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Abstract
Since their introduction in the shape analysis community, functional maps have met with considerable success due
to their ability to compactly represent dense correspondences between deformable shapes. Despite the numerous
advantages of such representation, however, the problem of converting a given functional map back to a point-to-
point map has received a surprisingly limited interest. In this paper we analyze the general problem of point-wise
map recovery from arbitrary functional maps. In doing so, we rule out many of the assumptions required by
the currently established approach – most notably, the limiting requirement of the input shapes being nearly-
isometric. We devise an efficient recovery process based on a simple probabilistic model. Experiments confirm
that this approach achieves remarkable accuracy improvements in very challenging cases.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Computer Graphics]: Scene Analysis—Shape

1. Introduction

Shape matching is a widely researched topic in computer
vision and graphics, and a diverse range of techniques that
tackle the problem of correspondence have been proposed
during the years [VKZHCO11]. Of particular interest is the
case in which the input shapes are allowed to undergo non-
rigid deformations, which are typically assumed to be ap-
proximately isometric. Recent advancements in this area in-
clude the seminal work of Ovsjanikov et al. [OBCS∗12],
who proposed modeling functional correspondence between
shapes; in this view, the focus shifts from studying point-
wise mappings to the definition of a linear operator (the func-
tional map) relating spaces of functions on the two shapes.
The classical point-wise representation constitutes then a
special case in which the functional map corresponds delta-
functions to delta-functions. A major advantage of the func-
tional representation lies in the linearity of the operator: the
functional map admits a matrix representation which can be
made compact under a proper choice of bases for the two
functional spaces. In [OBCS∗12] the authors advocated the
use of the Laplacian eigenfunctions as the natural basis for
smooth functions on the respective shapes; with this choice,
one is allowed to “truncate” the representation by using the
first few basis functions and still obtain a good approxima-
tion to the underlying point-wise correspondence.
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Figure 1: Given a functional map as input, our method al-
lows to accurately recover and refine the underlying point-
to-point mapping, even under non-isometric deformations.
In the first row, color encodes distance to the ground-truth,
increasing from white to red. The input map and its opti-
mized version are shown in the second row.

Follow-up work by several authors showed how to ex-
tend the framework to deal with non-isometric deforma-
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tions [PBB∗13,KBB∗13,RRBW∗14,KBBV15], partial sim-
ilarity [RCB∗15], shape exploration [ROA∗13,HWG14] and
image segmentation [WHG13] among others. However, de-
spite the success of these methods, there has been a general
lack of interest on the inverse problem of accurately recon-
structing a point-wise map from its functional representation
– a common requirement in many practical applications.

The established approach, originally proposed
in [OBCS∗12], operates by formulating the conversion
problem as a nearest-neighbor search in the embedded
functional space; as we show in the following sections
the approach works well if the functional map is accurate
enough, with significant decrease in accuracy as the number
of basis functions is reduced. The resulting point-to-point
map can be iteratively refined by following a simple
procedure, but this can only be done under specific assump-
tions on the initial functional map. A similar refinement
technique was recently applied for near-isometric partial
matching [RCB∗15], and in a correspondence-less setting
for shape retrieval tasks [GT15]. Finally, the point-wise re-
covery problem was sidestepped in [KBBV15] by adopting
a soft error criterion to evaluate the quality of functional
maps without converting them to a point-wise counterpart.

Contribution. In this paper, we consider the problem of ac-
curate point-wise map recovery from a given functional map.
The key contributions can be summarized as follows:

• We provide the first rigorous analysis of the point-wise
map recovery problem. In particular, we show how a sim-
ple modification to the baseline approach can lead to con-
sistent improvements.

• We introduce a simple probabilistic model for map recov-
ery and refinement. Our model does not impose any as-
sumption on the input functional map, as well as on the
specific choice of a functional basis on the two shapes.

• Our method is efficient, and significantly outperforms
the existing method in both, the nearly-isometric and the
inter-class settings.

2. Background

We model shapes as compact connected two-dimensional
Riemannian manifolds M (possibly with boundary) en-
dowed with the standard measure µ induced by the volume
form. Let L2(M) = { f : M→ R |

∫
M f 2dµ < ∞} de-

note the space of square-integrable functions on M, and
let 〈 f ,g〉M =

∫
M f gdµ be the standard manifold inner

product. The space (M,µ) features the symmetric Laplace-
Beltrami operator (or Laplacian) ∆M : L2(M)→ L2(M),
which provides us with all the tools of Fourier analysis on
our manifold. In particular, this operator admits an eigen-
decomposition ∆Mφi = λiφi for i≥ 1, with eigenvalues 0 =
λ1 < λ2 ≤ . . . and eigenfunctions {φi}i≥1 forming an or-
thonormal basis on L2(M).

Drawing an analogy with classical signal processing the-
ory, the eigenfunctions are often referred to as manifold har-
monics, and the associated eigenvalues assume the interpre-
tation of frequencies [Tau95]. Any function f ∈ L2(M) then
admits a Fourier series expansion as

f (x) = ∑
i≥1
〈 f ,φi〉Mφi(x) . (1)

Functional correspondence. Let us be given two mani-
foldsM andN , and let T :M→N be a bijective mapping
between them. Departing from the traditional point-centric
setting, Ovsjanikov et al. [OBCS∗12] introduced the notion
of functional map between two shapes as the linear operator
TF : L2(M)→ L2(N ), mapping functions on M to func-
tions on N via the composition TF ( f ) = f ◦ T−1. The ap-
proach is a natural generalization to classical point-wise cor-
respondence, which can be seen as the special case in which
TF maps indicator functions to indicator functions.

Let {φi}i≥1 and {ψi}i≥1 denote orthonormal bases on
L2(M) and L2(N ) respectively. The functional correspon-
dence with respect to these bases can be expressed as fol-
lows, for some function f ∈ L2(M):

TF ( f ) = TF

(
∑
i≥1
〈 f ,φi〉Mφi

)
= ∑

i≥1
〈 f ,φi〉MTF (φi)

= ∑
i j≥1
〈 f ,φi〉M 〈TF (φi),ψ j〉N︸ ︷︷ ︸

ci j

ψ j . (2)

Thus, the action of TF amounts to linearly transforming the
expansion coefficients of f from basis {φi}i≥1 onto basis
{ψi}i≥1. The transformation is encoded in the coefficients
ci j, providing a representation for TF as the (possibly in-
finite) matrix C = (ci j). Seeking a functional correspon-
dence among the two shapes then amounts to solving for
the unknown C that better preserves certain mapping con-
straints [OBCS∗12] or manifesting regularity at different
levels [RRBW∗14, KBBV15].

Basis truncation. A natural choice for a basis on the two
shapes is given by the eigenfunctions {φi}i≥1, {ψi}i≥1 of
the respective Laplacians (harmonic basis). The basis func-
tions are said to be compatible if the equality ψi =±φi◦T−1

holds (approximately) for all i ≥ 1, which is the case with
the manifold harmonics when the shapes are related by a
near-isometry. If the deformation is far from isometric, com-
patible basis functions can still be computed ad-hoc for the
two manifolds, based on a minimal set of coupling functions
(e.g., a sparse set of point-to-point matches) [KBB∗13].

Assuming to have stable and compact (namely, harmonic)
bases at disposal, in [OBCS∗12] the authors proposed to
truncate the series (2) at the first k coefficients, result-
ing in a k× k matrix C approximating the full map in a
compact way. The reduced representation greatly simplifies
correspondence-based tasks (e.g., shape matching); at the
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same time, the truncation has the effect of ‘low-pass’ filter-
ing, thus producing smooth correspondences. In many ap-
plications, however, it is desirable to reconstruct the point-
to-point mapping induced by the functional map. Thus, the
interest shifts to the inverse problem of recovering the bijec-
tion T from its functional representation TF .

3. Point-wise map recovery

Let us now consider the discretized problem and assume
that M and N are represented by a triangular mesh with
n nodes each. Let matrices Φ,Ψ ∈ Rn×k contain the first k
basis functions for the two shapes respectively, represented
as column vectors. Note that, due to truncation, we have that
Φ
>

Φ = Ik, but ΦΦ
> 6= In, and similarly for Ψ. We assume

that the bijection T :M→N is known. For the sake of sim-
plicity, we additionally assume that T can be represented as
a permutation matrix P ∈ {0,1}n×n, which means that the
correspondence originates from two different deformations
of the same template. In this case the expression for ci j in
(2) can be equivalently rewritten as:

C = Ψ
>PΦ , (3)

where C = (ci j) ∈ Rk×k. Note that the matrix C is now a
rank-k approximation of TF . The objective of any process
converting the functional map back into a point-wise map
representation, which is the focus of this work, is to recover
the permutation P from the sole knowledge of C, Φ, and Ψ.

Assumptions. In order to be as general as possible, we do
not assume the matching process which generated the given
functional map to be known. Additionally, we do not re-
quire any particular properties from C (e.g., orthogonality),
hence allowing to recover maps between shapes undergo-
ing arbitrary deformations. Our only requirement is that the
matrix representation C is given w.r.t. known bases Φ, Ψ.
These bases, in turn, may come from diverse optimization
processes such as [PP93, KBB∗13, NVT∗14].

Mapping indicator functions. The
simplest and most direct way for
reconstructing the bijection T from
the associated functional map TF
consists in mapping indicator func-
tions δx :M→{0,1} for each point
x ∈ M via TF , obtaining the im-
age g = TF (δx), and then declaring
T (x) ∈ N to be the point at which
g attains the maximum [OBCS∗12]. Such a method, how-
ever, suffers from at least two drawbacks. First, it requires
constructing and mapping indicator functions for all shape
points, which can get easily expensive for large meshes. Sec-
ond, the low-pass filtering due to the basis truncation has a
delocalizing effect on the maximum of g (see inset figure),
negatively affecting the quality of the final correspondence.

The inverse problem of point-to-point map recovery.
Considering the problem of recovering P from a given C
according to (3) as a (highly underdetermined) ill-posed in-
verse problem, the natural recovery problem to consider is

P∗ = arg min
P∈{0,1}n×n

D(C,Ψ>PΦ)+αJP(P) (4)

s.t. P>1 = 1 , P1 = 1 , (5)

for a suitable measure of distance D, a regularization func-
tion JP to possibly impose some kind of desired smoothness
of the transformation, and a regularization parameter α de-
termining a trade-off between fidelity and regularity. Note
that the constraints in (5) might be adapted to account for
local area elements as in [ADK13].

Unfortunately, the minimization of (4) will be extremely
challenging in general. Consider for instance the case of no
regularization, JP ≡ 0, a zero functional map C = 0, and the
distance measure being the squared Frobenius norm. In this
case the minimization problem becomes

min
Pi, j∈{0,1}

P>1=1 , P1=1

‖Ψ>PΦ‖2
F = min

Pi, j∈{0,1}
P>1=1 , P1=1

‖Q~P‖2
2,

= min
Pi, j∈{0,1}

P>1=1 , P1=1

~P>Q>Q~P,

for the right hand sides denoting vectorized equations with
Q = Φ

>⊗Ψ being formed by the Kronecker product be-
tween Φ

> and Ψ. For arbitrary Q the above problem is a par-
ticular reformulation of the quadratic integer programming
problem (see Equation (8) in [BcPP98]). Since the latter was
shown to be NP-hard we cannot expect to find exact solu-
tions to the above problem with reasonable computational
complexity in general. Therefore, we turn our attention to
approximations of (4).

Linear assignment problem. Instead of applying general
greedy methods or relaxation techniques to (4), let us re-
call some observations from [OBCS∗12] regarding the gen-
eral structure of (3): In particular, note that the indicator
function δx :M→ {0,1} around point x has coefficients
(φi(x))i=1,...,k in the Laplacian basis. This can be seen by
observing that the inner product Φ

>
δx is selecting the col-

umn of Φ
> corresponding to point x. Therefore, the image

via TF of all indicator functions centered at points ofM is
simply given by CΦ

>. Recovering the point-to-point map
could then be solved by finding the correspondence between
the columns of CΦ

> and the columns of Ψ
>. Measuring the

proximity between these columns in the `2 sense gives rise
to the linear assignment problem

min
P∈{0,1}n×n

‖CΦ
>−Ψ

>P‖2
F (6)

s.t. P>1 = 1 , P1 = 1 . (7)

Although the problem above admits a polynomial time so-
lution [Kuh55], typical values for n (in the order of thou-
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sands) make computing this solution prohibitively expensive
in practice.

Nearest neighbors. The authors of [OBCS∗12] circumvent
the computational costs of the above approach by proposing
a nearest-neighbor technique for the recovery of the point-to-
point correspondence. In the light of our previous analysis
their idea is to consider the matching of every point, i.e.,
column of CΦ

>, to its nearest neighbor in Ψ
> separately.

Mathematically, the nearest-neighbor approach can be
seen as a relaxation of problem (6), (7), in which one seeks
for the best left-stochastic approximation P, i.e.,

min
P∈{0,1}n×n

‖CΦ
>−Ψ

>P‖2
F (8)

s.t. P>1 = 1 . (9)

In other words, in comparison to (7) one omits the constraint
of P1 = 1. The omission allows to minimize the problem
above by independently solving for columns of P, one per
query. Note that such a separable optimization approach may
produce one-to-many mappings as a result of the recovery
process. Moreover, it is an asymmetric method: looking for
nearest neighbors from Ψ

> to CΦ
>, or vice-versa, will in

general produce different results.

Balanced nearest neighbors. In order to remove the bias,
we propose to incorporate additional terms in problem (8),
namely minimize

‖CΦ
>−Ψ

>P‖2
F +‖CΦ

>Q−Ψ
>‖2

F +λ‖P−Q>‖2
F

s.t. P,Q ∈ {0,1}n×n , P>1 = 1 , Q>1 = 1 , (10)

where the minimization is performed w.r.t. both P and Q.
Note that we incorporated the desired property of P being a
permutation matrix by a soft constraint, i.e., by penalizing
the difference of P to Q>. Also note that the limit of λ→∞
leads to a convergence of P to a solution of (6) meeting (7).

Instead of solving the minimization problem (10) for in-
creasing values of λ exactly, we determine an approximate
solution by alternating minimization on P and Q. This leads
to each subproblem being a simple nearest neighbor problem
and guarantees the decrease of the objective functions.

Table 1 illustrates the matching accuracy obtained by our
symmetrized nearest-neighbor method in comparison to the
classical nearest-neighbor (NN) and the indicator mapping
(Max) approaches. As we can see, the symmetrization im-
proves the results of the biased NN method by 2–3%.

A probabilistic model. The analysis we provided above
puts in evidence two major drawbacks, namely: 1) The lin-
ear assignment approach, the nearest-neighbor search, and
our bi-directional variant, all rely on the assumption that the
functional map C given as input aligns well the columns
of Φ

> with those of Ψ
> in the `2 sense. 2) None of the

above approaches incorporates regularity assumptions for

# basis functions Max NN Balanced NN
25 6.14 30.99 33.24
50 18.12 43.51 45.65
75 26.96 52.54 55.07

Table 1: Percentage of exact matches recovered from func-
tional maps of increasing rank. We show average results
obtained by the three methods on 45 shape pairs from the
FAUST dataset (intra-class, ∼7K vertices). The above com-
parison shows that the proposed balancing further improves
the performance of the nearest neighbor technique.

the alignment process, i.e., the regularization term JP in the
general inverse problem formulation (4) was omitted.

We propose to cast the point-to-point map recovery as a
probability density estimation problem to obtain both, a bet-
ter measure of proximity than the `2 distance and a tool to
impose regularity assumptions on the alignment map. Within
our model, we interpret the columns of CΦ

> as modes of a
continuous probability distribution defined over Rk (the em-
bedded functional space), while columns of Ψ

> constitute
the data, i.e., a discrete sample drawn from the distribution.
The task is then to align the modes to the data, such that the
point-to-point mapping can be recovered as the maximum
posterior probability.

As a model for the distribution we consider a Gaussian
mixture (GMM) with n components, having the columns of
CΦ
> as centroids in Rk. For simplicity, we assume the com-

ponents have uniform weight 1
n , and equal covariances σ

2.
With this choice, the GMM density function is:

p(y) = 1
n

n

∑
i=1

p(y|xi;σ
2) , (11)

where we write y and xi for i = 1, . . . ,n to denote
the columns of Ψ

> and CΦ
> respectively, and define

p(y|xi;σ
2) = 1

(2πσ2)k/2 exp(−‖y−xi‖2

2σ2 ).

Now let Rθ : Rk→ Rk denote the (unknown) transforma-
tion aligning the centroid locations xi to the data points, ac-
cording to a set of transformation parameters θ. The align-
ment problem can then be solved by maximizing the like-
lihood, or equivalently by minimizing the negative log-
likelihood function

L(θ,σ2) =−
n

∑
j=1

log

(
1
n

n

∑
i=1

p(y j|Rθ(xi);σ
2)

)
. (12)

Note that the argument that minimizes (12) can be also inter-
preted as the argument that minimizes the Kullback-Leibler
(KL) divergence between a continuous GMM distribution
(represented by CΦ

>) and a mixture of Dirac distributions
(represented by Ψ

>). Hence, with our probabilistic model
we are choosing the distance D(C,Ψ>PΦ) in Eq. (4) to be
the (pseudo-)distance DKL(CΦ

>,Ψ>P).

Given optimal parameters θ and σ
2, the point-to-point
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correspondence probability between xi and y j can fi-
nally be obtained as the posterior probability p(xi|y j) =
1
n p(y j|Rθ(xi);σ

2)/p(y j).

Transformation function. The above probabilistic model
leaves some freedom for the specific choice of a transforma-
tion Rθ. A simple example is choosing this transformation as
a simple rotation, parametrized by θ. To be more flexible we
instead propose to consider the general transformation:

RV(X) = X+V , (13)

where parameters V assume the meaning of a displacement
field, and X≡ CΦ

>. With this definition, the overall behav-
ior of the transformation can be controlled by regularizing V.

Assuming that the given func-
tional map C represents a reason-
ably good matching, the refinement
procedure should not be allowed to
perturb the initial alignment significantly. Here we adopt
the Tikhonov regularizer ‖ΓΓΓV‖2 proposed in [YG89,MS10],
where ΓΓΓ is a low-pass operator promoting smoothly chang-
ing velocity vectors, hence coherent motion. In the inset we
illustrate a smooth velocity field with coherent correspon-
dences (blue) and a mismatch produced by simple nearest-
neighbors (red). We finally obtain the regularized objective:

L(V,σ2)+λ‖ΓΓΓV‖2 , (14)

where λ > 0 is a trade-off parameter between likelihood and
regularity (set to λ = 3 in our experiments).

General alignment problems like (14) have been widely
researched in computer vision, and several robust algorithms
exist for these tasks [CR00, TK04, MS10, JV11]. Most of
these approaches follow an iterative scheme, optimizing
w.r.t. {θ,σ2} and p(xi|y j) in an alternating fashion until con-
vergence (EM algorithm [DLR77]). In our experiments, we
used publicly available code from [MS10], which allows to
optimize over smooth displacements as in Eq. (14).

In Figure 2 we show a few iterations of the EM recovery
process applied to a pair of nearly-isometric shapes, starting
from a functional map obtained as described in Section 5.
As a visual measure of map quality we employ the technique
described in [OBCCG13], which allows to identify the prob-
lematic areas induced by a given functional map. The quality
of a map can be judged by the smoothness of the associated
plots, with better maps having a more localized behavior.

The output of the EM algorithm is a set of optimal trans-
formation parameters and a left-stochastic correspondence
P∗ ∈ {0,1}n×n. Note that similarly to the nearest-neighbor
approach, we also drop the constraint P1 = 1 in Eq. (5).

4. Point-wise map refinement

As a general representation for shape correspondences, func-
tional maps can be adopted to compactly encode (via Eq. (3))

Figure 2: A few iterations of the minimization process for
problem (4). The curve shows the average geodesic error in-
duced by the point-wise correspondence obtained at each it-
eration. We visualize the quality of the initial and final maps
by using the visualization technique of [OBCCG13]. In this
example, the ground-truth map exhibits a similar behavior
to the one we show at the last iteration.

dense point-to-point maps obtained by any matching algo-
rithm. Therefore, one can consider improving a given func-
tional map C with the help of its associated point-to-point
map, after this has been recovered with any of the methods
described in the previous section. Naturally, one can repeat
such a strategy and iterate between updating the point-to-
point correspondence and refining the functional map. The
output of such a procedure is an improved version of the ini-
tial point-to-point correspondence.

Such an iterative procedure was considered in
[OBCS∗12], in which the authors proposed to use the
classical Iterative Closest Point (ICP) algorithm [BM92].
The latter updates P according to the nearest-neighbor
approach (8), followed by a refinement of C via

min
C∈Rk×k

‖CΦ
>−Ψ

>P‖2
F (15)

C>C = Ik , (16)

which is an orthogonal Procrustes problem. Intuitively, this
can be seen as a rigid alignment in Rk between point sets Φ

>

and Ψ
>P (see Figure 4(b) for an example). The alternating

minimization w.r.t. C and P is repeated until convergence.

Although the ICP approach described above allows to
achieve significant improvements in terms of map accuracy,
the orthogonality constraints (16) imposed on the functional
correspondence limit its applicability to a specific class
of transformations, namely the class of volume-preserving
isometries (see [OBCS∗12] Theorem 5.1). Therefore, the
method cannot be applied to refine maps between shapes un-
dergoing arbitrary deformations.

For a more general refinement procedure, we drop the or-
thogonality constraint on C and consider the problem

min
R∈Rk×k

‖RCΦ
>−Ψ

>P‖2
F +βJC(R), (17)

for a regularization functional JC which could encourage RC
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Figure 3: Solving problem (17) gives rise to the refined func-
tional map shown on the left, where k = 20. The refined map
attains a higher percentage of exact matches (reported in
parentheses) than the initial map. The optimal transforma-
tion (middle) essentially delineates the refinement process as
a perturbation of the identity.

to correspond to a smooth transformation, or could require
R to be a small perturbation of the identity. While for the
specific example

JC(R) =

{
0 if (RC)>RC = Ik,
∞ else,

problem (17) coincides with the rigid alignment problem
arising from the constraint (16), a less restrictive choice
for the regularization functional JC makes the method suit-
able for recovering functional maps for non-isometric shape
matching problems.

In our experiments we found that when (17) is combined
with our proposed regularized probabilistic model for re-
covering the point-to-point correspondence, it is sufficient
to simply update R in a least-squares sense: Even without
additional regularization, R is determined to be a perturba-
tion of the identity as illustrated in Figure 3. The fact that C
is refined in a non-rigid fashion can improve the refinement
results significantly in comparison to orthogonal updates of
C as illustrated in 3d in Figure 4.

5. Experimental evaluation

We compare our iteratively refined probabilistic point-wise
map recovery method with the iterative refinement proce-
dure of Ovsjanikov et al. [OBCS∗12] (denoted as ICP, see
Section 4), which is to the best of our knowledge the only ex-
isting alternative to date. Both algorithms were implemented
in Matlab/MEX and executed (single-core) on an Intel i7-
3770 3.4GHz CPU with 32GB memory.

As a measure of error, we use the quantitative criterion
that was introduced in [KLF11] to evaluate the quality of
point-wise maps. The input quantity in our case is a func-
tional map C, which is then converted to its point-wise coun-
terpart using the two methods. We plot cumulative curves
showing the percent of matches which have geodesic error
smaller than a variable threshold.

We evaluate the two methods quantitatively on the
FAUST [BRLB14] dataset, and qualitatively on the

reference

(a) (b) (c)

Figure 4: The refinement process of a rank-k functional map
can be seen as the alignment of two point sets in Rk. In the
first row we illustrate the action of different refinement meth-
ods when k = 3, with the two point sets being plotted as red
and white point clouds. (a) Initial map; (b) Solution after
orthogonal refinement (15); (c) Solution obtained with our
approach (17). In the second row we show the color-coded
point-wise matches obtained with each method when k = 50.

TOSCA [BBK08] and KIDS [RRBW∗14] datasets. The
three datasets include isometric as well as non-isometric
shapes; in particular, FAUST and KIDS also include point-
to-point ground truth matches between shapes belonging to
different classes.

Comparisons. The functional maps used in the compar-
isons are constructed by solving a least-squares system
CA = B, where matrices A and B contain the Fourier coef-
ficients of indicator functions for corresponding regions on
the two shapes. The region correspondence is established us-
ing the ground truth, while the sets of regions are computed
using the consensus technique of [RRBC14]. This way, we
simulate a matching process that provides reasonably good
solutions for further refinement.

We show comparisons both in the near-isometric and
inter-class settings. In the former case, we use 45 pairs of
humans in different poses from the intra-class subset of
FAUST. All shapes have n = 6890 points, and the func-
tional map is computed with k = 30 basis functions. Re-
sults are reported in Figure 5 (left), where we also included
plain nearest-neighbors (NN) as a baseline. From the plotted
curves we can see that orthogonal ICP is performing slightly
better than our method on near-isometric deformations, since
the approach is specifically tailored for this particular case.
However, initializing our method with the output of ICP al-
lows to achieve further 10% improvement on average.

In Figure 5 (right) we show the same curves for the non-
isometric case (inter-class matching). In this case, orthogo-
nal refinement cannot be applied due to the different proper-
ties of the input functional maps, which relate shapes under
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Figure 5: Left: Comparisons with nearly-isometric shapes;
in this case, orthogonal refinement (ICP) already provides
accurate point-to-point recovery, which can be further im-
proved by applying our algorithm. Right: Comparisons with
non-isometric shapes. In this case, ICP cannot be applied
due to the lack of orthogonality in C.

non volume-preserving transformations. Additional qualita-
tive comparisons are shown in Figure 6.

Rank. In a second set of experiments, we evaluate the ca-
pability of the different methods to recover point-wise maps
from functional maps of increasing rank. In this setting,
we assume the input functional map to be as accurate as
possible, and for this purpose we construct it explicitly as
C=Ψ

>PΦ, where P is the ground-truth permutation among
the vertices of the two shapes. We do so for a pair of approx-
imately isometric shapes, so that the respective eigenbases
Φ and Ψ are as repeatable as possible, and further orthog-
onal refinement is not needed (indeed, applying ICP in this
setting actually yielded worse results in our tests).

The results are shown in Figure 7. As the number k of
basis functions used on the two shapes (i.e., rank of C) in-
creases, so does the amount of exact correspondences recov-
ered by each method. This is also true for the simple indica-
tor mapping approach (Max), since the smoothing effect due
to basis truncation is reduced at increasing values of k.

Our method allows to recover up to 20% more exact
matches than the nearest-neighbors approach. In particular,
with k = 100 (a commonly used value in most shape match-
ing pipelines) we are able to perfectly reconstruct 75% of the
rows/columns of P (a 6890×6890 matrix in this example).

Complexity issues. The time performance of our method
depends on two factors: the number of shape points n, and
the size of the functional map k. As we also show in Fig-
ure 2, typically a few iterations of the EM algorithm are suf-
ficient to reach accurate solutions, and in practice we used
5 iterations in all our experiments. In the typical case where
n = 10,000 and k = 50, our method takes on average 1 min.
to converge, while ICP using efficient search structures (kd-
trees) adds up to ∼3 sec.

It should be noted, however, that while we employed an
off-the-shelf implementation of the minimization algorithm,
this code can be easily parallelized and optimized in several

Figure 6: Refinement examples in different matching scenar-
ios. In each row we show the source shape (left), followed by
the map errors produced by ICP (middle) and our method
(right); the map error is visualized as a heat map encoding
distance to the ground truth, growing from white to black.
Note how the two methods perform comparably well in the
near-isometric case (cat model), but orthogonal refinement
yields large errors with more general deformations.

ways. In particular, a GPU implementation of our method
remains a practical possibility.

6. Discussion and conclusions

In this paper we formulated a general variational recov-
ery approach for the inverse problem of computing point-
to-point correspondences from a given functional map. We
demonstrated what simplifications can be used to arrive at
the nearest neighbor approach and showed how simply miti-
gating the asymmetry present in the standard conversion pro-
cedure can lead to consistent improvements of 2-3% in ac-
curacy. We then introduced a probabilistic model for point-
wise map recovery and considered a refinement of the func-
tional map that does not rely on the assumption of isometric
shapes. The experimental results showed that the proposed
approach yields up to 20% accuracy improvements under
non-isometric deformations, reaching up to 75% exact point-
to-point matches under good initializations.

The main limitation of our probabilistic method lies in
the fact that – similar to the nearest-neighbors approach
– the optimization procedure is biased towards one of the
two shapes, as one can for instance see from the interpre-
tation of minimizing the (non-symmetric) Kullback-Leibler
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Figure 7: Percentage of exact correspondences (bold
curves) recovered from ground-truth functional maps of in-
creasing rank, among the two shapes shown on the right.
We also report the percent of correspondences with geodesic
error smaller than 0.02 (thin curves).

divergence. Extending the ideas of the symmetrized nearest-
neighbor approach to the probabilistic model for removing
this bias represents a possibility. Second, while for simplic-
ity we only considered pairs of shapes related by a bijec-
tion, our method can be modified to deal with shapes having
different resolutions, as well as partially similar shapes and
entire shape collections (joint refinement). We believe these
topics to represent exciting directions of future research.
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