New Approaches for Particle Tracing
on Sparse Grids

Christian Teitzel and Thomas Ertl

Computer Graphics Group, University of Erlangen
Am Weichselgarten 9, 91058 Erlangen, Germany
{teitzel,ertl}@informatik.uni-erlangen.de

http://www9.informatik.uni-erlangen.de

Abstract. Flow visualization tools based on particle methods continue
to be an important utility of flow simulation. Additionally, sparse grids
are of increasing interest in numerical simulations. In [14] we presented
the advantages of particle tracing on uniform sparse grids. Here we
present and compare two different approaches to accelerate particle trac-
ing on sparse grids. Furthermore, a new approach is presented in order
to perform particle tracing on curvilinear sparse grids. The method for
curvilinear sparse grids consists of a modified Stencil Walk algorithm
and especially adapted routines to compute, store, and handle the re-
quired Jacobians. The accelerating approaches are on the on hand an
adaptive method, where an error criterion is used to skip basis functions
with minor contribution coefficients, and on the other hand the so-called
combination technique, which uses a specific selection of small full grids
to emulate sparse grids.

1 Introduction

The idea of the sparse grid technique was developed in the 1960s by Babenko [1]
and Smolyak [12]. In 1990 sparse grids were introduced to the field of numerical
computation by Zenger [15]. By means of these grids, it is possible to reduce
the total amount of data points or the number of unknowns in discrete partial
differential equations. Due to these benefits, sparse grids are more and more used
in numerical simulations nowadays [2, 3, 5-7].

On the other hand, it is rather difficult to visualize the results of the sim-
ulation process directly on sparse grids, since evaluation and interpolation of
function values is quite complicated. Because of this, the results of numerical
simulations on sparse grids are usually interpolated to the associated full grid.
Then all known visualization algorithms on full grids can be performed, e.g.
particle tracing, iso-surface extraction, and volume rendering. However, a major
drawback of this procedure is the fact that the advantage of low memory con-
sumption of sparse grids comes to nothing using the associated full grid for the
visualization step.

Therefore, visualization tools working directly on sparse grids are an impor-
tant topic of research. Recently, Heuler and Rumpf presented an algorithm for

2 Christian Teitzel and Thomas Ertl

S, e R s Coe
81,2 : S&z . L] o o L] L] °
S, | -] 331 ’ . ’

Fig. 1. On the left hand side a two-dimensional hierarchical subspace decomposition
is shown and on the right hand side you can see the respective sparse grid.

iso-surface extraction on sparse grids [9]. In a previous work [14], we introduced
particle tracing on uniform sparse grids and showed that sparse grids can be
used for data compression in order to visualize huge data sets even on work-
stations with a limited amount of main memory. Now we present two major
improvements of particle tracing on sparse grids. In order to accelerate sparse
grid particle tracing, an adaptive approach for the interpolation process (Sub-
sect. 2.1) and the so-called combination technique (Subsect. 2.2) are explained.
Afterwards, we are going to introduce particle tracing on curvilinear sparse grids
(Subsect. 3.3).

2 Sparse Grids

In this section a very brief introduction to the basic ideas of sparse grids is given.
For a detailed survey of sparse grids we refer to [2, 15], for a brief summary to [14].
We describe only three-dimensional grids, whereas the sketches always reveal the
two-dimensional situation.

If a smooth function f is used in a numerical computation it has to be dis-
cretized, which means that only function values at certain positions of a spatial
grid are stored. On a uniform mesh this can be done by a hierarchical basis de-
composition where piecewise tri-linear finite elements are used as basis functions.
In the two-dimensional situation these basis functions are bi-linear hat-functions
reaching their maxima at the dots on the left hand side of Fig. 1 and with dis-
junct supports denoted by the rectangles. Then, the interpolated function f, is

given by
n n n
n = E E E fz'1,i2,is (1)
i1=11i9=11i3=1
9i1—1 gin—1 gig—1
L — (i1,42,i3) (Zm'z,ia)
where f’1’12v’3 - Z Z Z k1,k27k3 kth,kS) (2)
k1=1 1 kz=1
The values ¢\'"°?') are called contribution coefficients and b{""2¥®) denotes the
: k1,k2,k3 < k1,k2,k3
mentioned basis functions.

New Approaches for Particle Tracing on Sparse Grids 3

The concept of sparse grids is to calculate the interpolated function fn by
using only certain basis functions:

fo= S fiinis - 3)

i1+i2+i3 <n+2

It can be shown that by interpolating this way a very small loss of accuracy
is rewarded with a huge amount of saved storage. The number of nodes of the
underlying grids are given by O (2°") in case of full and by O (2" - n?) in case
of sparse grids (compare Section 4).

2.1 Adaptive Evaluation of Sparse Grids

In order to improve on the rather time consuming standard sparse grid interpo-
lation as described above, an adaptive approach for the function evaluation is
presented in this subsection. Since our goal is to decrease the computing time of
the sparse grid interpolation, we introduce an adaptive traversal of the standard
sparse grid in order to compute function values. The idea is to omit contribution
coefficients with a norm below a given error criterion during the interpolation
process. Going into the details, we have to distinguish between adaptivity with
regard to the L2 and the L*® norm. Although they generate the same sparse
grid, these norms lead to slightly different adaptive approaches.

Analyzing the situation with respect to the L® norm, we find that the con-
tribution of one basis element of subspace S;, i,,i; to the function value is given
by (compare Eq. (2))

(i1,i2,i3) (i1,i2,i3) (i1,i2,i3)

(#1,32,43) 1 (i1,i2,i3) _ . _
| k1,k2,ks kiskasks || 7 | Tk k2sks bkl,kmks o Chi k2, ks (4)
Then, the greatest possible contribution of subspace S, i, i, is
max | ith 1<k < 26 (5)
1,R2,R3 - -
k1,k2,ks
and the maximum contribution of level n is
Z max |cli2is) (6)
k1,k2,ks :
L= k1,k2,ks
i1+ig+iz=n-+2
For vector fields the absolute value |- | has to be replaced by an appropriate

norm of the Euclidean space R™ and we apply the maximum norm of R™ in
order to ensure maximum accuracy for all components of the vector field.

The actual concept of the adaptive grid traversal is that basis functions that
have contribution coeflicients with an absolute value below a given error bound
are left out during the interpolation process. This results in a function evaluation
that considers the local structure of the data set. That is, regions with a high
variation in data values and, therefore, large contribution coefficients primarily
contribute to the result, whereas coefficients of smooth regions are likely to be
omitted.

4 Christian Teitzel and Thomas Ertl

As a second modification of the plain sparse grid algorithm, we have inte-
grated a preprocessing step, which computes and stores the maximum contribu-
tion of each subspace (see Eq. (5)). This preprocessing step is performed during
the conversion of a full grid to the appropriate sparse grid. This kind of adaptive
grid traversal leads to a function evaluation with direction dependent accuracy,
because different subspaces of the same level exhibit different resolutions in the
three coordinate directions (reconsider the hierarchical subspace decomposition
on the left hand side of Fig. 1). Omitting an entire level of the sparse grid (com-
pare Eq. (6)) is totally independent of the spatial structure of the data set and,
therefore, a contradiction to adaptive approaches in general.

Now let us discuss the adaptive approach based on the L? norm. A straight-
forward calculation shows that the contribution of one basis element of subspace
Si1,is,is to the function value is given by

C(llﬂzﬂs) (41,i2,i3)
k1,k2,ks kl’k27k3

\/ 3. irtistia—1)73 (7)

0(11’12’13)
k1,k2,ks

Since i1 + 72 + i3 — 1 = n + 1 with n denoting the current level, the square-root
term only depends on the level and is, therefore, constant for all subspaces of
the same level. Hence, this term is also a factor of the maximum contribution of
the corresponding subspaces.

In contrast to the L norm, the L? norm generates an adaption strategy
that considers not only the absolute value but also the level of a contribution
coefficient. Contribution coefficients of higher levels are more likely to be omitted
than coefficients of lower levels. Later on in Subsect. 4, we are going to see that
the different properties of these adaptive grid traversals yield different results.

2.2 The Combination Technique

Since both the standard and the adaptive sparse grid interpolation of function
values are quite complicated and rather time consuming, we have also imple-
mented the so-called combination technique, which was introduced by Griebel,
Schneider, and Zenger in 1992 [6]. Actually, the combination method has been
used in numerical simulations in order to combine partial solutions computed on
smaller, suitable full grids to the desired sparse grid solution. However, we start
with a data set given on a sparse grid and decompose the grid such that the data
set is represented on certain uniform full grids of low resolution. Now the fast
and simple tri-linear interpolation can be performed on each of these full grids.
The resulting value is computed by linear combination of the tri-linear interpo-
lated full grid results. Specifically, it can be proven that the three-dimensional
interpolated function f,, € L, is given by

Fo_ c 4 c
f" - Z i1,i2,di3 2- Z i1,i2,i3 + Z i1,12,i3 (8)
i1+i2+iz=n+2 i1+i2+iz=n+1 i1+i2+i3=n

where ff ; .. denotes the tri-linear interpolation of function values on the re-

spective full grid. Figure 2 reveals the two-dimensional situation, which also

New Approaches for Particle Tracing on Sparse Grids 5

eecccece
+
.
+

Fig. 2. A two-dimensional sparse grid of level 3 can be reconstructed by linear combi-
nation of five full grids of low resolution.

shows that the used full grids consist of the same nodes as the corresponding
sparse grid.

Investigating the benefits of the combination technique, we find that the
total number of summands of the standard sparse grid interpolation on a three-
dimensional sparse grid of level n is given by ¢n(n+1)(n+2) (compare Eq. (3)),
whereas the total number of tri-linear interpolations of the combination method
adds up to 3n(n — 1) + 1 (see Eq. (8)). That is, the number of tri-linear inter-
polations of the combination method is one order of magnitude lower than the
number of summands of the standard interpolation. However, the main advan-
tage of the combination technique is the fact that uniform full grids are used.
Thus, it is possible to implement the interpolation routine in terms of tight
for-loops (see Sect. 3.2), which makes the combination technique an order of
magnitude faster than the standard approach even for the lower levels.

3 Particle Tracing

Lagrange visualization techniques of vector fields are based on the numeri-
cal solution of an initial value problem for the ordinary differential equation:
dx/dt = v(x,t). Usually, a numerical integration method is used to obtain a
solution. All such methods have in common that they must evaluate the vector
field v at certain positions, which are in general not at grid points. Therefore,
the value of v at such a position has to be interpolated. As mentioned in Sub-
sect. 2, this interpolation on sparse grids is different from that one on full grids,
whereas most other parts of the particle tracing algorithm can remain unchanged.
Further exceptions are the routines required for handling curvilinear grids (see
Subsect. 3.3).

Our sparse grid particle tracing modules are implemented as IRIS Explorer
modules (compare also [14]). In order to visualize the particles, we have chosen
lines, bands, tubes, balls, and tetrahedra as geometrical primitives. Of course,
all kinds of traces can visualize an additional scalar value by means of color
coding. Moreover, balls and tetrahedra can reveal another scalar value by their
size. Besides that, bands and tetrahedra display the local vorticity of the flow via
rotating around the actual streak line (see colored figures in the Appendix). As
integration methods for the particle tracing algorithm, we use the integration
schemes that we have already implemented in our full grid particle tracer. A
comparison of these schemes can be found in [13]. An adaptive Runge-Kutta
method of order 3 (RK3(2)) is used for the tests described in Sect. 4.

6 Christian Teitzel and Thomas Ertl

In contrast to tri-linear full grid interpolation, sparse grid interpolation does
not operate locally, because one basis function in every subspace contributes
to the function value. Since the tri-linear interpolation is one of the most time
consuming operations during the particle tracing process on full grids [10], the
complicated sparse grid interpolation is all the more time consuming. Therefore,
it is important to execute the interpolation as fast as possible.

The contribution coefficients of the sparse grid are usually stored in a binary
tree [2,3,9]. Then, a recursive tree traversal has to be performed in order to
interpolate the function value. This tree traversal is very slow. Although caching
strategies can increase the efficiency of the traversal [9], the computation of the
values remains rather time consuming. In order to avoid the tree traversal and to
accelerate the access to the contribution coefficients, we have developed a very
efficient data structure based on arrays (see [14]). In the next two subsections
our new approaches for further cutting the interpolation time are described.

3.1 Adaptive Grid Traversal

In order to perform an adaptive grid traversal as described in Subsect. 2.1,
our former class hierarchy [14] has been slightly modified. The interpolation
process has been enhanced in such a way that contribution values smaller than
a given error bound are omitted. In addition, the preprocessing step for creating
the actual sparse grid has been modified. During this process the contribution
coefficients are computed from an analytic function or a full grid data set, or
they are directly read from a sparse grid data set. Because we often deal with
vector fields, each basis function does not contain a single contribution coefficient
but an array of coefficients. For the purpose of adaptive function evaluation, the
mentioned array has been extended by one component in order to store the
maximum absolute value of the contribution coefficients. Moreover, a variable
has been added for storing the maximum contribution coefficient of the entire
subspace. Of course, all these additional variables storing maximum contribution
coeflicients are initialized during the creation of the sparse grid.

3.2 Combination Technique

Equation (8) determines the interpolation process for the combination tech-
nique, which combines full grids of low resolution to a resulting sparse grid.
Since these full grids are uniform grids, the function values can be stored in
three-dimensional arrays and derived by tri-linear interpolation. Thus, the in-
terpolation method of the appropriately derived class can address the necessary
function values in a tight loop. This fact makes the combination technique an
order of magnitude faster than the previously described sparse grid interpolation
even for low levels.

3.3 Curvilinear Sparse Grids

The underlying concept of curvilinear sparse grids is the same as for curvilinear
full grids. In the case of uniform full grids, only the function values are stored

New Approaches for Particle Tracing on Sparse Grids 7

in an array, whereas in case of curvilinear grids, the function values and the
coordinates of the grid points as well are saved. If a curvilinear sparse grid is
considered, the contribution coefficients of the coordinates of the grid points
are stored as additional components of the basis functions. For the combination
technique, the coordinates of the grid points are stored in the arrays of the small
full grids accordingly.

Particle tracing in arbitrary non-uniform grids requires the so-called point
location to be performed for each integration step, in order to find the cell con-
taining the actual particle position. For the case of curvilinear grids, particle
tracing algorithms can be divided into P-space and C-space methods. Sadar-
joen et al. [11] showed that P-space algorithms are in general preferable to C-
space methods. Hence, we have implemented a P-space algorithm appropriately
adapted for sparse grids. The stencil walk algorithm introduced by Buning [4]
has been modified in the following way. First of all, we initialize the desired
C-space position 7. by starting in the center of our volume in C-space. In order
to improve this guess, the C-space position is transformed into P-space. This
is done by a sparse grid interpolation using either plain sparse grids, adaptive
sparse grids, or the combination technique. If the difference of the transformed
guess and the current position in P-space is small enough, we accept the C-space
position. Otherwise the difference is transformed back into C-space via the in-
verse Jacobian and then added to the previous guess. Thereafter, the procedure
is iterated until the appropriate position in C-space is located. On full grids, the
stencil walk algorithm usually needs less than five iterations to find the correct
C-space position.

As yet, the modifications of the stencil walk algorithm seem to be very mod-
erate. But the main question is how to calculate the inverse Jacobian. On full
grids, this is done on the fly by tri-linear interpolation of the eight Jacobians at
the vertices of the current cell and subsequent matrix inversion. The Jacobians at
the vertices are computed by finite differences. However, tri-linear interpolation
is not possible on sparse grids. Thus, we have to use sparse grid interpolation
and we have to store the inverse Jacobian, i.e. the respective contribution coef-
ficients, at each sparse grid point. This memory overhead can only be justified
with the fact that sparse grids themselves are very storage efficient.

Now we describe how the contribution coefficients of the inverse Jacobians
are computed and stored. In case of uniform sparse grids, we compute the con-
tribution coefficients in a preprocessing step from the input data and store the
coefficients in the sparse grid structure, which is done by the setCoeff(...)
methods. The data sets usually do not contain the Jacobians explicitly, thus, the
Jacobians and their inverse matrices have to be calculated as well as their contri-
bution coefficients. Since a contribution coefficient can not be computed from a
single function value but from a specific collection of function values, the inverse
Jacobians have to be stored somewhere. We have modified the setCoeff(...)
methods in such a way that in a first pass the contribution coefficients of the
function values and the inverse Jacobians are computed and stored in the sparse
grid structure. In a second pass, the contribution coefficients of the inverse Ja-

8 Christian Teitzel and Thomas Ertl

Table 1. Computing times in CPU-seconds for integrating nine stream ribbons over
55 time steps in an analytic vortex flow using an adaptive RK3(2) scheme.

level 3 4 5 6 7 8
of full grid points 9% 17 33 65° 129 2578
uniform full grid 0.67s 1.18s 1.89s 2.28s 2.66s

uniform sparse grid 0.24s 033s 068s 093s 451ls 591s
uniform combination 0.07s 0.12s 0.20s 0.30s 1.15s 1.61s
curvilinear full grid 0.70s 1.30s 2.58 s 5.28 s 10.59 s

curvilinear sparse grid 1.56 s 3.28 s 6.82s 9.31s 22.72s 31.16 s
curvilinear combination 0.64s 1.19s 2.02s 3.02s 6.05s 849s

cobians are computed and stored over the original components of the inverse
Jacobians. The second pass traverses the levels beginning with the highest level
and ending with level 1. It is done this way because the contribution coefficients
only depend on the current function value and on the function values of lower
levels. Hence, it is possible to overwrite the original components of the inverse
Jacobians successively. Notice that level 0 is not part of the mentioned second
pass because in level 0 contribution values and function values coincide.

4 Results

In order to compare our sparse grid particle tracing modules with a full grid
particle tracer, several data sets were used. For uniform grids we used the data
set of a cavity flow, which was provided by S. H. Enger from the Department of
Fluid Mechanics and is given on a full grid with 129° nodes, which corresponds to
level 7 in sparse grid terminology. The data set contains the velocity, pressure,
and temperature at each vertex requiring more than 40 MB. The same data
set with a resolution of 2573 (level 8) would need more than 320 MB, which
is probably too much for most workstations. On the other hand, this data set
stored on a sparse grid consumes only 175 kB for level 7 and 415 kB for level 8
(compare Table 2). For curvilinear grids the NASA blunt fin data set was used
(see Fig. 4). In addition, we used several analytic test data sets on uniform
and different curvilinear grids. Therefore, we were able to create sparse and full
grids in any resolution only limited by the main memory of the used machine.
These vector fields were chosen for our quantitative performance tests, with
the results being comparable to the ones obtained from the discrete given data
sets. All tests were performed on an SGI with a 250 MHz R10000 processor.
For each experiment nine stream ribbons consisting of about 500 particles were
integrated. The CPU-times were measured in seconds and are listed in Table 1.
The measured times show that interactive particle tracing is possible even on
sparse grids of level 8 by using the combination technique.

New Approaches for Particle Tracing on Sparse Grids 9

Fig. 3. In the image on the left hand side, streak tetrahedra in an analytically given
flow on a curvilinear sparse grid of level 5 are shown. In the next two pictures streak
lines depict a vortex flow field; yellow lines display the flow on a full grid, blue, green,
and red lines on a curvilinear sparse grid of level 2, 3, and 4 respectively. In the closeup
on the right hand side, it can be seen that the traces computed on the full grid and
the sparse grid of level 4 are almost identical.

Investigating the accuracy of sparse grid particle tracing, the traces computed
on sparse grids are compared with their counterparts resulting from full grids.
Theory tells us that the difference should be rather small. In fact, the results of
particle tracing on the analytic data set confirm this estimation, since the lines
computed on uniform full and sparse grids coincide on screen for levels greater
than 3 (compare [14]) and for levels greater than 4 on curvilinear grids (see
Fig. 3). However, for the derivation of the upper bounds for the interpolation
errors, a certain smoothness of the data was a prerequisite. Since discrete data
sets are not smooth at all, these estimations do not hold in this case. Indeed,
for discrete data we found out [14] that the particle traces computed on sparse
grids converge rather slowly to the full grid solution. Nevertheless, due to the
great advantage of low memory consumption, it is possible to use a sparse grid
of a sufficiently high level to overcome this problem.

For the adaptive grid traversal, several experiments have shown that it is
important whether the L? norm is used for the adaptive traversal or the L
norm. Employing the L* norm leads to a marginal decrease in computing time
but to a significant loss in accuracy. However, by using the L? norm, it is possible
to decrease computing time by about 20 per cent and to achieve nearly the
quality of the corresponding plain sparse grid.

The next approach for accelerating particle tracing on sparse grids is the com-
bination technique. The first advantage of this technique compared to adaptive
grid traversal is the fact that there is no loss in accuracy at all. Combination
technique and plain sparse grid interpolation create exactly the same particle
path. The second and more important benefit is that the combination technique
is almost by a factor of four faster than plain sparse grid interpolation (com-
pare Table 1). That is, particle tracing based on the combination method is a lot
faster and also more accurate than particle tracing based on adaptive sparse grid

10 Christian Teitzel and Thomas Ertl

Table 2. Memory consumption of a typical data set.

level 5 6 7 8 9 10
uniform full grid 640 kB 5 MB 40 MB 320 MB 25 GB 20 GB
uniform sparse grid 29kB 73kB 175 kB 415kB 970 kB 2.2 MB
uniform combination 110 kB 295 kB 760 kB 1.8 MB 4.5 MB 10.5 MB
curvilinear full grid' 1MB 8 MB 64 MB 512 MB 4GB 32GB

curvilinear sparse grid® 99 kB 248 kB 595 kB 14 MB 32 MB 7.5 MB
curvilinear combination? 375 kB 1 MB 2.5 MB 6.1 MB 15.3 MB 35.7 MB

! including coordinates but excluding inverse Jacobians
% including coordinates and inverse Jacobians

interpolation. Hence, the combination technique should be used for interpolation
on sparse grids.

Now let us turn to curvilinear sparse grids. We have implemented curvilinear
grids with all three sparse grid interpolation methods, but in consideration of
the last paragraph we usually employ the combination technique in connection
with curvilinear sparse grids. For a first test of particle tracing in curvilinear
sparse grids we have used the NASA blunt fin data set (see Fig. 4). Additionally,
our module has been verified with several analytic data sets (compare Fig. 3).
On the one hand side these tests have confirmed that smooth data sets are
more appropriate for using sparse grid methods than discontinuous data. On the
other hand these tests have revealed that particle traces calculated on curvilinear
sparse grids converge slower to the corresponding full grid trace than particle
traces computed on uniform sparse grids. The reason for this decline in accuracy
might be due to a less accurate point location caused by an intensive use of sparse
grid interpolation in the stencil walk algorithm. Finally, time measurements have
shown that particle tracing on curvilinear sparse grids is about five times slower
than tracing on uniform grids. This is roughly the same deceleration as on full
grids.

The great advantage of the sparse grid technique is the low number of re-
quired grid points. Table 2 demonstrates this benefit listing the memory con-
sumption for various grid levels on the assumption that a typical data set re-
sulting from a numerical flow simulation is given. Such data usually contain five
floating point values, namely three velocity components, pressure, and temper-
ature, at each grid node. Then, these floating point values add up to 20 bytes
per node. In case of curvilinear grids three more floating point numbers for the
coordinates and nine additional values for the inverse Jacobians are stored at
each grid node. Nevertheless, sparse grids are very suitable for compressing huge
data sets. This opens up the potential to visualize them even on workstations
with a limited amount of main memory.

New Approaches for Particle Tracing on Sparse Grids 11
5 Conclusion

We have introduced particle tracing on curvilinear sparse grids and presented
competing approaches for accelerating the time consuming sparse grid interpola-
tion process. Technically, we have implemented adaptive sparse grids with error
monitoring and the combination technique. This allows to carry out flow visu-
alization directly on sparse grids without prior transformation to the associated
full grids. This is an important step for the broader application of the sparse
grid method, since in real applications it is often impossible to load full grids of
more than 1283 nodes into the main memory of a workstation for visualization
purposes. Furthermore, the sparse grid approach can be used as a compression
method in order to realize particle tracing in huge data sets on workstations
with a small amount of main memory.

Feasible directions of future work are texture based algorithms and iconic
methods combined with feature extraction. In addition, our sparse grid particle
tracer could be extended to multi-block data sets in the same way as it was done
in our full grid particle tracing module [8]. In a parallel work we are investigat-
ing further visualization techniques on sparse grids, namely hardware assisted
volume rendering and fast iso-surface extraction.

References

1. K. I. Babenko. Approximation by trigonometric polynomials in a certain class
of periodic functions of several variables. Soviet Mathematics, 1:672-675, 1960.
Translation of Doklady Akademii Nauk SSSR.

2. H.-J. Bungartz. Dinne Gitter und deren Anwendung bei der adaptiven Lésung der
dreidimensionalen Poisson-Gleichung. PhD thesis, TU Munich, 1992.

3. H.-J. Bungartz and T. Dornseifer. Sparse Grids: Recent Developments for Elliptic
Partial Differential Equations. In Multigrid Methods V, Lecture Notes in Compu-
tational Science and Engineering. Springer-Verlag, 1998.

4. P. Buning. Numerical Algorithms in CFD Post-Processing. In Computer Graph-
ics and Flow Visualization in Computational Fluid Dynamics, number 1989-07 in
Lecture Series, Brussels, Belgium, 1989. Von Karman Institute for Fluid Dynamics.

5. M. Griebel, W. Huber, U. Riide, and T. Stortkuhl. The combination technique
for parallel sparse-grid-preconditioning or -solution of PDE’s on multiprocessor
machines and workstation networks. In L. Bougé, M. Cosnard, Y. Robert, and
D. Trystram, editors, Second Joint International Conference on Vector and Parallel
Processing, pages 217-228, Berlin, 1992. CONPAR/VAPP, Springer-Verlag.

6. M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution
of sparse grid problems. In P. de Groen and R. Beauwens, editors, International
Symposium on Iterative Methods in Linear Algebra, pages 263—281, Amsterdam,
1992. IMACS, Elsevier.

7. M. Griebel and V. Thurner. The efficient solution of fluid dynamics problems by
the combination technique. Int. J. Numer. Methods Heat Fluid Flow, 5:251-269,
1995.

8. R. Grosso, M. Schulz, J. Kraheberger, and T. Ertl. Flow Visualization for Multi-
block Multigrid Simulations. In P. Slavick and J. J. van Wijk, editors, Virtual

12

Christian Teitzel and Thomas Ertl

Fig. 4. Streak balls display the flow in the blunt fin data set; the red balls are computed
on a curvilinear sparse grid of level 4, the yellow ones on a grid of level 3, and the green
ones on a grid of level 2.

10.

11.

12.

13.

14.

15.

Environments and Scientific Visualization ’96, Heidelberg, 1996. Springer-Verlag.
Proceedings of the Eurographics Workshop in Prague, Czech Republic.

N. Heufler and M. Rumpf. Efficient Visualization of Data on Sparse Grids. In
H.-C. Hege and K. Polthier, editors, Mathematical Visualization, pages 31-44, Hei-
delberg, 1998. Springer-Verlag.

D. N. Kenwright and D. A. Lane. Optimization of Time-Dependent Particle Trac-
ing Using Tetrahedral decomposition. In G. M. Nielson and Silver D., editors,
Visualization ’95, pages 321-328, Los Alamitos, CA, 1995. IEEE Computer Soci-
ety, IEEE Computer Society Press.

A. Sadarjoen, T. van Walsum, A. J. S. Hin, and F. H. Post. Particle Tracing Algo-
rithms for 3D Curvilinear Grids. In Fifth Eurographics Workshop on Visualization
in Scientific Computing, 1994.

S. A. Smolyak. Quadrature and interpolation formulas for tensor products of
certain classes of functions. Soviet Mathematics, 4:240-243, 1963. Translation of
Doklady Akademii Nauk SSSR.

C. Teitzel, R. Grosso, and T. Ertl. Efficient and Reliable Integration Methods for
Particle Tracing in Unsteady Flows on Discrete Meshes. In W. Lefer and M. Grave,
editors, Visualization in Scientific Computing 97, pages 31-41, Wien, April 1997.
Springer-Verlag. Proceedings of the Eurographics Workshop in Boulogne-sur-Mer,
France.

C. Teitzel, R. Grosso, and T. Ertl. Particle Tracing on Sparse Grids. In D. Bartz,
editor, Visualization in Scientific Computing ’98, pages 81-90, Wien, April 1998.
Springer-Verlag. Proceedings of the Eurographics Workshop in Blaubeuren, Ger-
many.

C. Zenger. Sparse grids. In Parallel Algorithms for Partial Differential Equations:
Proceedings of the Sizth GAMM-Seminar, Kiel, 1990.

