Interactive Direct Volume Rendering of
Time-Varying Data

John Clyne and John M. Dennis

Scientific Computing Division
National Center for Atmospheric Research

Abstract. Previous efforts aimed at improving direct volume rendering
performance have focused largely on time-invariant, 3D data. Little work
has been done in the area of interactive direct volume rendering of time-
varying data, such as is commonly found in Computational Fluid Dy-
namics (CFD) simulations. Until recently, the additional costs imposed
by time-varying data have made consideration of interactive direct vol-
ume rendering impractical. We present a volume rendering system based
on a parallel implementation of the Shear-Warp Factorization algorithm
that is capable of rendering time-varying 128% data at interactive speeds.

1 Introduction

In recent years Direct Volume Rendering (DVR) has proven to be a powerful
tool for the analysis of time-varying, three-dimensional CFD datasets associated
with the aerospace, atmospheric, oceanic and astrophysical sciences. The bene-
fits of DVR, probabilistic data classification [6] and direct projection of volume
samples, are key to producing insightful visualizations of simulation results, rich
with amorphous and fluid-like features [5].

Visual data exploration is an inherently interactive process. In order to fully
exploit the power of DVR as an analysis tool, interactive frame rates must be
achieved. Static images or animations produced through a batch process, repre-
senting complex 3D phenomena, may be of limited value. Invariably, features of
interest are obscured, improperly classified, or poorly lit. Much work has been
done in the area of accelerating DVR methods for static data [8,11,18,12,15,2,
13]. Interactive volume rendering of single time-steps is now within the reach of
many researchers. However, temporal animations are typically produced through
a batch process. Time-varying datasets impose additional costs that have made
interactive rendering difficult to achieve. The principal culprit is I/O. Rendering
even a moderately sized (256%) dataset made up of 8-bit voxels at a frame rate
of 10 Hz requires an input pipe capable of delivering a sustained bandwidth of
over 150 MB/sec.

In this paper, we detail our efforts at making interactive DVR of time-varying
data possible. We present a volume rendering system based on a parallel imple-
mentation of Lacroute’s Shear-Warp Factorization algorithm [9]. The remainder
of this paper is organized as follows: In Section 2 we discuss research efforts

related to our own. In Section 3 we present an overview of the serial and parallel
implementations of the Shear-Warp algorithms, and we discuss steps we have
taken to support time-varying data. Our implementation is presented in Section
4. In Section 5 we address performance. In Section 6 we draw conclusions.

2 Related Work

There have been numerous successful efforts in the area of performing real-time
DVR of moderately-sized (256°) static data sets [3, 7,2, 8, 13, 15]. The approaches
taken can be classified into hardware and software based methods. Hardware
methods include the development of custom hardware, dedicated to performing
volume rendering [7,13], and the clever exploitation of conventional polygon en-
gines in order to accelerate the volume rendering task [3, 17]. Interactive volume
rendering can be achieved via software methods by mapping serial algorithms
onto general-purpose parallel computers. The increasingly wide-scale availability
of commercial multiprocessors as general compute platforms has made this strat-
egy popular and practical as evidenced by the abundance of research published
on this subject [11,18,2,8, 15].

More closely related to our efforts of visualizing time-varying data is the work
of Shen and Johnson [16], and Chiueh and Ma [4]. Shen and Johnson address the
I/0 problem by applying data compression. A preprocessing step is performed
on the volume data to create a differential file. The first time-step in a series
serves as a basis function and is recorded in its entirety to the differential file. For
each subsequent time-step, only the differential information between the time-
step being processed and the preceding time-step is recorded. Shen and Johnson
report on a second optimization as well: they adapt their volume renderer to
only update those pixels that are affected by voxels that have changed between
the preceding and current time-step.

More recently, Chiueh and Ma take another approach, pipelining the multi-
timestep rendering process and exploiting a combination of intra-volume and
inter-volume parallelism [4]. Conventional parallel volume renderers operating
on static data dedicate multiple processors to render a single data volume.
Chiueh and Ma term this intra-volume parallelism. Alternatively, inter-volume
parallelism is employed by simultaneously rendering multiple data volumes on
multiple processors. In the extreme case, the number of time-steps rendered in
parallel equals the number of processors available.

Though both of these techniques are capable of greatly accelerating overall
rendering rates, their utility as interactive tools may be restricted. Chiueh’s and
Ma’s approach suffers from the pipeline effect: changes in viewing parameters
invalidate the pipeline, requiring it to be drained and restarted. These restarts,
which result in inter-frame delays, may be acceptable for short pipelines. For
longer pipelines, this latency may be great enough to significantly impact inter-
activity. The differential volume renderer is also impacted by viewing parameter
changes, such as changes in viewpoints or classification, which force the entire

image to be updated. Additionally, differential volumes do not readily support
random access of time-steps.

Our goal is to produce a portable, high-frame-rate, low-latency rendering
system that is unencumbered by these restrictions and is thus better suited
for interactivity. We exploit a number of advances in computing to accomplish
this task. We implement a fast, parallel rendering algorithm, which includes
several optimizations that address time-varying data. Our principal optimiza-
tions include a fast, table-based gradient estimator and the overlapping of I/O
and computational tasks. We utilize a commercially-available, shared-memory
multiprocessor. We take advantage of readily available, inexpensive, high-speed
disk arrays to help address I/O bandwidth requirements. We utilize commodity,
high-bandwidth (100Mb/sec) networking to deliver imagery from our rendering
platform to a display host.

3 Shear-Warp Factorization Algorithm

The Shear-Warp Factorization algorithm operates by applying an affine view-
ing transformation to transform object space into an intermediate coordinate
system that Lacroute calls sheared object space. Sheared object space is defined
by construction such that all viewing rays are parallel to the third coordinate
axis and perpendicular to the volume slices. Volumes are assumed to be sam-
pled on a rectilinear grid. For a parallel projection, the viewing transformation
is simply a series of translations. Note that the resampling weights are invariant
within each slice because all voxels are translated by the same amount within
each slice. After the slices have been translated and resampled, they may be
efficiently composited in front-to-back order using the over operator to produce
an intermediate, warped, baseplane image. The distorted, baseplane image must
then be resampled into final image space.

Parallel implementations of the Shear-Warp algorithm, demonstrating good
speedup, have been reported using both message-passing [2,15] and shared-
memory [8] systems. Our target platform is an HP Exemplar shared-memory
multiprocessor. We therefore elected to extend an existing serial implementa-
tion of the algorithm, the VolPack library [10], following Lacroute’s successful
parallelization of this same package [8]. We discuss our parallel implementation,
pointing out the deviations between Lacroute’s efforts and our own. We next
discuss steps taken aimed at accommodating time-varying data volumes.

The VolPack library implements two rendering algorithms that are of inter-
est to us. The first operates on preprocessed, run-length encoded (RLE) data
volumes. The pre-processing step computes the view-independent opacity and
gradient information for the data samples. Viewing and shading parameters may
subsequently be changed, but classification information is fixed. There are two
advantages to the RLE algorithm: 1) Opacity and gradient information do not
need to be computed during rendering. 2) The RLE data structure permits the
algorithm to take advantage of data coherency by skipping over transparent
voxels. For many datasets this optimization can yield a significant savings. The

second algorithm simply operates on raw data. No preprocessing is performed.
Consequently, the renderer does not utilize volume data coherency. For static
data, the RLE algorithm generally has far superior performance than the raw
data algorithm. However, as we discuss later, the raw data rendering algorithm
has some attractions for time-varying data, namely, reduced I/O requirements.

Execution time for the RLE algorithm is dominated by two calculations: 1)
projection of the volume into the baseplane image and 2) warping the baseplane
image into the final image. The raw data algorithm must perform the addi-
tional step of computing gradient vectors and determining voxel opacity values.
We parallelize each of these computational phases, synchronizing processors in
between.

Projection of the 3D volume, which involves resampling and compositing the
volume slices, is the most computationally expensive task in the RLE algorithm
and also the most challenging to efficiently implement in parallel. To minimize
processor synchronization, a task partitioning based on an image-space decom-
position of the baseplane image is employed. Each processor is responsible for
computing a number of scanlines in the baseplane image. The baseplane image
is partitioned into small groups of contiguous scanlines. Processors are initially
statically assigned groups of scanlines in cyclical fashion. As the calculation pro-
ceeds, dynamic task stealing is utilized to perform load balancing. Each processor
maintains its own queue of groups of scanlines. As soon as a processor finishes all
of its work, it tries to steal a group of scanlines from its neighbors. This process
continues until projection is complete. Our task-stealing implementation differs
from Lacroute’s in that processors only look to a limited number of neighbors
for additional work. While this may lead to load imbalance under rare patho-
logical conditions, it simplifies termination logic and reduces synchronization
requirements.

Resampling the baseplane image typically represents 5% of the total calcu-
lation for the RLE renderer. We partition the workload by dividing the post-
warped image into P groups of adjacent scanlines (where P is the number of pro-
cessors) and statically assign one group of scanlines to each processor. There are
no pixel interdependencies in the post-warped image, thus no synchronization is
required. Our implementation differs from Lacroute’s which uses an interleaved
assignment, of tile-shaped tasks, in an effort to provide load balancing, instead
of groups of contiguous scanlines.

The raw data algorithm requires the additional step of classifying the data
and computing normal vectors. Classification is performed via a user-defined
lookup table. Normal vectors are estimated using central differences. We easily
parallelize these operations by partitioning the volume into contiguous blocks
and assigning each processor a single block.

3.1 Time-Varying Data

Time-varying data incur additional rendering costs primarily due to I/O. The
principal technique we employ to address these costs is to “hide” the I/O behind
the rendering calculations by using a separate I/O thread to double-buffer reads

of volume files. A parallel memory copy is then employed to move the input data
from buffer space to user space. We note that double-buffering entails keeping
two copies of data in memory, which may limit the dataset’s size on machines
with smaller memories.

There are tradeoffs to be considered between the RLE and raw data render-
ing algorithms. The RLE algorithm is typically faster because it exploits data
coherency. However, the RLE data volumes, which contain three copies of the
data and include gradient information, may be substantially larger than the orig-
inal raw data volumes and have correspondingly greater I/O requirements. The
exact size of the RLE volume is largely determined by the user-defined classifi-
cation function: the more voxels whose opacity is mapped to zero, the smaller
the RLE volume becomes. Finally, there is another issue that may make the raw
data algorithm more attractive: RLE datasets prohibit changes in classification.

4 System Overview and Implementation

We have developed a comprehensive rendering system based on the extensions
to the VolPack library discussed above. Volsh is an interactive application with
an X11-based graphical user interface (GUI). Since large multiprocessor config-
urations typically do not have directly attached display devices, Volsh is im-
plemented as two separate UNIX processes communicating via internet-domain
sockets. One process runs on the parallel machine, performing rendering and
managing the GUL The second process runs on the display host and is respon-
sible for ingesting post-warped imagery transmitted by the renderer, resampling
the post-warped imagery to final imagery at the desired screen resolution, and
posting the imagery to the frame buffer. The resampling and posting operations
are performed via the OpenGL API. The rendering host and display host are
networked via a 100Mb/sec FDDI ring. The network bandwidth requirements
between the renderer and the display process are non-negligible. To minimize
bandwidth requirements, the renderer transmits reduced-resolution post-warped
imagery (typically 256x256 pixels) to the display system. As with the input
stream, we dedicate a single thread to double-buffer the output image stream.

4.1 Hardware

The results reported in Section 5 were collected from an HP Exemplar SPP2000
X-Class technical server. The X-Class Exemplar SPP2000 is a cache coherent
Non Uniform Memory Access (cc-NUMA) scalable shared memory computer
consisting of as many as 512 180-MHz Hewlett-Packard PA-RISC 8000 proces-
sors, each with a 1 MB data and instruction cache. The Exemplar SPP2000
hardware architecture can be thought of as a tightly coupled cluster of Sym-
metric Multi-Processor (SMP) ”hypernodes.” Each hypernode consists of up to
16 PA-RISC 8000 processors, on 8 dual-processor boards, each connected to 8
memory boards via a crossbar interconnect.

We report results obtained from a single hypernode configured with 16 pro-
cessors, 2 GB of memory, and a high-bandwidth disk array. The disk array is a
level 0 RAID, implemented with software striping, consisting of 9 drives striped
across 3 UltraSCSI controllers. The sustained bandwidth that we have measured
for read operations on the disk array is 80MB/sec.

4.2 Software

Volsh is implemented in C and C++. Parallelization is accomplished using
POSIX threads (pthreads), making the software portable to most shared-memory
architectures.!

Voxels in raw datasets are 8-bit quantities. RLE voxels are 32-bits: the orig-
inal sample value is represented by 8 bits, the remaining bits are used to rep-
resent gradient magnitude (8 bits) and an encoded representation of a gradient
(13 bits). Shading is performed using a shade tree [1] representing the Phong
lighting equations. The shade tree is implemented as a lookup table, indexed by
the voxel’s scalar value and encoded normal vector. The calculation of the shade
tree itself is entirely based on lookup tables and does not contribute measurably
to the overall computation time.

Fast Gradient Estimator Normal vectors are estimated prior to projection
by applying the 6-neighborhood central-difference method. Before the normal
vector can be applied in lighting equations and voxel classification, it must be
normalized and its magnitude must be calculated. Computing these quantities
directly requires a square root and three divides. We avoid these expensive op-
erations by transforming the Cartesian coordinates into normalized, spherical
coordinates and then mapping the longitude and latitude angles, A and ¢, back
into normalized, rectangular form. Both of these transformations are performed
via lookup tables. The mapping from Cartesian to spherical coordinate space
and its inverse are given by equations (1) and (2) below, respectively.

A =tan"!

8 |<

¢ =tan *

\/W’ (1)

T = COSA X cos¢p
Y = SInA X cos¢
z = sing. (2)

The angular distances returned by equation (1) are restricted to the range
—m < A< 7mand —7/2 < ¢ < 7w/2. Because we are using 8-bit voxels, the

! Due to performance problems with the Exemplar pthread implementation, we were
forced to use HP’s native thread library when benchmarking on the Exemplar.

domain for each Cartesian coordinate a; in equation (1) is restricted to the
range —255 < a; < 255. Consequently, lookup tables small enough to fit into
cache may be readily constructed and used to evaluate the arc tangent and
square root operations. Note that using a lookup table to normalize the Cartesian
coordinates directly would require a table with 255° entries.

The arc tangent lookup tables return quantized, integer, angular measure-
ments. We represent A as a 7-bit quantity and ¢ as a 6-bit quantity, giving us
a 13-bit encoded normal which can subsequently be mapped into normalized,
floating-point, Cartesian space using a lookup table in place of equation (2).
Empirical evidence suggests that the 13-bit normal representation is adequate
and additional precision is not warranted (see Plate 1, top). The gradient’s mag-
nitude, used during classification to attenuate opacity, is approximated using a
Manhattan Distance approximator, accurate to +8% [14].

5 Performance

We use a number of different datasets to evaluate the performance of our render-
ing system. The Quasi-geostrophic (QG) data are computer simulation results
depicting turbulence in the Earth’s oceans. These data and the classification
functions chosen for them are of particular interest to us in exploring per-
formance characteristics because earlier time-steps are very dense, dominated
by amorphous (semi-transparent) features, and exhibit little spatial coherence.
Later time-steps are relatively sparse and opaque, exhibiting substantially more
coherence (see Plate 2). Our second dataset was produced from a simulation of
the wintertime stratospheric polar vortex. The polar vortex (PV) data are rela-
tively sparse and opaque, exhibiting a great deal of coherence throughout the en-
tire simulation (see Plate 1 (middle), (bottom)). Lastly, we include some results
from the familiar UNC Chapel Hill Volume Rendering Test Dataset. Though
these medical data are not time-varying, their performance characteristics are
well-known to the volume rendering community (see Plate 1 (top)). Table 1 lists
the datasets, their resolution, the size of each raw time-step, and the average size
of each RLE time-step. We note from Table 1 that the relative size of raw and
corresponding RLE datasets provide a measure of spatial coherency. The larger
the RLE dataset relative to the raw dataset, the less coherency exists. The sizes
of the RLE datasets also provides a measure of how much work is required to
render them; larger RLE files require increased rendering time.

In the experiments reported below, all data are read directly from disk. The
kernel buffer cache was flushed prior to running each experiment. Unless other-
wise specified, all results are for Phong-illuminated, monoscopic, three-channel
(RGB), 256x256 resolution imagery, rendered with a parallel viewing projection.
Lighting is provided by a single light source with fixed lighting parameters.

5.1 Static Data

Figure 1 plots rendering rate in frames per second vs. number of processors for
static data, using both the RLE and raw datasets. The frame rates shown are

the averages for a 180-frame animation, with a 2-degree rotation about the Y
axis between each frame. The time to display the image is not included. We see
from Figure 1 that for static data, the RLE data algorithm performs significantly
faster than the raw data algorithm. However, there are variations in the relative
differences in performance. The highly coherent PV datasets exhibit the greatest
increase in performance between the raw and RLE data (roughly an order of
magnitude improvement, from 1.7Hz to 20Hz on 15 processors). Conversely, the
QG dataset does not benefit as much from the RLE encoding (about a factor
of 2 improvement from 5Hz to 10Hz on 15 processors). We also observe that
the performance of our implementation on the Brain dataset is comparable to
that reported by Lacroute [8], both in terms of speedup (approximately 11) and
maximum frame rate (approximately 10Hz). 2

Lastly, we note that all the performance curves dip after the 15-processor run.
This event occurs when processors are forced to perform non-rendering tasks.
For static data, these non-rendering tasks are comprised of normal UNIX system
activities. In subsequent experiments involving time-varying data, we dedicate
two processors for double-buffering (one for input and one for output), leaving
14 processors available for rendering.

5.2 Time-Varying Data

In this section we discuss our results with time-varying data. Unlike our static-
data experiments, the experiments reported below include the time to display
imagery. Unless otherwise stated, both the ingestion of data volumes and output
of image streams are double buffered.

Figure 2 plots the frame rate in frames per second vs. the number of pro-
cessors for the QG and PV datasets using both RLE and raw data. We observe
that each of the RLE curves go flat at some point. This occurs when the task
becomes I/O bound as evidenced in Figure 3 by the growth of the i_time param-
eter. The i_time parameter depicts the unmaskable, double-buffered I/O time
for reading data. It is the amount of time the rendering processes must wait for
input. When the task is computationally (render) bound, i_time is close to zero.
As the rendering process is sped up through the addition of processors, the task
can become I/0 bound, and i_time will grow. The less voluminous raw data do

% Lacroute’s benchmarks were performed using only a single color channel.

[Dataset || Resolution [Raw Size (MB)|Average RLE Size (MB)]

Brain128|| 128x128x84 1.38 3.34
Brain256(|256x256x167 10.94 16.27
QG128 |[|128x128x128 2.10 10.78
PV128 128x128x75 1.23 1.92
PV256 ||256x256x149 9.76 13.70

Table 1. Datasets, their respective voxel resolutions, individual time-step sizes for raw
data, and average time-step sizes for RLE data.

not become I/0 bound in this plot, and their corresponding performance curves
display better speedup.

We also observe that as we would expect from our static data measurements,
the highly coherent PV RLE data perform considerably better than the PV raw
data. However, the QG RLE data initially perform much better than the QG raw
data, but in higher processor runs the difference in performance is not as great.
The rising QG raw curve is rapidly approaching the flat RLE curve. The QG RLE
data very quickly become I/O bound because of their large size relative to the
raw data. Witness the growth of the i_time parameter for QG RLE data in Figure
3 after 6 processors. Adding additional processors may speed up rendering, but
it does not affect the dominating I/O time. On the other hand, though the raw
data algorithm is more computationally expensive, the I/O requirements are
much lower. Adding processors continues to reduce the rendering and gradient
calculation time, which dominate the lower-processor-number runs for the raw
data.

25 25

°—° PV RLE 256
™ QGRLE 128
Brain RLE 256
QG RAW 128
PV RAW 256

* Brain RAW 256

20

n
=]

OXI

o x

PV RLE 128
°° pVRAW 128
“— QGRLE 128
™ PVRLE 256

1 QGRAW 128
PV RAW 256

o
5]
=
o

=
=)
=
[S)

Frames per second
Frames per second

j

x x o + + +

x - ° Q Q99 % + * . N

os.% ® ? . . J—— 0 S x * * M ! .

12 6 10 12 14 15 16 12 4 6 8 10 12 14
Number of processors Number of processors

Fig. 1. Frame rates of static data runs Fig.2. Frame rates of time-varying data
using RLE (solid lines) and raw datasets runs using RLE (solid lines) and raw
(dashed lines) datasets (dashed lines)

5.3 Double Buffering

Figure 4 shows the effects on overall rendering performance of overlapping the
I/0 and computational tasks for the QG RLE dataset. The ideal speedup that
may be achieved is given by

Tinput + Toutput + Tcompute

-)

maxr (Tinput ; Toutput , Tcompute)

where Tinput, Toutput, and Teompute are the times required for reading data, dis-
playing imagery, and performing the computational tasks, respectively. We ob-
serve from this equation that the maximum possible speedup is three, and this

maximum occurs when all 7' are equal. In our experiments, the input require-
ments are fixed and completely determined by the size of the volume dataset
and the available bandwidth of the storage device. Similarly, the output band-
width requirements, which are relatively low, are fixed and determined by the
resolution of the post-warped image and the bandwidth of the display device (in
our case, a FDDI-attached host).

Comparing the single-buffered and double-buffered runs in Figure 4, we ob-
serve that on fewer processors, double-buffering has little effect on overall perfor-
mance which is dominated by the rendering calculation. For the single-processor
run, the input and output time combined represent only about 25 percent of the
total run-time. Hence the best speedup we can realize by double-buffering is only
1/0.75 ~ 1.3. However, as the number of processors is increased, rendering time
is reduced. By the six-processor run, rendering time and input time are nearly
equal, and we see a speedup over the single-buffered performance of about two.
Adding even more processors reduces rendering time, but does not affect I/0.
Hence the overall performance indicated by the double-buffered curve goes flat
after six processors. Contrarily, the performance indicated by the single-buffered
curve continues to improve beyond six processors, but never reaches the per-
formance of that of the double-buffered runs. Lastly, we observe that double
buffering has completely masked the cost of output. Though insignificant on
fewer processors, for greater processor runs the output time has a measurable
impact on overall performance.

g
I

9.4
4.9 .
i 1.2 B o_time
%) [|
53'0 Il render g 1t (] render
G2.5¢ [] gradient g | itime
%} 0.8 -
° B itime °
g200 _ §06
(7] [TRVA
215 £
(4] (4] L
.EI,U’ 1 EOA
0457 WI ! H H 7 0‘27 H H H HH H H
0 LT T . | 0 I
) 1 2 4 6 8 2 4 6

Number of processors Number of processors

Fig. 3. Timing distribution of rendering
process showing non-maskable read time,
i-time; rendering time, render; and gradi-
ent calculation time for the raw data algo-
rithm, gradient. Shown for each processor
from left to right are: QG128 Raw, QG128
RLE, PV256 Raw, and PV256 RLE

Fig. 4. Effects of double buffering on the
QG RLE dataset. The first and second
time distribution bar for each processor
show single-buffered and double-buffered
performance, respectively. The I/O times,
i_time and o_time, include the overhead of
double-buffering and non-maskable I/O

6 Conclusions

We have developed a Direct Volume Rendering system capable of interactively
rendering moderately sized, time-vary datasets. The system is based entirely
on commercially available components. The performance for a given volume
resolution is largely determined by the amount of spatial coherency that exists
within the data and the user-chosen classification function. For highly coherent,
sparse data the pre-classified, RLE-encoded volumes are comparable in size to
the raw data, and the RLE algorithm performs best. For data that are dense
and exhibit little spatial coherency, the increased I/O costs associated with the
more voluminous RLE-encoded files may make the raw data algorithm more
attractive if sufficient processing power is available.

Double buffering was shown to be an essential component of our system.
We have seen that the technique is maximally effective when the processing
requirements of all the overlapped tasks are similar. In our experiments, the
performance of the two I/O tasks is fixed. The third task we chose to overlap,
the computational task, can be sped up by employing additional processors. For
fewer processors, the computational task is the most expensive of the three over-
lapped tasks and can therefore mask the cost of I/O. As we increase parallelism,
the computation task may be sped up until it no longer dominates. Once I/O be-
gins to dominate, the limit of the benefit of adding processors has been reached.
For the RLE data, this limit was generally reached on a relatively few processors.
For raw data, which are computationally more expensive to render, the compu-
tational limit was never reached; the rendering task remained compute bound.
We can view this result as somewhat encouraging. Given that improvements in
microprocessor technology far outpace improvements in storage bandwidth, we
speculate that the performance of the raw data algorithm may surpass the RLE
data algorithm in the near future.

Although we predict that next-generation processors may permit the raw
data algorithm to outperform the RLE algorithm, for the present the converse
is true for the computing platform we tested. In the case that time-varying
raw data cannot be rendered at sufficient frame rates, and the user is forced to
work with RLE data, we do not view the inability to change classification of
RLE data as a serious detriment. Our observations have been that researchers
perform classification while working on a small number of time-steps, one static
time-step at a time. Once a satisfactory classification has been arrived at, the
researcher will then begin to explore the data temporally. At this point the
classification function has been chosen, and the data may be RLE encoded for
improved performance.

Lastly, we note that the RLE method in our current implementation stores
three copies of the data for each time-step, one for each principal viewing axis.
With some modification, significant savings in I/ O requirements could be realized
by loading only the RLE encoding required by the current viewing direction.
Though this complicates the double-buffering scheme somewhat, we believe the
potential performance improvements are well worth pursuing.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

G. Abram and T. Whitted. Building block shaders. In Computer Graphics, pages
283-288, Dallas, TX, August 1990.

M. B. Amin, A. Grama, and V. Singh. Fast volume rendering using an efficient,
scalable parallel formulation of the shear-warp algorithm. In Parallel Rendering
Symposium, pages 714, Atlanta, GA, October 1995.

B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware. In Symposium on Volume Visu-
alization, pages 91-97, Washington, D.C., October 1994.

T.-C. Chiueh and K.-L. Ma. A parallel pipelined renderer for the time-varying
volume data. Technical Report 97-90, ICASE, Hampton, VA, December 1997.

J. Clyne, T. Scheitlin, and J. Weiss. Volume visualizing high-resolution turbulence
computations. Theoretical and Computational Fluid Dynamics, 1998.

R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. Computer
Graphics, 22(4):51-58, August 1988.

K. Knittel and W. Straber. A compact volume rendering accelerator. In Symposium
on Volume Visualization, pages 67-74, Washington, D.C., October 1994.

P. Lacroute. Analysis of a parallel volume rendering system based on the shear-
warp factorization. IEEFE Transactions on Visualization and Computer Graphics,
2(3):218-231, September 1996.

P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization
of the viewing transformation. In Computer Graphics Proceedings, pages 451-458,
Orlando, FL, July 1994.

P. G. Lacroute. Fast Volume Rendering Using a Shear-Warp Factorization of the
Viewing Transformation. PhD thesis, Stanford University, Stanford, CA, Septem-
ber 1995.

K.-L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh. A data distributed paral-
lel algorithm for ray-traced volume rendering. In Parallel Rendering Symposium,
pages 15-19, San Jose, CA, October 1993.

U. Neumann. Parallel volume-rendering algorithm performance on mesh-connected
multicomputers. In Parallel Rendering Symposium, pages 97-104, San Jose, CA,
October 1993.

H. Pfister and A. Kaufman. Cube-4 - a scalable architecture for real-time volume
rendering. In Symposium on Volume Visualization, pages 47-54, San Francisco,
CA, October 1996.

J. Ritter. A fast approximation to 3d euclidian distance. In A. Glassner, editor,
Graphics Gems, pages 432,433. Academic Press, 1990.

K. Sano, H. Kitajima, H. Kobayashi, and T. Nakamura. Parallel processing of the
shear-warp factorization with the binary-swap method on a distributed-memory
multiprocessor system. In Symposium on Parallel Rendering, pages 87-94, Phoenix,
AZ, October 1997.

H.-W. Shen and C. Johnson. Differential volume rendering: A fast volume vi-
sualization technique for flow animation. In Visualization ’94, pages 180-187,
Washington, D.C., October 1994.

R. Westermann and T. Ertl. Efficiently using graphics hardware in volume ren-
dering applications. In Computer Graphics Proceedings, pages 169177, Orlando,
FL, 1998.

C. M. Wittenbrink and A.K. Somani. Permutation warping for data parallel volume
rendering. In Parallel Rendering Symposium, pages 57-60, San Jose, CA, October
1993.

Plate 1: MRBrain (top),
Pol ar Vortex data at time 50 100 (top), 499 (middle),

(mddle), and 400 (top)

Plate 2. QG data at tine
and 1492 (bottom

