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Abstract

Recognition of body parts in three-dimensional medical images is an important task in many clinical applica-
tions. It can facilitate image segmentation, registration methods and it can be the first step of an automatic
image-processing workflow. In this paper, we propose an automated method to classify the axial slices of three-
dimensional magnetic resonance image series according to the body part they belong to. We apply the Zernike
transform to obtain feature vectors representing the structural information of the axial slices. Using machine
learning tools statistical correlation is found between the extracted feature vectors and the position of the slices
within the human body. The initial classification is filtered by a dynamic programming based error correction
method that takes the correct sequence of anatomy regions into consideration to eliminate the false recognitions.
Using our approach, different body regions can be recognized at high precision rate.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Image Processing and Computer Vision]: Scene

Analysis—Object recognition

1. Introduction

Magnetic Resonance Images (MRI) are now important
sources of information in many cases of clinical decision
making. Thanks to the development of data acquisition
methods and computer technology, the clinical application
of medical imaging and image processing shows an increas-
ing rate. This trend includes the increasing amount of data as
well. Therefore, the physicians have to spend more and more
time with the analysis of these images. Thus the amount of
time spent on analyzing an image is getting more and more
limited.

This makes it necessary to develop Computer Aided Di-
agnostic (CAD) systems that can automatically provide as
much information as possible. This can significantly aid the
work of the physicians who will have more time in this way
to make the diagnosis and to treat the patients.

The images usually do not contain any information about
the represented body region [GWKTO02], as the correspond-
ing DICOM header tag should be filled in manually by the
operator of the imaging device. However, it would be re-
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ally useful to know the body regions seen in the image as
the medical image processing algorithms are usually organ
or body region specific. By using the proposed method, it is
easier to initialize segmentation and registration algorithms,
to optimize the image-processing workflow or the user inter-
face of clinical software applications (e.g. by offering only
the tools that are useful in a certain anatomical region). The
proposed method can be used as one of the building blocks
of CAD systems as it can provide some basic information
for an automatic or semi-automatic diagnostic workflow.

2. Related Work

Although classifying slices within a human body could be
useful in various medical image-processing workflows, this
area of research has not received much attention yet. Even
though there are existing methods to determine the body re-
gion from a topogram [BuirO8], the general way to navigate
through a body scan is to localize landmark points as ref-
erences and use them as a relative coordinate system. For
instance, Haas et al. [HCS*08] introduced an approach to
create a navigation table using eight landmark points. Other
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similar methods are also known. Seifer et al. [SBZ*09]
proposed a method to detect invariant slices and landmark
points in full body scans by using HAAR image features and
Probabilistic Boosting Trees. Their method is able to detect
nineteen salient and robust landmarks within a full body scan
but it cannot be used to localize and to classify single slices
as the method detects only the landmark points and further
processing would be needed to perform the classification it-
self.

Other techniques were developed to estimate the location
of axial-slices in the human body, but these methods try to
give the position of the axial slices and do not provide the la-
beling itself. For Computer Tomography (CT) scans Feulner
et al. [FZS*09] developed a method which can determine the
relative position of the examined slice series. Their method
requires approximately 50 slices and the average error of the
position estimation lies between 44mm for small query vol-
umes and 16.6mm for large query volumes. According to the
authors, their method does not perform well when localizing
single slices only. Emrich et al. [EGK™ 10] have managed to
determine the position of a single slice within the body with
an overall error of 2.83cm, but their algorithm works only on
CT images.

For CT images Nakamura et al. [NLISO8] proposed a
method that can directly label the axial slices of an image
series. Their results are highly promising, but it cannot be di-
rectly applied to MRI images. Their feature vector construc-
tion is based on the intensity values of the CT scans that are
much more reliable than the values of the MRI scans. The
CT intensities are standardized by the Hounsfield scale and
they do not fluctuate so unpredictably as the intensities in
MRI images.

In summary, the existing methods to determine the body
regions are only for CT modality and they are not applicable
to MRI images. They usually use landmark points for local-
ization and they do not classify the individual slices. In this
paper, we propose a method that can process MRI images,
classifies the slices and extends the reliability of the classifi-
cation by an error-correction method.

3. Materials

The proposed algorithm was trained and tested on a set of
49 MRI images. The images were acquired for research
purposes by the University Hospital Ziirich. The studies
were acquired with the Discovery MR750w scanner us-
ing the same (LAVA-Flex sequence, T1 weighted, FA/TR =
5°/3.7ms, acquisition matrix = 256x128, 75% phase FOV,
scan time 17s, TE1/TE2 = 1.15ms/2.3ms) MRI protocol.
The majority of the images covered all anatomy regions in-
cluding head, neck, chest, abdomen, pelvis, and some parts
of the legs. The test images involved male and female pa-
tients of different age (adults), level of obesity, and the posi-
tion of the arms were varying among examinations. The res-
olution of each image slice was 512 x 512 pixels. The slice

number of the exams ranged between 26 and 864 (average
447). The pixel size varied between 0.39mm and 1.37mm
(average 0.91mm), and the slice thickness was between
0.47mm and 6.80mm (average 5.79mm). All test cases have
been annotated manually. The following region labels were
defined: LEG, PELVIS, ABDOMEN, CHEST, HEAD and
EMPTY. The selection of the labels was based on the ba-
sic structure of the human body. The LEG region is defined
from the beginning of the image series to the point where the
two legs join. There starts the PELVIS that ends at the top of
the pelvic bone. The ABDOMEN area ends at the beginning
of the lungs. The CHEST lasts till the neck and above it is
the HEAD. EMPTY areas are usually above the HEAD but
sometimes they could appear under the LEG as well.

4. Our Method

A successful solution of the recognition task is a multi-step
process. First, an appropriate image representation has to
be identified that can provide meaningful feature vectors,
as these vectors are used as the input for a machine learn-
ing tool that solves the primary classification task. After the
initial classification is done, an error correction method is
applied. As the primary slice classification runs only on in-
dividual slices, we lose the connection between the slices
and an error correction method is needed to filter the outliers
and provide a reliable classification along the whole image
series.

The proposed algorithm performs five steps to solve the
classification problem. Each step processes the output of the
previous stages and provides input for the next level. The
first four steps run on individual slices and the last step uses
the whole image series to perform the correction. The steps
are the following:

1. Slice normalization.

2. Feature extraction (Zernike transform).

3. Principal Component Analysis (PCA) for dimension re-
duction.

4. Random forest classification.

5. Continuity check and error correction.

Figure 1 demonstrates the proposed workflow of the training
and the classification.

4.1. Slice Normalization

MRI images have a wide range of variety in image proper-
ties. The imaging devices have several acquisition modes,
which can affect the appearance of the resulting images. The
choice of pulse sequence and its associated parameters can
significantly modify the results. As the selected protocol has
a direct impact on the intensity values in the image and can
change the visibility of the structures within the body, our
approach deals only with T1 weighted images (which are
common in clinical practice). The selection of the appropri-
ate field of view (FOV) value is also a very important aspect.
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Figure 1: The structure of proposed method.

Training the
random forest

Different FOV settings provide images with different zoom
factors. The FOV values are stored in the DICOM header by
the device itself, so it is reliable and can be used to normal-
ize the images for a standardized FOV. We had two types of
series. One type was recorded with 70cm FOV and the other
one was recorded with 48cm FOV. The 48cm FOV was se-
lected as the standard FOV value. In this case the meaningful
area of the image is larger as the image of the patient fills the
available area to a larger extent.

Other image artifacts can be caused by the positioning of
the examined patient. As it will be described later in this
paper, the Zernike transform can be formed to be rotation
invariant so it is not necessary to take any further steps to
determine the precise orientation of the patient, as a rotation
of few degrees is tolerated by the transform. However the
translation of the patient in the transverse plane can cause
major changes in the transform, so it has to be eliminated
from the image. This can be done by calculating the (p + ¢)
[Hu62] order regular moment of the image, which can be
formalized in the following way:

Mpg = / / xPy? f(x,y)dxdy, (1

— 00— 00

where mpq is the moment and f(x,y) is the function that
defines the image. To obtain translation invariance, the cen-
ter of mass of the image is moved into the center of the
image. This can be done by a transform from f(x,y) to
fc(x+ (xz .fxvl,er O° fys))? where x’ = T, y* = %3 while
x“ and y© indicate the coordinates of the center of the image.

Figure 2 demonstrates the steps of the slice normalization.
In the first image the original input can be seen, followed
by the result of the translation normalization, and finally the
FOV normalization is shown.
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Figure 2: Slice normalization.

4.2. Zernike transform

For a human observer the slice classification task is obvi-
ous. One does not need to examine the image in details, only
the large scale structures of the images contain enough in-
formation to perform the anatomy classification. Therefore
a representation was chosen that can capture the topological
information itself. Topological descriptors are not so widely
affected by the typical artifacts of the MRI images as long
as the topology is recognizable and they are not so sensi-
tive [BSA91] to the fluctuation of the image intensities. This
Zernike structure description is useful for the representation
of the slices of three-dimensional medical images, as their
FOV is circular and the axial cross sections of the human
body can be represented by elliptic shapes as well.

The Zernike transform [Zer34] is one of the state of the
art global shape description methods. It was originally in-
troduced for image description by Teague et al. [Tea80].
Since its publication, it has been used in several applica-
tions [KH90] [QRAHO7] [SFPS11] and has a wide litera-
ture. Its properties have been studied extensively and they
have been summarized and compared with other moments
by Belkasim et al. [BSA91].

According to the results of Belkasim, the Zernike mo-
ments have several favorable properties over other geomet-
rical moments. They can represent the image with no re-
dundancy or overlapping information between the moments.
They can be formalized in a rotation invariant way with polar
coordinates. Rotating the image does not change the magni-
tude of the moments. This could be an important property if
the patients were not laid fully on their back. Another main
advantage of the Zernike moments is that they can be con-
structed to an arbitrarily high order. This feature, with the
orthogonality, is very important to the reconstruction of the
original image from the moments. The orthogonality enables
to separate the information content of each moment and the
reconstruction can be achieved by a simple addition of these
individual contributions. The selection of the required max-
imum order can be done by the evaluation of the image rep-
resentation ability of the features. The reconstructed image
can be compared to the original image and the applied max-
imum order is sufficient if the reconstructed image is close
to the original image.

The Zernike moments can be expressed as a set of com-
plex polynomials Vius(x,y) over the interior of the unit disk
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Order of the transform 5 10 15 25 35
Number of moments 24 | 72 | 144 | 364 | 684
Table 1: Number of Zernike moments.

ie., x>+ y2 < 1. In polar coordinates the form of the poly-
nomials is:

Vinn (1,0) = Ry (r)exp(jm®). )

where 7 is a non-negative integer, m is integer, n — |m| is
even and |m| < n; r = \/x2 4?2 is the length of the vector
from the origin to pixel (x,y); 6 = arctan(y/x) is the angle
between the vector to the point (x,y) and the x axis. Ruy is
the Radial polynomial defined as:

an(x7y) =

Rn) = X G m) 2= 1) ((n—m) 2= R!

3

Then the two-dimensional Zernike moment of order n and m
for a function f(x,y) can be defined as:

Zo = "1 / / (10)Vyin(r,0)drd®, (&)
umtdnk

where Vi, (x,y) = Vn,_m(x7 ¥). The applied maximum order
of the transform controls the amount of the captured details.
Using higher orders make the reconstruction more accurate
as the transformed values contain more information, but the
number of moments grows rapidly. The number of the mo-
ments is shown in Table 1 according to the maximal order of
the Zernike transform.

To visually evaluate the captured information content by
the transform, a back transform is required. In this way we
can specify the applied maximal order of the transform.

Suppose that one knows all the moments Z;;, of the func-
tion f(r,0) up to a given order Nyqax. To reconstruct a func-
tion f(r,0) whose moments exactly match those of f(r,0)
up to the order Nyqx one should use the following equation:

MH(L\'
F(r0) =YY ZunVin(r,0), &)
n=0 m
where the same constraints are applied as in (2). Note that
as Npmax approaches infinity, f(r,0) approaches f(r,0). The
results of the reconstruction are shown in Figure 3.

4.3. Principal Component Analysis

Although, the Zernike-transform captures all the necessary
details needed for slice classification, it does not mean that
all of its attributes are necessary. It is worthwhile to find
a way to filter the unnecessary data from the observations
to produce an optimal feature vector. This is an important
step. The original feature vector contains the information
we need, but the high number of dimensions makes the ma-
chine learning algorithm complex, and makes the number of

(n—|ml)/2 (—])k(n—k)' rn—Zk‘

(a) Original. (b) Njax = 5. (¢) Ninax = 10.
(d) Niax = 15. (€) Ninax = 25. (f) Ninax = 35.

Figure 3: Reconstruction from Zernike moments.

parameters too high. Therefore a dimension reduction shall
be applied. PCA [Jol05] is a mathematical procedure that
uses an orthogonal transform to map a series of observations
of correlated variables into an uncorrelated set of variables.
These variables are called principal components. The PCA
is used for dimension reduction, while the variance of the
samples is preserved as much as possible. The procedure
is defined in a way that the first principal component has
the highest variance and each succeeding component has the
largest possible variance under the constraint that it has to be
orthogonal to the previous components.

4.4. Random Forest

A random forest [Bre0O1] is composed of multiple indepen-
dently trained decision trees. Decision trees are popular clas-
sification tools, but they are known to suffer from overfitting.
It means that their generalization ability is poor. However,
it has been shown [Bre(01] that a composition of many ran-
domly trained decision trees, as known as random forest, has
much better generalization ability and it can maintain the ad-
vantages of the conventional decision trees. Other classifiers
(Neural Network, Support Vector Machine) were also tested
during the development, but their results were not signifi-
cantly better than the results of the random forest. For devel-
opment purposes we used the WEKA [HFH*09] toolkit, but
in the final system we had to use our own implementation
and therefore the simplicity of the learning tool was an im-
portant aspect. For these reasons we chose the random forest
as our primary classification tool.

4.5. Continuity Check and Error Correction

The primary classification done by the random forest, works
with single slices only, thus we lose valuable information.
The correlation of the relative positions of the slices play a
key role in the correct recognition process. As the sequence
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of the regions and their sizes within the human body are not
random, the label, assigned to a specific slice, is highly cor-
related with the labels of the nearby slices. If we take this
information into consideration, we can achieve a more pre-
cise, outlier-free and reliable classification.

To achieve an optimal labeling, we propose a graph
based shortest path finding method, which is based on
Dijkstra’s algorithm [Dij59]. The random forest provides
a confidence value for each slice for each body region.
We can define the order of the body regions as LEG,
PELVIS, ABDOMEN, CHEST, HEAD and EMPTY. Let
R={ri,r,...,r¢} denote the set of anatomy labels respec-
tively and S = {s1,s2,...,sp} the set of the slice indices,
where M is the number of slices. The order of the slice se-
quence is from the leg to the head. Given these structures,
we can define a graph in the following way. Each node
represents a classification of a slice. The set of the nodes
is denoted by N = {(ri,s;) : r; € R,s; € S}. The directed
edges can be defined as E = {((r¢,sj—1), (ri,57)) : (ri,s;) €
NA(rg,sj—1) €E NA(k=1Vk=i—1)}. This structure de-
fines a graph, where each node represents a possible classi-
fication and the edges connect only the allowed transitions.
In this way, the classification of the whole image series is
forced to follow the order of the body regions. The structure
of the defined graph is illustrated in Figure 4.

To perform a shortest path finding, we have to de-
fine the costs of moving along the edges. This can
be done in several ways. We defined the cost function
as C((rx,sj—1),(ri,sj)) = 1 — confidence((r;,s;)), where
confidence((r;,s;)) refers to the output of the random forest
and it defines the confidence value of that the slice s; is in the
body region r;. This function describes how much the deci-
sion of the path finding algorithm differs from the results of
the random forest. To obtain a labeling from this graph struc-

R1 R2 R3 R6
Sl see
s2

AU -

Figure 4: Correction-Graph structure.

ture, an optimal path has to be found from one of the nodes
belonging to the first slice to one node of the last slice. The
solution of this task can be completed by dynamic program-
ming. We can define a two-dimensional distance matrix D,
with M rows and 6 columns. Each cell D[i, j] corresponds to
node (r;,s;) in the graph. The first row and column has to be
defined manually, as this step initializes the algorithm. This

(© The Eurographics Association 2014.

can be done as follows:

D[1,j] = 1 —confidence((rj,s1)),1 < j<6, (6)

D[i,1] =D[i— 1,1] + 1 — confidence((ry,s;)),2 <i < M.
@)

Equation 6 represents that the first image of the series can
be positioned anywhere in the body and we can rely on the
results of the machine learning tool only. However, this un-
certainty will be corrected later in the process, as the short-
est path finding algorithm will trace to the optimal choice.
Equation 7 defines the fill in role for the first column of the
table. This is necessary to get a simple representation of the
general rule for filling the matrix. From this point we can fill
the matrix cell by cell, starting it from the second column of
the second row. The general form to compute element D[i, ]
of the distance matrix can be formalized as follows:

where ¢ = C((rj,si-1),(ri»s;))  and ¢ =
C((rj—1,8i—1),(ri,s;)). To find the optimal path in the
graph, its end point has to be identified first. This can be
done by finding the region of the last slice with the lowest
total cost. This will be the final label of the last slice.
Starting from that, one can find the optimal path by tracking
back from the end point to a label of the first slice. The
optimal path defines our final classification. This process is
illustrated in Figure 5.

R1 | R2 | R3 | R4 | R5 | Rs
st | 1 (oY 2| 1] 1|1
s2 | 2 03| 2 | 2 | 2
s3 | 3 |d1 o5 08| 3 | 3
s4 | 4 | d2 |08 | 16|31 |38
s5 | 5 |15 w2 | 2 |32 41
s6 | 6 |26 o | 2136 |as

83 | 85 | 82 | 81 | 41 | 83

94 | 94 | 84 | 83 | ha | 85

101|112 | 95 | 87 | 9 2

v | 125135101 98 | 97 | 4
sm-1] 138 | 13,7 | 12,6 | 10,7 | 102 | 13
g—,

sm | 167 | 155 | 145 | 137 | 123 (14)

Figure 5: Shortest path finding.

5. Training

There are several properties of the proposed method that
have to be set. The first parameter is the order of the Zernike
transform. As it can be seen in Figure 3, the different or-
ders produce different reconstructed images and the feature
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vector contains different amount of information. As our in-
spection showed, the 25th order transform collects all the
required details that are necessary for an acceptable initial
classification. This choice can be also confirmed by a visual
comparison.

To avoid the problem of dealing with high dimensional
feature vectors, a PCA transform was applied. The size of
the transformed feature vector was set to 25. This was mo-
tivated by the orthogonal property of the Zernike transform.
Its basis functions are orthogonal to each other, therefore the
PCA transform is likely to find 25 significant components.
This assumption was verified during the training and testing
process.

The training of the random forest model required a few
considerations. We split the image series database into two
groups. Each image series, as a whole, was selected for ei-
ther training or for testing. This was necessary to avoid the
learning of the image specific noise effects, that could influ-
ence the testing process. We used 18 image series for train-
ing and the data of 31 patients for testing. The larger scale
of previously unseen data ensured the robustness of the al-
gorithm, while the applied ten-fold cross validation during
the learning process showed the generalization skill of the
method. The training process has basically two parameters
relevant to the random forest. The first one is the number of
the trees and the second one is the number of the variables to
test at each split. According to Breiman [Bre01] the latter pa-
rameter should be set to logy (N + 1), where N is the length
of the feature vector. The number of the trees was chosen
to be one hundred. The arrangement used for training and
validation is illustrated in Figure 6.

Parameter
Optimization
Trainin
< et e Model Performance
w split Cross Validation
Validation
| Learning
Vali;i:ttion | Mm Performance

Figure 6: The training process.

6. Results

To measure the overall accuracy of the random forest clas-
sification on unseen data, a validation process was applied.
Table 2 shows the results of the classification made by the
random forest during the validation process. This table is
not corrected with the continuity check. As it can be seen,
the class precision values vary from 82.59% to 98.50%. The
most reliable rate was achieved at the head region and the
worst was at the pelvis. The diagonal cells of the table show
the number of the correctly labeled slices. The other cells
mean the confusion of the labeling. Most of the errors were

made between the neighboring regions and only a small per-
centage of the errors were made because of the complete
miss of the labeling. The overall accuracy was 92.95% that
makes the primary classification a good basis for further pro-
cessing.

However, most of the errors were made because of the
permutation of the neighboring regions, Table 2 does not
show us the problem of discontinuity. This kind of error oc-
curs on the borders of the regions, as the slices are getting
more similar to the slices of the neighboring region. Thus
the classification tool cannot provide us a reliable decision.
The labeling begins to alternate between the two regions and
we do not receive a continuous labeling. This problem is il-
lustrated in Figure 7. The image presents the direct result
of the random forest classification without the continuity
check. The alternating gray strips illustrate the automatically
assigned different labels and the bright white lines indicate
the borders of the regions denoted by the manual labeling.
This continuity problem made it necessary to add the graph

EMPTY

HEAD
CHEST

ABDOMEN

ALTERNATING
LABELS

PELVIS

ALTERNATING
LABELS

LEG

Figure 7: Alternating labels.

based post processing phase to the system. With the pro-
posed method, the labeling of the nearby slices can be taken
into consideration when assigning a label to one slice. This
method successfully eliminated the problem of the alternat-
ing labels and solved the outlier artifacts as well. The results
after the application of the correction method are illustrated
in Figure 8 and Table 3.

As it can be seen in Table 3, the class precision values of
different body parts are between 85.79% and 99.03%. The
overall accuracy is increased to 94.20%. The lowest rate is
achieved with the pelvis. Thanks to the continuity check,
there are no outliers in the labeling and the problem of the
alternating labels is also solved. In each test case, the order
of the labels is correct and only small shifts can be seen,
usually around the borders between the ADBOMEN and the
PELVIS regions. However, these small errors between the
neighboring regions can be tolerated in most of the clinical
applications. Further results can be seen in Figure 9.

(© The Eurographics Association 2014.
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true true true true true true class

LEG | PELVIS | ABDOMEN | CHEST | HEAD | EMPTY | precision
pred. LEG 2533 43 4 12 0 0 97.72%
pred. PELVIS 157 2395 334 13 0 1 82.59%
pred. ABDOMEN 1 211 2367 33 0 2 90.55%
pred. CHEST 7 12 53 2372 55 0 94.92%
pred. HEAD 0 0 6 21 3077 20 98.50%
pred. EMPTY 1 0 0 0 16 461 96.44%
class recall 93.85% | 90.00% 85.64% 96.78% | 97.74% | 96.25%

Table 2: The confusion matrix results of the testing process without correction.

EMPTY

HEAD

/ I CHEST

ABDOMEN

PELVIS

LEG

Figure 8: Corrected labeling.

7. Conclusion

We have demonstrated that our method can solve the label-
ing task with an overall accuracy of 94.20% for whole body
MRI image series. The proposed image normalization and
feature vector extraction method can provide an image de-
scriptor that is robust against imaging artifacts and the shape
variance of the patients. This can serve as a good basis for the
classifications. The results of the random forest tool are cor-
rected with a dynamic programming based continuity check.
With this postprocessing, the achieved labeling is continuous
and does not contain any outliers. The final results have been
tested on large number of MRI series and they have showed
that the method is suitable for clinical application.

8. Future work

Our future work will aim the adaptation of the method to CT
modality and we have plans to extend our method to partial
body scans as well.

(© The Eurographics Association 2014.

Figure 9: Examples from the final results.
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true true true true true true class

LEG | PELVIS | ABDOMEN | CHEST | HEAD | EMPTY | precision
pred. LEG 2548 43 0 0 0 0 98.34%
pred. PELVIS 151 2426 251 0 0 0 85.79%
pred. ABDOMEN 0 192 2466 35 0 0 91.57%
pred. CHEST 0 0 47 2395 58 0 95.8%
pred. HEAD 0 0 0 21 3077 9 99.03%
pred. EMPTY 0 0 0 0 17 475 96.54%
class recall 9441% | 91.17% 89.22% 97.72% | 97.62% | 98.14%

Table 3: Results on the test set with correction.
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