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Abstract

Fitting a facial template model to 3D-scanner data is a powerful technique for generating face avatars, in par-
ticular in the presence of noisy and incomplete measurements. Consequently, there are many approaches for the
underlying non-rigid registration task, and these are typically composed from very similar algorithmic building
blocks. By providing a thorough analysis of the different design choices, we derive a face matching technique tai-
lored to high quality reconstructions from high resolution scanner data. We then extend this approach in two ways:
An anisotropic bending model allows us to more accurately reconstruct facial details. A simultaneous constrained
fitting of eyes and eye lids improves the reconstruction of the eye region considerably.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometric transformations

1. Introduction

Thanks to the steady advance in acquisition technology,
high resolution 3D-scanning is becoming more and more
affordable, being based on either laser scanning, structured
light scanning, or multi-view stereo. The Kinect sensor and
follow-up RGB-D cameras have made 3D-scanning avail-
able even to everyday novice users. These technologies
have increased the desire to generate virtual clones of real
persons, which can be a full-body “3D-selfie” [LVG∗13]
or a head model for interactive facial puppetry [WBLP11,
CHZ14]. However, although surface reconstruction is a
rather advanced and mature field of research [BTS∗14], re-
constructing a complete and high quality surface from noisy
and incomplete data is still a challenging task. Incorporat-
ing a suitable template model to the reconstruction process
enables disambiguation of insufficient data and provides a
reasonable surface completion in regions of missing data.

Template fitting is not only used for reconstructing
human body scans [ACP03, LVG∗13] or head models
[BV99, WBLP11, CWZ∗14], but also to enable cross-
parameterization [ZB13] or statistical shape analysis [BV99,
ACP03, CHZ14]. Consequently, a large variety of template
fitting methods have been proposed, which are conceptu-
ally very similar and share many algorithmic components. A
structured evaluation of these components is missing though.

We analyze and compare the individual design choices,
and by combining the most promising techniques we derive
a template fitting method that provides more accurate recon-
structions compared to the typically employed algorithmic
components. Nevertheless, a faithful reconstruction of the
eye region, which is of high importance for the perception
of virtual faces, is still challenging. This is mostly due to
scanning artifacts (noise, occlusions) caused by eye lashes
or because of highly curved folds around eye lids, which are
problematic for template fitting.

We therefore extend our method by an anisotropic bend-
ing model that more faithfully reconstructs strongly curved
facial details. In addition we further improve the reconstruc-
tion of the eye region by a simultaneous constrained fitting
of eye balls and eye lids. The combination of these contri-
butions leads to accurate reconstructions from multi-view
stereo data, which we demonstrate on a range of examples.

2. Related Work

Surface registration aligns overlapping components of multi-
ple scans of an object that have been captured from different
viewpoints, in order to eventually obtain a complete model
of the scanned object. It is a fundamental research topic for
computer graphics, computer vision, and reverse engineer-
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ing in computer aided geometric design. Early approaches
considered rigid alignment of range scans only, with ap-
proaches being variations of the classic iterative closest point
(ICP) algorithm [BM92, CM92, RL01]. In the last decade,
non-rigid registration of scans captured from deforming ob-
jects has been investigated intensively. Since a detailed dis-
cussion of general non-rigid registration is out of scope for
this article, we refer the reader to the survey paper of Tam et
al. [TCL∗13] and the course notes of Chang et al. [CLM∗10]
and Bouaziz et al. [BTP14].

In the following we focus on template fitting, i.e., the
non-rigid, deformable registration of a given surface mesh
to noisy and incomplete scanner data. Moreover, we focus
on 3D-scans or RGB-D as input data, and on general de-
formable registration of facial models, rather than skeleton-
based articulated templates of full human bodies.

Several approaches successfully employ template fitting
for reconstructing a consistently triangulated animated mesh
from a sequence of measured point clouds for successive
time-frames of an actor’s performance [WJH∗07, LSP08,
LAGP09,ZNI∗14]. These methods typically compute a tem-
plate mesh for the first frame, which is then deformed in
order to track the following frames.

Blanz and Vetter first proposed a PCA-based statisti-
cal face model for reconstructing models from 3D scan-
ner data or even from a single photograph [BV99, BSS07].
Similar face fitting approaches have been proposed since
then [THHI06, PB11, YMYK14], some of which are based
on piecewise PCA sub-models. In [LKS14] a 3D face is
reconstructed from a single RGB-D frame of a person’s
face, by dividing the input depth frame into semantically
meaningful regions and searching the parts individually in
a database. Our work uses a PCA-model as well, but only as
a prior for initialization.

In their FaceWarehouse project, Cao et al. [CWZ∗14]
generate an extensive database of animatable face models
(shape and pose variations) from Kinect scans of 150 in-
dividuals, by deforming a facial template model to fit both
the depth data and facial features detected in the color im-
age. Once a PCA-model has been generated, it can be used
as a prior to increase the robustness of facial performance
tracking (see e.g., [WBLP11, CHZ14]). Recently, Ichim et
al. [IBP15] proposed a method for creating a 3D face rig
from hand-held video input. In contrast to them, we focus on
high-quality reconstruction of a neutral face from accurate
3D scanner data. Finally, Bernard et al. [BBN∗14,BBK∗15]
reconstruct high-quality models of eyes and eyelids using
(among other techniques) a non-rigid deformation approach.

Since all these methods for fitting a template model to
scanner data can be considered as generalizations of the rigid
ICP algorithm [BM92] to non-rigid registration [ARV07,
BR07], they naturally share many algorithmic components.
Their objective function to be minimized is typically com-
posed of a fitting term, which attracts the template model to

the measured point cloud, and a regularization term, which
prevents physically implausible deformations. The various
approaches mainly differ in how these two components are
formulated and computed.

For the fitting term, correspondences between the point
cloud and the template model are typically found by sim-
ple closest point queries, but these might be computed in
the direction of either scan-to-template (e.g., [ZB13]) or
template-to-scan (e.g., [LAGP09]). The fitting energy can
then be computed based on Euclidean distances between cor-
responding points (point-to-point) [BM92], distances from
tangent planes (point-to-plane) [CM92, RL01], or combina-
tions thereof (e.g., [LAGP09]).

While for registration of (incomplete) range images a ro-
bust space deformation should be used as regularization
(e.g., [SSP07] in [LAGP09]), for the fitting of a (clean
and complete) template model we can employ a surface-
based deformation. This regularization term might be based
on a linearly elastic model (e.g., [SKR∗06, BR07, ARV07,
THHI06]) or a nonlinear measure of geometric distor-
tion (e.g., [LSP08, LAGP09, HAWG08, WJH∗07, BTP14,
CWZ∗14, ZNI∗14]).

In the following we first analyze the different design op-
tions for the fitting and regularization term with respect to re-
construction accuracy and computational performance (Sec-
tion 3), before proposing an anisotropic bending model for
the regularization (Section 4) and a simultaneous fitting of
eye balls and eye lids (Section 5).

3. Template Fitting Framework

Our input data was acquired through multi-view recon-
struction: From seven high-resolution DSLR camera im-
ages we reconstruct a 3D point cloud using the commer-
cial software Agisoft PhotoScan, resulting in about 1 mil-
lion points (Figure 1(a)). We denote these N input points by
P = (p1, . . . ,pN), their normal vectors by n j, and their RGB
colors by c j .

Our goal is to deform a template head model to fit the
given scanner data. The template mesh M consists of n
vertices, whose positions are X = (x1, . . . ,xn). During the
optimization we denote the current (deformed) vertex po-
sitions by xi and the original (undeformed) positions by
x̄i. Our template model is based on the FaceWarehouse
database [CWZ∗14] and consists of about 12k vertices, as
shown in Figure 1(b).

In order to remove outliers caused by erroneous hair sam-
ples, we initially perform a simple skin detection in RGB
color space [KPS03] to prune any non-skin points. This ef-
fectively removes outliers (e.g., due to scanning hairs), but
also removes sample points corresponding to beards or eye
brows, such that these regions will be filled by the template
data. If instead facial hair is to be reconstructed accurately,
the method of Beeler et al. [BBN∗12] could be used.
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(a) (b) (c) (d) (e) (f)

Figure 1: Template fitting pipeline: (a) Input point cloud, consisting of 1.4M sample points, (b) template mesh from FaceWare-
house with 12k vertices, (c) automatically detected facial features, (d) initial feature-based alignment, (e) final fit after non-rigid
registration, (f) rendering with additional hair and eyes.

Like all rigid or non-rigid ICP-based approaches [BM92],
our face matching technique requires a coarse initial align-
ment to converge to a meaningful result. We obtain a ro-
bust and fully automatic initial alignment by detecting facial
landmarks in the input RGB images (using [AZCP13]) and
fitting the template model to them, as also proposed, e.g., by
Cao et al. [CWZ∗14]. In contrast to them, we do not have to
distinguish between interior and contour features, since we
obtain reliable 3D-positions for all 2D-landmarks by detect-
ing and reconstructing the facial features around eyes, nose,
and mouth from the frontal image, while the other features
are reconstructed from the side views (Figure 1(c)). Simi-
lar to Cao et al. [CWZ∗14], we fit the template PCA-model
to the detected facial landmarks by determining the global
position and orientation, as well as the PCA weights, in or-
der to best match the landmark positions in a (Tikhonov-
regularized) least squares sense (Figure 1(d)).

After initialization, the deformable registration updates
the vertex positions X , such that the template model bet-
ter fits the scanner points P (Figure 1(e)). This is achieved
by minimizing an objective function E(X ) that consists of a
fitting and a regularization term:

E(X ) = Efit(X ,P)+λEreg
(
X , X̄

)
. (1)

The fitting energy Efit penalizes the distance between the
templateX and the point-cloud P (Section 3.1), and the reg-
ularization energy Ereg penalizes the distortion from the un-
deformed state X̄ to the deformed state X (Section 3.2). In
the spirit of non-rigid ICP [ARV07,LSP08] we alternatingly
compute correspondences and minimize (1), starting with a
rather stiff surface (λ = 1) that is subsequently softened until
λ = 10−7 to allow for more and more accurate fits.

3.1. Fitting Energy

The fitting energy penalizes the distance between corre-
sponding point pairs from X and P , which we compute as
simple closest point correspondences due to simplicity and
speed. These correspondences can be constructed either from
template to scan or from scan to template. The former finds

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

Noise [mm]

R
M

S
er

ro
r[

m
m

]

Template-to-Scan
Scan-to-Template
Both

0 0.5 1 1.5 2 2.5

0.1

0.15

Noise [mm]

R
M

S
er

ro
r[

m
m

]

point-to-point (µ = 1)
point-to-plane (µ = 0.1)

Figure 2: Comparison of correspondence directions
(template-to-scan vs. scan-to-template, left) and correspon-
dence distance (point-to-point vs. point-to-plane, right) on
a high-resolution face scan with synthetically added noise
(uniformly distributed, zero mean).

for each of the n template vertices x ∈ X the closest point in
P , whereas the latter finds for each of the N points p ∈ P its
closest neighbor on the template meshM. This closest point
is usually located within a triangle of the template mesh,
which is expressed in terms of barycentric coordinates.

The lower computational complexity (O(n logN) vs.
O(N logn) for N � n) and the simpler implementation is
the reason that most approaches choose template-to-scan
correspondences (e.g., [LAGP09, WBLP11, BTP14]). How-
ever, a direct comparison on a high-resolution synthetic face
scan reveals that scan-to-template correspondences lead to
a more accurate reconstruction, in particular for noisy data
(Figure 2, left). Although the employed uniform noise does
not model the real noise characteristics of our/any scanner,
comparisons on real data also show improved fits for scan-
to-template correspondences (Figure 3). Although the over-
all fitting process is about 3–4 times slower using scan-to-
template correspondences (for our n and N), we chose this
option since we prefer an accurate over a fast reconstruction.

Once correspondences are found, the fitting energy penal-
izes their (squared) deviation, which is measured either in a
point-to-point or point-to-plane manner, or a linear combi-
nation thereof. If we denote the correspondences as a set of
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template-to-scan scan-to-template

Figure 3: For high-resolution scanner data, our scan-to-
template correspondences (right) yield more accurate recon-
struction than the typically employed template-to-scan cor-
respondences (left). The bottom row shows a color-coding of
the two-sided Hausdorff distance of scan and template.

pairs
{(

p j, x̃ j
)}

j, with x̃ j being the point onM closest to
p j, the combined fitting energy can be written as

Efit(X ) =
1
N

N

∑
j=1

µ
∥∥x̃ j−p j

∥∥2
+ (1−µ)

(
nT

j
(
x̃ j−p j

))2
.

The first term measures point-to-point distances, the second
point-to-plane distances, and µ blends between the two.

Most recent non-rigid registration approaches
(e.g., [LSP08, LAGP09, BTP14]) suggest to use a combina-
tion of point-to-point and point-to-plane metric (µ = 0.1),
since this allows the template to “slide” along the point
cloud and requires fewer iterations.

To analyze the performance of both approaches, we com-
pare a pure point-to-point distance (µ = 1) and the com-
bined distance (µ = 0.1) using several high-resolution scans
shown in this paper. Our experiments confirm that the point-
to-point distance requires about 30% more iterations than
the combined distance measure. However, the point-to-point
distance is computationally faster, since it results in three lin-
ear systems of size n×n (the problem is separable in x/y/z).
In contrast, the point-to-plane distance couples the coordi-
nates, which results in one 3n× 3n system. For the com-
plete fitting process, the point-to-point fitting in average took
about one third of the computational time of the point-to-
plane variant. Since both methods converge to comparable
fits (Figure 2, right), we decide for the faster option.

3.2. Regularization Energy

During the fitting process, the regularization energy Ereg is
responsible for ensuring physical validity of the deformed
model by penalizing unwanted types of deformations, typi-
cally by trying to keep the surface locally rigid. The two de-
sign options are (i) whether to use a surface-based or space-
based deformation and (ii) whether to use a linear or a non-
linear deformation model.

Since we fit a clean template model to scanner data, we
can safely employ a surface-based deformation, which in
turn allows us to employ well-established discrete bending
models for the deformation energy.

In order to decide between a linear and nonlinear defor-
mation model, we compare two representative techniques
on a synthetic head dataset with known solution. Our reg-
ularization energy minimizes a discrete bending model by
penalizing the Laplacian of the deformation:

Ereg(X ) =
1

∑i Ai

n

∑
i=1

Ai ‖∆xi−Ri∆x̄i‖2 . (2)

The Laplacian ∆xi is discretized using the cotangent weights
and Ai is the local Voronoi area of vertex i [BKP∗10]. The
per-vertex best-fitting rotations Ri cancel out local rigid
transformation, such that the model can deal with large de-
formations [SA07].

The linear deformation omits the rotations Ri, which turns
(2) into a linear thin shell model [BS08]. Since the point-to-
point fitting energy is also quadratic in the unknown vertex
positions, minimizing the combined energy (1) requires to
solve three n× n systems, which is very efficient. However,
the linear model erroneously penalizes locally rigid transfor-
mations, which might prevent an accurate fit.

Our nonlinear model solves for vertex positions xi and lo-
cal rotations Ri using alternating optimization (or block co-
ordinate descent), similar to [SA07]. This method is easy to
implement, can pre-factorize its constant system matrix, and
can solve for x/y/z using three n× n systems. However, the
overall process has to be iterated until convergence, which
in our experiments required about 2–3 iterations only.

The comparisons on the synthetic datasets revealed that
the RMS error of the linear model is about twice as large as
that of the nonlinear model, with the difference being con-
centrated around mouth, nose, and eyes. The increased ac-
curacy of the nonlinear model comes at the price of a factor
of about 10 in computational cost. Since our primary goal
is a precise reconstruction, we (like most recent approaches)
choose the nonlinear deformation model.

3.3. Hierarchical Optimization

To improve computational performance while at the same
time providing an accurate high resolution template fit, we
employ a hierarchical optimization, inspired by [ZNI∗14].
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(a) Laplacian notation (b) Fitting results on real data

Figure 4: Notation for discrete Laplacians (a) and close-ups of fitting results (b) for isotropic (top) and anisotropic (bottom)
bending energies. The anisotropic bending, using the Huber norm of edge Laplacians, yields more accurate fits of local facial
features. The color coding visualizes the two-sided Hausdorff distance between the mesh and the point cloud.

Our simple two-level hierarchy starts with the original tem-
plate resolution of 12k vertices [CWZ∗14], on which we run
the fitting algorithm from stiff (λ = 1) to soft (λ = 10−7).
After convergence, we apply one step of Loop subdivision
to the template model, resulting in about 46k vertices, and
perform one more inner loop with stiffness λ = 10−7.

To reduce costly correspondence computations we follow
Bonarrigo et al. [BSB14] and subsample the point cloudP to
a density that is four times higher than the vertex density of
the template mesh. We perform this subsampling using an ef-
ficient voxelization approach [RC11], with voxel-size being
1/4 of the template’s mean edge length. When we subdivide
the template, the point subsampling is updated accordingly.
We verified Bonarrigo’s statement that using more points
does not noticeably improve fitting accuracy. This simple
two-level hierarchy improved the performance from >12 min
to <2 min for our examples, while not affecting accuracy.

4. Anisotropic Refinement

In the (typical) case of noisy input data, the stiffness param-
eter λ has to be chosen carefully in order to balance between
underfitting (surface too stiff, imprecise fit) and overfitting
(surface too soft, reconstruction of noise). A sufficiently high
surface stiffness yields a smooth fit even for noisy data, but
unfortunately also prevents the development of mid-scale fa-
cial wrinkles and other high-curvature facial features. Those,
however, are typically anisotropically bent, with a high max-
imum principal curvature and a rather small minimum curva-
ture. This is inherently difficult to fit with an isotropic bend-
ing model, which the discrete Laplacian energy (2) is.

We therefore propose to switch to an anisotropic bending
model in order to improve the fitting for anisotropic facial

features. Due to Polthier [Pol02], the discrete Laplacian of
vertex p (Figure 4(a))

∆x(p) = ∑
(p,q)∈E

(cotαpq + cotβpq)(xq−xp)

can be decomposed into a sum of discrete edge-based Lapla-
cians of all edges i incident to vertex p:

∆x(p) = ∑
i=(p,∗)

∆
ex(i).

While the Laplacian ∆
ex(i) of edge i is typically defined in

the edge-based linear Crouzeix-Raviart basis, it can be re-
formulated in terms of the vertex-based linear Lagrange ba-
sis [WBH∗07], yielding the discrete edge Laplacian

∆
ex(i) = (cotγil + cotγim)xs− (cotγik + cotγil)xp +(

cotγi j + cotγik
)

xr−
(
cotγi j + cotγim

)
xq,

where γ∗ are the incident angles of edge i (Figure 4(a)). The
edge Laplacian should be normalized by the edge area Ae,
which is 1/3 of the sum of the areas of its two incident trian-
gles. Interestingly, this formulation is identical to the differ-
ential edge operator proposed by He and Schaefer [HS13].

To achieve the desired anisotropic fitting, we re-formulate
the regularization energy (2) in terms of edge Laplacians

Ereg(X ) =
1

∑e Ae
∑

e∈E
Ae

∥∥∆
ex(e)−Re∆

ex̄(e)
∥∥

h , (3)

where we use the robust Huber norm ‖·‖h. This metric be-
haves like an `2-norm below a certain threshold and like an
`1-norm above, thereby allowing for stronger local bending
for some edges. The minimization of the Huber norm can
be implemented as an iteratively re-weighted `2 minimiza-
tion [MB93], requiring 2–5 iterations until convergence. For
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(a) ±1.5mm noise added (b) L2 norm, λ = 10−7 (c) L2 norm, λ = 10−8 (d) Huber norm, λ = 10−7

Figure 5: Comparison of isotropic and anisotropic bending on a synthetic model with added noise: The isotropic bending either
does not fit the wrinkle well (b) or overfits the noisy input (c, see mouth region). The anisotropic model does not suffer from
overfitting and reconstructs the wrinkle better. The RMS errors for (b), (c), and (d) are 0.36 mm, 0.43 mm, and 0.28 mm.

all examples we used a Huber threshold of h = 10−6. Note
that our anisotropic bending is similar to anisotropic fair-
ing [HP04], where certain edge Laplacians are weighted
down to concentrate curvature (instead of bending).

Figure 4 compares the isotropic and anisotropic bend-
ing models, and shows the anisotropic model to more ac-
curately reconstruct facial details at the nose, mouth and
eyelids. Figure 5 shows further results on a synthetic noisy
model with facial wrinkles. It can be seen that the isotropic
model has problems with either under- or overfitting, while
the anisotropic model yields a better fit.

5. Eye Lids Correction

The eye region is perceptually one of the most crucial parts
of a virtual face. Unfortunately, in scanner data it is typi-
cally very noisy, such that the above fitting strategies would
typically fail around the eye lid (see Figure 7). Due to the
amount of noise in this region, manually picked 3D corre-
spondences between the template model and the point cloud
(e.g., [ARV07, WBLP11]) can cause either jaggy eye con-
tours for low stiffness values or inaccurate matching for high
stiffness values. We solve a combined 2D/3D fitting in order
to correct for these problems.

In a first step we fit 3D eyeballs. To this end we detect
both eyes in the frontal image (Figure 1(c)), which can be
done robustly using several CV algorithms. From the eye
pixels we discard all that are not white/bright enough (be-
longing to the cornea) or that are classified as skin. This ef-
fectively keeps only the pixels corresponding to the sclera,
whose corresponding 3D positions (known from the scan-
ning) constitute two point sets that approximately lie on two
spheres (the eyeballs). After the initial PCA alignment (Fig-
ure 1(d)) we initialize two eyeball meshes (spheres of radius
1.25 cm) at the eye position of the template model. We then
iteratively fit these two spheres to the sclera point clouds in
an ICP manner, by adjusting positions and (coupled) radii.

Given the precise fit of the eyeballs, it is possible to ac-
curately define the contour of the eye lids. We use seven

Figure 6: We detect 2D features on the eye contour (left) and
use them as 3D fitting constraints on the template (right).
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Figure 7: Fitting an eyeball (pink) to sclera points of the
scan and using it to define target positions on the eye con-
tours improves the reconstruction of the eye lids, as shown
for two models (left and right).

feature points on each eye’s contour from the frontal pho-
tograph, as shown in Figure 6, left. We mark those feature
points manually, since the automatically detected facial fea-
tures are not precise enough. However, using more advanced
computer vision algorithms this step can probably be auto-
mated. For each of these 2D feature points, the camera cal-
ibration yields a viewing ray, which we intersect with the
fitted eyeball to get a 3D feature point.
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Figure 8: Three different examples obtained with our proposed non-rigid registration technique, by using anisotropic refinement
and contour correction for the eye lids. Each example shows the original scan, the fitted model, and a final rendering.

The resulting 14 feature points fi act as point-to-point con-
straints for the corresponding vertices xi on the template
model (Figure 6, right). A corresponding point-to-point fit-
ting term is added to the global energy (1) with weight 0.1
and is used throughout the template fitting process. To fur-
ther improve the eye lid reconstruction, we constrain all ver-
tices on the interior of the template’s eye lids to lie exactly
on the eyeball spheres, using the projective constraints of
Shape-Up [BDS∗12]. The results in Figure 7 show how our
combined eyeball-eyelid fitting considerably improves the
reconstruction of the eye region.

6. Results and Conclusion

Our template fitting framework is based on a structured anal-
ysis of the different algorithmic building blocks for non-rigid
registration, of which we combine the most promising de-
sign choices. When fitting accuracy is the primary goal, our
evaluation shows that the fitting energy should use scan-to-
template correspondences. Moreover, simple point-to-point
distances are fully sufficient in terms of fitting accuracy, and
provide performance benefits compared to point-to-plane
distances. Regularizing the fitting with a nonlinear defor-
mation model leads to a more precise fit. Combined with the
anisotropic refinement and the eyeball/eyelid correction, our
method yields accurate and detailed face reconstructions in a
couple of minutes (<5 for all our examples). Figure 8 shows
more results obtained with our method, based on multi-view
stereo reconstruction. The image shows for each example
the reconstructed point cloud, the obtained template fit, and
a final rendering with additional textures, eyes, and hair.

An interesting direction for future work is the reconstruc-
tion of non-neutral facial expressions, where the transfer
of our constrained eyeball/eyelid fitting toward the com-
bined reconstruction of teeth and lips should help to produce
more realistic results. Moreover, a more precise detection of
eye contours (Figure 6) would avoid manual interaction and
make our approach fully automatic.
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