(1)

For imaging of light fields in the two-plane parametriza-
tion, several methods are in common use. An obvious captur-
ing method are camera arrays, where cameras are positioned
equidistantly in a grid with parallel optical axes. Such arrays
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Figure 2: Light field parametrization. An incident ray rrr is
parametrized by its intersections with the focal plane Π and
the image plane Ω (red dots). The planes are parallel with
distance equal to the focal length f . The intersection coor-
dinates (s, t) are given in relation to the origin of the world
coordinate system. The coordinates (x,y) are given relative
to the intersection of the optical axis of a virtual camera
placed at (s, t,0) in Z direction with the second plane (green
dot). Each of these virtual cameras gives a subaperture view
of the light field.

are now commercially available in miniature form in mo-
bile phones and tablets for example from the company Pel-
ican Imaging, which reduces the traditionally considerable
efforts regarding hardware requirements. For static scenes,
gantries can be employed, where images are captured se-
quentially with a camera moving in a 2D plane. Finally,
commercially available plenoptic cameras have been making
rapid progress recently. Well known are the hand-held com-
sumer camera Lytro Illum, which we employ to capture real-
world light fields in this work, and the offerings by Raytrix
targeted at industrial applications.

In this work, we consider the motion of the projections
of 3D points into the light field for layer separation. These
can best be captured by considering epipolar plane images
(EPIs) [BBM87], which are 2D slices through the 4D light
field. To describe such an EPI, we fix both a 1D view
point coordinate (either t∗ or s∗) as well as the corre-
sponding 1D image coordinate (y∗ or x∗). This leads to
EPIs fy∗,t∗(x,s) = L(x,y∗,s, t∗) in coordinates (x,s) or EPIs
fx∗,s∗(y, t) = L(x∗,y,s∗, t) in coordinates (y, t), respectively,
which exhibit a characteristic structure consisting of over-
lapping lines, see figure 4.

The reason for these patterns is that the projection
of a 3D world point into an epipolar plane image is a
line [BBM87]. Indeed, if the camera coordinate changes
linearly, this leads to a linear change of projected coordi-
nates according to the pinhole camera projection equations.
Specifically, if Z is the distance to the image plane and f the
focal length, i.e. distance between image and focal plane, a
3D point will be projected onto a line with slope f

Z in both
horizontal as well as vertical EPIs. The slope is called the
disparity of the 3D points’ projection [GW13]. Thus, re-
construction of depth information is equivalent to detect-
ing orientation of patterns in the EPI. This insight is ex-

Foreground
T 2

x∗,s∗ +T 2
y∗,t∗ T 2

x∗,s∗ T 2
y∗,t∗

Reflection
T 2

x∗,s∗ +T 2
y∗,t∗ T 2

x∗,s∗ T 2
y∗,t∗

Figure 3: Raw disparity estimates from second order struc-
ture tensors. Images show disparities using different second
order structure tensors on light field data captured with the
Lytro Illum plenoptic camera (central view is depicted in
figure 4). The top row contains estimates for foreground,
bottom row background. Results from the proposed scheme
which uses a combined structure tensor are in the leftmost
column, and visibly more robust than the estimates from in-
dividual EPIs (second and rightmost column).

ploited in a number of recent publications in order to infer
depth [CKS∗05, WG14, KZP∗13].However, they rely on the
assumption that along the lines, the luminance is constant,
which implies a Lambertian reflection model. Thus, they
completely fail for surfaces which are for example strongly
reflective or transparent.

The problem we thus have to address in our scenario
is to deal with ambiguous orientations. In the case of re-
flections or transparencies, there are superimposed patterns
with different orientations which correspond to points at dif-
ferent depths which are visible simultaneously. These need
to be separated in order to infer the respective layer dis-
parities. This problem was investigated in [WG13] based
on the second order structure tensor, which was proposed
in [AMS∗06] for the analysis of superimposed oriented pat-
terns. It was shown that the framework ideally fits the pro-
posed scenario. In the following section, we will give a brief
overview of the ideas, and propose improvements to make
the method more robust for the difficult real-world data from
light field cameras.

3. Disparity estimation with superimposed layers

We first briefly state the main results from [WG13] to re-
cover the two disparities in an EPI which consists of two
different layers (i.e. reflecting surface plus reflected scene),
see figure 4.

Two superimposed layers on a single EPI. Assume a
region Ω where the EPI f is the superposition f = fu + fv
of two layers fu and fv with disparities λu and λv, respec-
tively. The model is valid only for planar reflection surfaces
because reflection EPIs must consist of lines. We encode the

c© The Eurographics Association 2015.

137



Ole Johannsen, Antonin Sulc and Bastian Goldluecke / Variational Separation of Light Field Layers

x

s
t

y

Figure 4: Center view of the light field with two epipolar
plane images extracted along the dotted lines shown in the
margins. The two orientations are visualized with intersect-
ing white lines on the EPIs.

disparities in a mixed-orientation parameters (MOP) vector
a=(λuλv,λv+λu,1)T , which can be decomposed again into
the disparities after it has been estimated [WG13]. The first
key observation [AMS∗06] is that a satisfies

aT (d f dT
f )a = 0 on Ω, (2)

with the spatially varying vector d = ( fxx, fxy, fyy)
T of sec-

ond order derivatives. In practice, the equation will not be
satisfied exactly everywhere. To recover a, [AMS∗06] thus
minimize the quadratic form

Q(a) =
∫

Ω

aT (d f dT
f )a dx = aT

(∫
Ω

d f dT
f dx

)
a

=: aTT 2a.
(3)

The 3×3 matrix T 2 is called the second order structure ten-
sor. In practice, the integral is a weighted summation over a
square window around the pixel under consideration, often
weighted with a Gaussian to decrease the influence of deriva-
tives further away. According to (3), the MOP vector a and
thus the two disparities can be recovered as the Eigenvector
to the smallest Eigenvalue of T 2.

Merging contributions from different EPIs. For each
pixel of the center view, one obtains two estimates for dis-
parities - one from vertical EPI slices, one for the horizon-
tal ones. Both need to merged into a single disparity map
for each layer. In [WG13], a heuristic strategy was proposed
which was based on comparison of the outputs of the differ-
ent models, selecting disparities which agree in both EPIs.
This strategy also yields a binary map detecting the regions
in the image where two orientations can reliably be detected.

Unfortunately, it turns out that for real world data from
the Lytro, the previous approach completely breaks down,
since the data from the different channels is just too unreli-
able and noisy, see figure 3. We thus propose a new approach

which constructs a single tensor from the contributions of
the individual EPIs. This automatically merges all available
information, and yields an overall much more robust result.

Let (s∗, t∗) be the focal point of the center view, and
(x∗,y∗) a fixed image coordinate. From the EPI fx∗,s∗ , we
obtain the second order structure tensor T 2

x∗,s∗ , from the EPI
fy∗,t∗ , the second order structure tensor T 2

y∗,t∗ , respectively.
The key observation is that since disparities only depend on
the Z-coordinates of 3D points, the MOP vector a for both
EPIs will be the same, and in the ideal case zeroes both
quadratic forms aTT 2

x∗,s∗a as well as aTT 2
y∗,t∗a. We thus pro-

pose to minimimize

Q′(a) = aTT 2
x∗,s∗a+aTT 2

y∗,t∗a = a(T 2
x∗,s∗ +T 2

y∗,t∗)a, (4)

i.e. compute a as the Eigenvector to the smallest Eigenvalue
of T 2

x∗,s∗ +T 2
y∗,t∗ . Figure 3 demonstrates that this gives more

robust results compared to the contributions from [WG13].

4. Generative model for EPIs from center view data

The different superimposed layers in a scene containing e.g.
reflections have different disparities. The central idea is to
build a model to generate a complete epipolar plane from
data in the center view only, namely the (yet unknown) layer
luminances and the layer disparity values inferred using the
methods in the previous secion. The multiple observations
of the superimposed layers under different motions give the
necessary information for layer reconstruction.

Propagation of center view information. To mathemat-
ically define a method to reconstruct EPIs from the cen-
ter view data only, we first consider one individual epipolar
plane image and one individual layer, for which we assume
a Lambertian reflectance model. The idea is that the color at
(most) points on this EPI can be derived from disparity and
color information of the center view. On the EPI, this data
can be found on a single line with fixed s or t coordinate,
respectively, passing through the midpoint of the EPI. As
can be seen in figure 5, the disparity of pixels at the center
line defines the epipolar lines (dashed lines), each of which
consists of projections of the same 3D point. In particular,
the color of all pixels along such a line should be equal to
the color at the center view in the occlusion-free case. Thus,
in the most simple scenario, the color at a point on the EPI
(e.g. red dot) can simply be approximated by interpolating
the constant color values of the closest epipolar lines.

However, care must be taken in regions where occlusions
occur (green dots). There are two different cases to be dis-
tinguished. In the first case, there are multiple epipolar lines
with different slope close to the point, as in the case of the
top green dot. Here, one needs to identify which of the epipo-
lar lines is closer to the observer and thus occluding the other
one. This will be the one with larger disparity (red lines). In
the second case, there is no information about the point we
are considering available in the center view, as it is occluded
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Figure 5: Construction of an EPI from the data on the center
view (solid line). The disparity at each point on the central
view yields an epipolar line (dotted) on the EPI which passes
through the respective point. Neglecting occlusion (red dot),
the color value at any position in the EPI can be inferred by
linear interpolation from the neigbouring epipolar lines. For
a detailed description of how to deal with occlusions (green
dots) see the text.

by other 3D points (bottom green dot). Here, the EPI can not
be reconstructed and the area needs to be masked out from
further consideration.

Mathematical model. To formalize the above ideas, let
us consider an EPI E of size N×K. On the EPI, we define
a binary mask M which will be zero for all pixels for which
no information is available on the center view (second oc-
clusion case). For all other pixels, the mask is set to one,
and color can be reconstructed by finding the closest non-
occluded epipolar lines to the left and to the right, and then
linearly interpolating between the color of these two. Thus,
a grayscale EPI E can be reconstructed by matrix multipli-
cation Ē = Gu. Here, Ē is a vector of length N ·K obtained
by stacking the columns of E on top of each other, and G a
sparse matrix of size N ·K×N. The vector u ∈ Rn contains
the luminance values on the center view for this particular
EPI. Thus, each row of the sparse matrix G has reconstruc-
tion information for a single pixel of the EPI. Only the two
entries corresponding to the closest left and right epipolar
line are non-zero, and they contain the linear interpolation
weights. In the case of a color EPI, the matrix G is the same
and each channel is reconstructed individually.

Implementation details. Algorithmically, the matrix G
can be constructed by iterating over the N pixels on the cen-
tral view and their epipolar lines in order of increasing dis-
parity. For each epipolar line under consideration, the rows
in G corresponding to pixels immediately to the left and to
the right of the line are updated with the respective interpo-
lation weights. The process can be sped up by maintaining
extra buffers for the indices and interpolation weights for the
closest left and right epipolar lines for each pixel. Iterating
in the order of increasing disparity assures that the occlusion
order of epipolar lines is respected. All rows in G for which
all entries are still zero correspond to pixels which are not
visible in the center view. These are masked out, i.e. their
entry in M is zero. For the remaining pixels, their entry in M
is one.

5. Variational layer decomposition

The previous section modelled formation of a single EPI
for a single layer. Assume we have observed a (Lambertian)
epipolar plane image f , and have reconstructed disparity val-
ues d of the center view, and the center line has intensity
values u. The central idea for layer decomposition is the ob-
servation that by our modeling assumption, the error

ε(u,d, f ) = ‖Md� [Gdu− f ]‖p
p, (5)

for any choive of p-norm should be small. Above, the sym-
bol � denotes point-wise multiplication. We write Md and
Gd instead of just M and G to emphasize that both matri-
ces depend on the disparities (and only on these). Note that
while u and d are only 1D functions (they live on a line in
the center view), equation (5) gives a distance of 2D EPIs.

We will now extend the model from a single epipolar
plane image for a single layer to multiple layers on the com-
plete light field. For this, first consider a single EPI f which
is formed from two superimposed patterns fu and fv. The
natural assumption for the image formation process is f =
fu + fv, see e.g. [WG13]. Given the disparity at the center
view for both layers, one can calculate the two matricies Gdu

and Gdv and the respective masks Mdu and Mdv , where du,dv
denote the respective disparities. In the ideal noise-free case
for perfect disparities, fu = Gdu u and fv = Gdv v. However,
this model will never be exactly satisfied in practice, so we
propose to minimize the data cost

DEPI(u,v) = ‖C(u,v)]‖p
p, (6)

C(u,v) = Mdu �Mdv � [Gdu u+Gdv v− f ] (7)

for each individual EPI.

This cost only accounts for a single EPI, corresponding to
an individual 1D slice though the center view whose lay-
ers are to be reconstructed. Let us now assume we have
y = 1, . . .H rows and x = 1, . . . ,W columns in the center
view. Each one corresponds to one epipolar plane image,
thus we obtain data terms Dy and Dx for each of the rows
and columns, respectively. In order to estimate the decom-
position into two layers for the complete center view, we
extend the data term to the total cost

D(u,v) =
W

∑
x=1

Dx(ux,vx)+
H

∑
y=1

Dy(uy,vy). (8)

where ux,vx denote column x and uy,vy row y of the respec-
tive unknown matrices.

While for ground truth depth maps close to no regulari-
sation is required, in the case of real world data with noise
in the light field as well as imperfect disparity estimation we
employ a state-of-the-art regulariser. We use the second or-
der Total Generalised Variation (TGV), which favors piece-
wise linear solutions instead of piecewise constant ones like
standard total variation [BKP10].
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Putting all together, we need to minimize the energy

E(u,v) = D(u,v)+λ(J(u)+ J(v)), (9)

where J denotes the regularisation term on u and v, respec-
tively, and λ ≥ 0 is the constant user-defined regularization
weight.

In order to minimise this energy, we employ the
well-known primal-dual algorithm by Chambolle and
Pock [CP10]. To be able to apply the algorithm, we rewrite
the energy (9) in its primal-dual form. The primal-dual
for the TGV2-regularizer is well-known [BKP10]. For the
primal-dual of the data term (8), we require dual variables
qx and qy for each of the horizontal and vertical EPIs.
Each qx,qy is a vectorial function on the EPI with as many
channels as there are color channels, whose values are re-
stricted to the unit ball. The resulting primal-dual form for
the minimization of (8) is

min
u,v

max
‖qx‖2≤1
‖qy‖2≤1

{
W

∑
x=1
〈Cx(u,v),qx〉+

H

∑
y=1
〈Cy(u,v),qy〉

}
. (10)

In the same notation as for D, the residuals Cx,Cy for each
EPI are defined via equation (7).

To improve the speed of convergence, we apply precondi-
tioning [PC11]. The step sizes are restricted by the row and
column sum norms of the matrices Gd , as well as the coun-
terparts from the regularizer. For details, we refer to [PC11].

6. Results and experiments

For our experiments, we use synthetic data as well as real-
world data captured with a gantry [WMG13] and a Lytro
Illum light field camera, respectively. The Lytro light fields
where processed with the light field suite [DPW13] to obtain
subaperture images and camera calibration information. We
obtain 15×15 subaperture views with resolution 434×625
pixels each. Outer views in corners are ignored due to vi-
gnetting effects.

Accuracy of disparity estimation. To validate the quality
of the depth estimates, we use a synthetic light field rendered
with 17×17 sub-aperture views at resolution 515×512 pix-
els, for which ground truth disparity is known. We com-
pared our disparity estimates using the proposed combined
T 2

x∗,s∗ +T 2
y∗,t∗ structure tensor with disparity estimates from

separate tensors T 2
x∗,s∗ and T 2

y∗,t∗ with the ground truth data,
see table 1. To separate foreground from reflection, we use

the measure c = 1−
(

λ−µ
λ+µ

)2
, where λ and µ are the smallest

eigenvalues of second and first order structure tensors, re-
spectively. While only a heuristic measure, it yields a good
estimate for confidence in the double orientation model in
practice, see figure 1. While T 2

x∗,s∗ and T 2
y∗,t∗ gave slightly

worse disparities of foregrounds, the proposed method per-
forms significantly better on the reflection layer in all cases.

Reflection T 2
x∗,s∗ +T 2

y∗,t∗ T 2
x∗,s∗ T 2

y∗,t∗

coefficient front back front back front back
α = 0.1 0.119 0.182 0.124 0.278 0.119 0.282
α = 0.3 0.116 0.0927 0.122 0.189 0.123 0.183
α = 0.5 0.127 0.065 0.133 0.148 0.145 0.155
α = 0.7 0.156 0.061 0.159 0.142 0.186 0.146
α = 0.9 0.235 0.095 0.231 0.195 0.266 0.219

Table 1: MSE of point-wise disparity estimates compared
to ground truth data for different reflection coefficients α

( f = (1−α) fu + α fv). We compared results of the pre-
vious method with separate structure tensors T 2

x∗,s∗ and
T 2

y∗,t∗ with our proposed combined structure tensor T 2
x∗,s∗ +

T 2
y∗,t∗ with same parameter setting. The new method overall

achieves much more accurate results, see text.

For the α = 0.9 we got slightly worse results for foreground
with our method in comparison to T 2

x∗,s∗ .

Separation of Reflection Layers. First, we demonstrate
the quality of the algorithm on synthetic data. We use two
images and generate two different constant depth maps
to generate a single light field with superimposed layers
which perfectly fits the image formation model. This can be
thought of as two overlaying posters where one is semitrans-
parent. The results are close to perfect as can be seen in fig-
ure 6. The MSE as well as the energy converges, and - as
evident from the lower two images on the right half of fig-
ure 6 - most errors accure either at edges and are due to reg-
ularisation, or seem to be caused by a constant offset. This
is an inherent problem which arises from an ambiguity of
the dataterm - adding a constant offset will not change the
energy as long as none of the superimposed layers have val-
ues closer to pure black or white than the offset value. Thus,
layer separation is in general only possible up to an addi-
tive constant on both layers, which explains intensity vari-
ation visible in some of the experiments. For the synthetic
light field for which ground truth disparity was available, we
compare the results from layer separation with ground truth
and estimated depth maps in figure 1.

In addition, we performed experiments on real world data
generated with a gantry. Results can be observerd in figure 7.
Due to high quality of the images as well as high precision
of the camera positions the decomposition works remarkably
well. As a final experiment, we captured a reflecting surface
with a Lytro Illum camera, see figure 8. Although the light
field is quite inaccurate due to currently poor calibration of
the camera, the presented algorithms are capable of estimat-
ing the depth for both layers as well as seperating the two
layers. For both real world experiments, the available data
was unfortunately of insufficient accuracy to estimate a re-
liable segmentation in reflecting and Lambertian surfaces.
This is left for future work, at the moment, those masks are
manually drawn.

Regarding computational efficiency, the generation of the
matrices G is computationally expensive and takes around
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Figure 6: Decomposition of a synthetic light field, one transparent poster in front of another poster. From left to right: con-
vergence of MSE for estimated layers over iterations, primal energy, the center view of the input light field as well as the two
resulting layers. The MSE converges and reaches a constant level after around 400 iterations, while the primal energy still
decreases until it reaches a near constant level at around 800 iterations. The resulting images show, that the model is capable
of separating layers with high precision, independent whether texture is present or not.

Center view Separated layer 1 Separated layer 2 Disparity layer 1 Disparity layer 2

Figure 7: Results from real-world light field captured by a Gantry. While for a human observer it is hard to separate the to
superimposed layers on the laptop’s screen, the proposed algorithm is capable of estimating the disparity for both layers as
well as separating them accurately. For better visualization, the reflection layer intensity is scaled by a factor of two. The blue
part in the second disparity map is masked out as no reflection is present there.

0.1 seconds per matrix resulting in a runtime of arround 2
minutes for a whole lightfield. As each matrix has a size
of 9375×625 and 6510×434, respectively, while only few
entries are nonzero, we used MATLAB’s sparse matrix op-
erator to store these matrices. Otherwise storing all matri-
ces completely would need up 20GB of memory. However,
there is no GPU implementation of this sparse matrix op-
erator, hence, in each iteration the matrices u and v have to
be copied from the GPU to the CPU, where the matrix mul-
tiplication is performed and then moved back to the GPU,
which again is time intensive and not optimal. Thus, run-
times can be significanlty improved by moving to a full GPU
implementation. Performing one iteration of the primal-dual
scheme using a NVIDIA GTX TITAN Black and an Intel i7-
4770 takes just below 2 seconds, resulting in a total runtime
in the scope of several minutes.

7. Conclusion

We propose a novel variational approach to separate a light
field into multiple layers. For this, we first locally esti-
mate disparity from the orientations of superimposed pat-
terns on the epipolar plane images based on the framework
in [WG13] and [AMS∗06]. While they treat horizontal and
vertical epipolar plane images individually, we make the ap-

proach more robust by constructing a joint second order
structure tensor to recover the two orientations. The im-
proved performance is demonstrated numerically on syn-
thetic data, and visually on real-world light fields captured
with a Lytro Illum plenoptic camera, which turn out to be
very challenging for reconstruction.

The main contribution of the paper is the novel approach
to segment the light field into layers from this input data. We
first formulate a generative model to generate the complete
light field from layer data on the center view. Based on this,
we set up a variational inverse problem to optimize the fit
of this model to the actually observed light field data. The
problem is solved with a primal-dual scheme to recover the
seperated layers. For synthetic data, this approach leads to
reconstruction results wich are very close to ground truth.
In addition, we show the feasibility of the approach on dif-
ferent types of captured datasets. In particular, the approach
is robust enough to yield visually compelling results for the
challenging data sets captured with a plenoptic camera.
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Center view Separated layer 1 Separated layer 2 Disparity layer 1 Disparity layer 2

Figure 8: Reflection separation for real world light field captured with a Lytro Illum. The disparity estimation was performed
with the proposed algorithm, to identify the part of the image which contains a reflection a ground truth mask was used. The
reflection of the bottle is seperated accurately, while the reflection of the ball object is only separated completely in the lower
parts of the image. This is due to the fact that the disparity is very similar for both layers if object and reflecting surface are
close together. Note that the calibration of the Lytro Illum is currently still work in progress, we believe the results can be much
better once that is improved.
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