
The Gap between Visualization Research and Visualization Software (VisGap) (2020)
C. Gillmann, M. Krone, G. Reina, T. Wischgoll (Editors)

Visualization in Notebook-Style Interfaces

J. Schmidt1 and T. Ortner1

1VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, Austria

Abstract
Visualization research has always stressed the need for visual tools for data exploration and sense making. Despite the fact that
many visualization technologies are available nowadays, their application in modern data science workflows is limited. One of
the manifold reasons behind this is the development of visual analytics tools as standalone applications, featuring the complete
pipeline from data loading to visualization. Other tools are targeted towards specific use cases (e.g., data wrangling), but to
not provide standardized interfaces for import and export. This does not reflect the approach of stitching together several tools
as it is employed in data science workflows nowadays. In this paper we outline the differences between standalone tools and
notebook-style workflows for a specific use case for time series analysis. The outcomes demonstrate the benefits of notebook-
style interfaces for tracking the steps in a data analysis workflow in a narrative way, for reporting, and for collaboration. We
therefore argue that not considering the current developments towards the increased application of notebook-style interfaces
for data science will lead to a reduced application and acceptance of visualization techniques in these domains. We outline the
barriers for the integration of visualization techniques in narrative workflows, and describe directions for future research.

1. Introduction

The landscape of data analytics workflows has drastically changed
within the past years. The emergence of data science as a term and
as a research field has lead to many users in diverse domains being
confronted with new needs for data analytics. Advances in sensor
technologies, embedded devices, and mobile applications make it
possible to capture large amounts of data from many different con-
texts [Ber16], with many users who want to make more of this data
in the future.

Data science can be defined as a ”concept to unify statistics, data
analysis, machine learning and their related methods” in order to
”understand and analyze actual phenomena with data” [Hay98].
As such, data science comprises the interdisciplinary integration
of techniques from mathematics, statistics, computer science, and
information science [PGL∗11]. In their way to discovering new
insights from data, data scientists have to undergo five different
stages [KPHH12], namely finding datasets suitable for the analysis
(Discover), bringing data into a desired format (Wrangle), verify-
ing the quality of the data and understanding its structure (Profile),
using data for model building (Model), and reporting the results to
stakeholders (Report).

In the past, the aim when developing visual analytics applica-
tions was often driven by providing a holistic interface for data
loading, data handling, visualization, and handling of insights. Suc-
cessful tools like Tableau [Tab20] and MS Power BI [Mic20b] fol-
low this intended goal, by providing standalone applications that
support major parts of the data analytics workflow. Especially users
without computational background greatly benefit from such stan-

dalone approaches. Other visual analytics tools are targeted towards
specific use cases or workflow steps to support, for example, data
wrangling [KPHH11].

Data scientists are used to working with several different
tools [AZL∗19], since no available solution covers all aspects of the
data analytics workflow. This way data science in many cases con-
verged to stitching together several different tools in every work-
flow stage to achieve the intended final data analysis goal. Script-
ing languages like Python and R have become more popular than
ever [BLH15], since they are easy to access (i.e., open source), easy
to learn, and are supported by a large community providing help
and additional plugins. In this rapidly changing environment, stan-
dalone and/or isolated visual analytics applications are not widely
accepted. Visual analytics systems so far hardly provide standard-
ized interfaces to export and re-use actions (e.g., selections, filter-
ing) taken in the provided visualizations. This had lead to a gap
between the multitude of visualization techniques being developed
in research [ML17], and the visualization techniques actually ap-
plied by data scientists.

Data scientists, and other scientists working with data, prefer
narrative approaches to keep track of their data workflow. Literate
programming tools [KRA∗18] such as notebooks help data scien-
tists to record their steps and decisions in a data analysis workflow.
They allow scientists to save whole workflows and in this way make
decisions and results reproducible. Figure 1 depicts an example us-
ing notebooks as a literate programming tool. Notebooks consist
of smaller elements, typically called cells, which contain smaller
portions of code. The cells can be executed independently, but vari-

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

DOI: 10.2312/visgap.20201104 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-9638-6344
https://orcid.org/0000-0002-9373-6409
https://doi.org/10.2312/visgap.20201104



Schmidt and Ortner / Visualization in Notebook-Style Interfaces

ables may be shared across them. All cells together describe the
complete data analysis workflow and all steps that have been exe-
cuted. Literate programming sessions can be saved and restored so
that users can recall the workflow at any time.

Figure 1: Notebook application. Here two cells in a Kaggle note-
book are shown, containing Python code to load a timeseries
dataset and an inline visualization to plot the data.

The integration of visualization techniques in common narra-
tive programming interfaces (e.g., Jupyter notebooks in Python) is,
however, still very limited [Sch20]. As a consequence, in most of
the cases data practitioners end up using only well-known, basic
charts while they refrain from applying advanced techniques. This
is especially true for the interactive exploration of data [BE18]. At
the same time, data scientists express their interest in applying new
visualization techniques [Mee19] and show great interest in try-
ing out alternatives [LBE20]. We therefore argue for a stronger fo-
cus on notebook-style visualization techniques in visualization
research which seamlessly integrate into existing literate program-
ming environments, by

• employing the graphical programming features provided by the
narrative programming environments,

• enabling fast visual representations,
• providing interfaces for loading data, and
• providing interfaces for exporting results from user interactions.

In this paper we outline an exemplary data analysis use cases and
show how it could be solved by either using a standalone system or
notebooks (Section 2). From the results and by analyzing related
work we could identify current barriers for including visualizations
in notebook-style environments (Section 3), and could define direc-
tions for future research (Section 4).

2. Data Science Use Case

Time series data describes datasets consisting of measured values
of points in a temporal order [BJ94]. In many cases time series
are recorded by built-in sensors in Internet-of-Things (IoT) or in-
dustrial production applications, or through observing long-running

processes such as financing. Time series datasets can easily become
large and therefore pose interesting challenges for visualization re-
search [AMST11]. Typical use cases when working with this type
of data are statistical analysis, pattern search, anomaly detection,
and modeling and forecasting.

We chose a time series analysis use case to be able to address
many important aspects of data analysis processes. Time series
analysis usually involves large data records and tasks of a highly
cyclic and repetitive nature.

2.1. Task Description

In the use case described in this paper we perform a pattern search
task on a set of time series. The use case consists of five tasks. In
the following the tasks are described, alongside with references to
the data science workflow steps [KPHH12] they are performed in:

(1) Import: Loading the data (Wrangle)
(2) Structure: Understanding the structure of the data (Profile)
(3) Patterns: Detecting interesting patterns (Profile)
(4) Pattern Search: Performing pattern search and examining the

results (Profile)
(5) Report: Saving the results for reporting (Report)

The Discover stage is not represented here since we used pre-
defined datasets, and since this stage is not of major interest for
visual analytics research. Three out of five tasks are assigned to the
Profile stage of the data science workflow, since we would like to
emphasize the interactive exploration of data in this use case.

2.2. Use Case Execution

We performed the use case twice, once using a stan-
dalone visual analytics tool providing dashboards with linked
views (Visplore [PTMB09]) and a Python-based notebook
(Jupyter [KRKP∗16]). A comparison of the two tools can be seen
in Figure 2. In the following the tasks and the differences between
the two tools are described:

(1) Import

As a first step the data had to be loaded. The time series datasets
were stored as CSV files with columns representing the time series
and rows referring to timestamps. The first of the two used datasets
contained 526 rows (timestamps) and 37 columns (time series), and
the second dataset consisted of 504,768 rows (timestamps) and 22
columns (time series). A side-by-side comparison of the data load-
ing mechanisms of the two tools we used can be seen in Figure 3.

Standalone: In a standalone tool users can rely on the data im-
port functionalities provided by the system. In the case of Visplore
we could make use of the built-in CSV import functions. Many
standalone tools, including Visplore, also provide previews of the
loaded data and simple data wrangling tasks on import (e.g., re-
moving missing values).

Notebook: In the case of notebooks the data import has to be done
manually. In our case Python provided built-in CSV loading capa-
bilities, which nevertheless required to write some lines of Python
code. Checking the loaded data and data wrangling, if necessary,
has to be executed manually by the user.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

2



Schmidt and Ortner / Visualization in Notebook-Style Interfaces

Standalone Tool

Notebook

Figure 2: Tools used for the time series use case. We used a dashboard of the standalone visual analytics tool Visplore [PTMB09] with
linked views (”Standalone Tool”) and a Python Jupyter [KRKP∗16] notebook (”Notebook”) to solve the tasks of the use case. The complete
analysis dashboard of the standalone tool is shown, but only a part of the complete notebook could be displayed here, due to the horizontal
alignment of the notebook.

Figure 3: Import. (left) The standalone tools provides built-in data
loading, and preview functionalities, and in this case even sim-
ple data wrangling functionalities (e.g., removing missing values).
(right) In notebooks the data import has to be done manually, and
data checking can be achieved by plotting the data.

(2) Structure

After loading the data, users need to become familiar with the struc-
ture and the quality of the data at hand. In this use case understand-
ing the data meant checking how many time series are available,
checking the length of the time series, and detecting time series
with an interesting structure (i.e., repetitive or cyclic patterns).

Standalone: Visplore is targeted towards the analysis of large time
series data and therefore provides many functionalities for assess-
ing the quality of the time series data at hand [ASMP17], and for
comparing time series. In this use case we concentrated on the line
plots that were used to understand the structure of the time series
data. Plotting the data in a temporal order (time on the x-axis) re-
veals a temporal structure, and plotting several time series in the
same view with different colors can be used for comparison. The
linked-view environment in a standalone system allows to quickly

change between different views (e.g., clicking through the time se-
ries and plotting them in another view), and allows users to rapidly
get a concise overview of what is available in the data.

Notebook: Every time the user wants to see a time series in the data
in more detail, the code in one of the cells has to be changed and
executed, so that the corresponding line plot showing a time series
is updated. Another possibility is to plot the time series below each
other. Getting an overview of the data this way is therefore less in-
tuitive than with the standalone tool and also requires more manual
adjustments and code sequences.

(3) Patterns

After deciding for a specific time series in the data, the users needed
to find the patterns which are of interest for them. Such patterns
could represent, for example, unusual peaks, certain periods in the
data, periodic or cyclic behavior, or other time series structures
representing a semantic meaning. Detecting patterns of interest re-
quired a more detailed analysis of the data. This included zooming
into certain parts of the time series line plots, marking interesting
regions, and comparing them.

Standalone: All plots in the linked-view environment provided
functionalities for zooming and selecting certain regions. This is a
common feature provided by many standalone tools. The selected
patterns could be compared by marking them and placing them
side-by-side.

Notebook: The basic line plots in the Jupyter notebook provided
zooming possibilities, but no interactive possibilities for selection
and filtering. The detection of interesting patterns and keeping track
of discovered features therefore were highly manual tasks. As an
advantage of the narrative style, storing patterns in different cells
helped to keep track of what has already been discovered.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

3



Schmidt and Ortner / Visualization in Notebook-Style Interfaces

Figure 4: Pattern search. (left) The pattern search can be started within the dashboard. Comparing different results (e.g., when changing
search patterns or algorithm parameters) is not supported by default. (right) Due to the the narrative style of notebooks, all steps in the
workflow are preserved. In this case different results using the same search query are shown below each other.

(4) Pattern Search

Pattern search in time series refers to the process of taking a search
pattern as input and detecting all occurrences of this pattern in a
given time series. More advanced algorithms for pattern search also
allow users to detect patterns of varying length or intensity. The re-
sults of a pattern search are a list of timestamps at which the pat-
terns occurs in the given time series. In this use case we used one of
the patterns identified in the previous step as input. The two differ-
ent interfaces of the tools when performing the pattern search are
shown in Figure 4.

Standalone: Visplore provides a simple pattern search algorithm
based on Dynamic Time Warping [M0̈7] to detect occurrences of
a pattern in a time series. Users can select the input pattern and
vary a similarity threshold. The resulting segments of the pattern
search are marked with color in the time series plot. Additionally,
the detected patterns can be overlayed in one plot. Varying the sim-
ilarity threshold can be done by using a slider, and a histogram in
the background reveals how the variation will effect the results. The
analysis functionalities of standalone tools are naturally limited to
the algorithms that have been integrated into the tools. Varying pa-
rameters results in an update of the linked views, which does not
allow for keeping track of the changes. Comparing different pa-
rameter settings would require manual steps by the users (e.g., by
saving states).

Notebook: Python provides several different libraries for time series
analysis, also including pattern search capabilities. Since Jupyter
notebooks are closely integrated into the programming environ-
ment, all available Python libraries and extensions can be tested.
We used the Python mass-ts [Pyt20] library with GPU acceleration
to do the pattern search. For displaying the results, manual steps
were necessary by the user. When trying out different parameter

settings, we used different cells and therefore could keep track of
the settings we already tried. We also could easily compare the dif-
ferent results by placing them below each other in one plot. It would
further also be easily possible to integrate other algorithms into the
notebook in a similar manner. In an iterative workflow and when
trying out alternatives, notebooks better preserve the story of the
previous steps (provenance), which can even easily be shared with
others (collaboration).

(5) Report

Reporting the results of a data analysis can be targeted towards dif-
ferent types of end users. When reporting to external stakehold-
ers and users from different domains, usually simple visualizations
are used to summarize the findings and explain the consequences.
When discussing with other data scientists, more elaborate visual-
izations can be employed, since the other parties are usually inter-
ested in understanding the details, and also the steps that were taken
to achieve the results.

Standalone: Standalone tools such as Visplore usually provide
possibilities for automatically exporting images, screenshots, and
maybe even PDF reports to show the current results of a data anal-
ysis workflow. For being able to communicate the steps and deci-
sions they made to create certain results, users have to manually
keep track of their analysis workflow.

Notebook: The narrative style of notebooks naturally creates a log
of the complete workflow, so that notebooks can be used as a di-
rect communication and collaboration tool for data scientists. When
creating reports for other stakeholders, users have to manually de-
sign new plots and align them properly (e.g., in a PDF document).

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

4



Schmidt and Ortner / Visualization in Notebook-Style Interfaces

3. Notebook-Style Visualizations

Both standalone tools and notebooks were suitable applications
for fulfilling the tasks of the time series analysis use case in Sec-
tion 2. Dashboards with linked views allow for a very quick and
intuitive initial exploration of the data, to get an overview of what
is contained in the dataset, and to better understand its structure.
Notebooks provide a more flexible environment supporting itera-
tive analysis and evaluation of different analysis algorithms, since
notebooks are closely integrated into the corresponding program-
ming environment. The cell structure and narrative approach of
notebooks allows for keeping track of the analysis steps in the
workflow, something that is lost in the linked-view environment
of standalone tools.

3.1. Existing approaches

In our use case we applied Python Jupyter notebooks [KRKP∗16],
which are a famous modern application employing the literate pro-
gramming paradigm. Jupyter’s goal is to achieve a computational
narrative by combining human language, live code, and its results
into one narrative document. Visualizations for specific use cases
(e.g., network visualization [RLW∗17]) have already been pro-
posed with the help of Jupyter notebooks.

For web-based applications, Observable [Obs20] provides
JavaScript notebooks for instant feedback, where it is very straight-
forward to add interaction and animations. The notebooks can be
shared in a web-based manner. distill [dis20] overcomes the limita-
tions of static documents like PDF files by providing the possibil-
ity to integrate interactive content into text documents. Most of the
documents are web-based, but distill also features the integration
into Jupyter notebooks.

The litvis system [WKD19] supports the process of literate visu-
alization by focussing on low-cost design exposition. litvis aims to
integrate design exposition in a way that minimizes the time needed
for designers to formulate the exposition, making it easier to adopt
into the design process. The litvis system handles live documents
that contain the textual narrative in the form of markup code writ-
ten in Markdown and optionally styled with CSS. The branching
possibilities in litvis allow to arrange documents into a document
tree to explore different ideas and analysis directions.

In addition to technical systems, the term literate analytics was
coined by Mathisen et al. [MHK∗19]. Literate analytics describes a
novel approach which not only captures the final state of an analy-
sis, but instead documents the whole analytic process with all pos-
sible dead-ends along the way in a comprehensive narrative. This
is very close to what can also be achieved with notebooks, but is
hardly supported – and requires manual efforts – in current stan-
dalone visual analytics systems.

3.2. Visualization in Notebooks

The reasons why visualization techniques are not targeted towards
the integration into notebooks yet are manifold. There is also lit-
tle research or related work on the integration of visualization in
notebooks yet. Here we list some of the technical limitations and
barriers we identified towards a better integration of visualization:

The possibilities for graphical programming in notebooks are
limited. Access to the graphics card is not possible at all times and
depends on the libraries provided by the narrative programming
environment. This definitely limits the possibilities for accelerat-
ing the graphical representations and requires to use simpler visual
mappings. Furthermore, less screen space is available for the visu-
alizations, and full screen representations are hardly possible.

Similar to graphical programming, also the interaction possibil-
ities are limited in a notebook environment. Key strokes will most
likely be occupied by the notebook environment and are not avail-
able to be used in the visualization.

The computational power which can be enforced depends on the
narrative programming environment. Applications requiring high
computational efforts will be slower in scripting environments than
if the same analysis would be implemented in a high-performance
programming language like C++, and in an application targeted to-
wards the intended use case.

Documentation, giving examples for using visualizations, and
user guides increase the engagement in the data science commu-
nities. Since the daily duties of a researcher usually do not allow
for much extra time which could be spend on the tasks mentioned
above, the developed prototypes are not well integrated into the
narrative programming environments used by data scientists yet.

4. Directions for Future Work

The overall application of visualization in notebooks is still limited.
We argue for enforcing this direction, to not lose the connection to
data scientists and the interesting use cases and task descriptions
they can provide us with. Through analyzing the possible barriers
for notebook-style visualization (Section 3.2), we could identify the
following possible directions for future work:

Placing Visualizations in the Data Workflow Supporting the data
interfacing capabilities provided by the programming environments
will ease the integration of different types of visualizations into
notebooks and narrative contexts. At the same time, we should
work on standardized data interfaces for visualization for both in-
put and output data. Input data is defined as the data used for the
visualization. Output data is defined as data created by interacting
with the visualization (e.g., selections, filtering). An interesting di-
rection for future work is the definition of bidirectional channels
between the visualizations and the notebook environment.

Development of new Domain-Specific Languages Domain-
specific languages (DSLs) can be used to formulate complex vi-
sualizations in a concise and expressive way [RBGH14]. As such,
DSLs for notebook-style visualizations like Vega-Lite [SMWH17]
provide a more usable and scalable integration of different
notebook-like environments. In the future, new DSLs for specific
domains, such as biology or geology, need to be defined to let
experts specify what they want to do and see, instead of being
forced to focus on how they can achieve their goal. Well designed
DSLs remove complexity from scripting, while allowing for high-
performance optimizations oblivious to the user [RO12], which
shall increase the applicability of visualization techniques in var-
ious domains.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

5



Schmidt and Ortner / Visualization in Notebook-Style Interfaces

Standards for User Interactions In visualization research, we
should work on standards for interaction mechanisms that should
be supported by notebook-style visualizations. This way users will
know in all cases how to interact with the visualizations, and how
to create new output data from visualizations.

Guidance To many domain experts it is not natural to formulate
their goals in code. Guidance systems can help users to navigate
through libraries and functions by providing intelligent suggestions
similar to IntelliSense [Mic20a]. While IntelliSense is indispens-
able for writing code, a recommendation system can go well be-
yond showing parameter info or member lists. We envision, for in-
stance, visualization widgets helping in specifying a filter query
while writing it or providing a quick preview of the selected data
before executing the query. We believe that guidance systems will
significantly reduce entry barriers for users applying visualizations
in notebooks.

Incremental Evaluation and Execution Context Tasks can be
computationally expensive, may involve large amounts of data, re-
quire the computation of supporting data structures, or all three. A
good DSL can keep the user oblivious to these details, nevertheless,
changes to input parameters may result in performance problems.
Incremental evaluation can mitigate these problems with reevalu-
ating only parts of derived data, data structures, visualizations that
have actually changed [SASS15]. In terms of computation, mem-
ory, and bandwidth it is often desired to specify the execution con-
text of code cells if they should be evaluated at the server, the client
browser, or graphics card.

5. Conclusion

In this paper we discussed the gap between common data science
workflows in notebooks and advanced visualization techniques. We
outlined a data science use for the analysis of time series data and
performing pattern search in a standalone and a notebook tool.
The results of our use case show that both standalone applications
and notebooks are suitable for an explorative analysis of the data.
Notebooks, however, are better integrated in the corresponding pro-
gramming environment and therefore provide direct access to the
underlying extensions and plugins. The narrative style of notebooks
is also better suited for keeping track of the workflow and for re-
porting the findings. We then discussed the main barriers for inte-
grating visualization into notebooks, which are mainly the limited
graphical programming possibilities and the lack of standardized
data interfaces. Ideas on how these challenges can be tackled in the
future are discussed. We are aware that addressing only one use
case based on time series data and only two tools does not cover
a full evaluation of many possible solutions one could think of.
Jupyter notebooks are a representative literate programming tool,
though. In the future, we would like to explore more use cases,
and also evaluate in detail the advantages and disadvantages of data
analysis using standalone or narrative solutions.

Acknowledgments

VRVis is funded by BMK, BMDW, Styria, SFG and Vienna Busi-
ness Agency in the scope of COMET - Competence Centers for
Excellent Technologies (854174) which is managed by FFG.

References

[AMST11] AIGNER W., MIKSCH S., SCHUMANN H., TOMINSKI C.:
Visualization of Time-Oriented Data, 1 ed. Human–Computer In-
teraction Series. Springer-Verlag London, 2011. doi:10.1007/
978-0-85729-079-3. 2

[ASMP17] ARBESSER C., SPECHTENHAUSER F., MÜHLBACHER T.,
PIRINGER H.: Visplause: Visual Data Quality Assessment of Many
Time Series Using Plausibility Checks. IEEE Transactions on Visualiza-
tion and Computer Graphics 23, 1 (2017), 641–650. doi:10.1109/
TVCG.2016.2598592. 3

[AZL∗19] ALSPAUGH S., ZOKAEI N., LIU A., JIN C., HEARST M. A.:
Futzing and Moseying: Interviews with Professional Data Analysts on
Exploration Practices. IEEE Transactions on Visualization and Com-
puter Graphics 25, 1 (2019), 22–31. doi:10.1109/TVCG.2018.
2865040. 1

[BE18] BATCH A., ELMQVIST N.: The Interactive Visualization Gap in
Initial Exploratory Data Analysis. IEEE Transactions on Visualization
and Computer Graphics 24, 1 (Jan 2018), 278–287. doi:10.1109/
TVCG.2017.2743990. 2

[Ber16] BERTINO E.: Introduction to Data Science and Engineer-
ing. Data Science and Engineering 1 (2016), 1–3. doi:10.1007/
s41019-016-0005-1. 1

[BJ94] BOX G. E. P., JENKINS G. M.: Time Series Analysis: Forecasting
and Control, 3rd ed. Prentice Hall PTR, 1994. 2

[BLH15] BARLAS P., LANNING I., HEAVEY C.: A survey of
open source data science tools. International Journal of Intelligent
Computing and Cybernetics 8 (2015), 232–261. doi:10.1108/
IJICC-07-2014-0031. 1

[dis20] DISTILL: Distill is dedicated to clear explanations of machine
learning. https://distill.pub/, 2020. [accessed 2020-03-08].
5

[Hay98] HAYASHI C.: What is Data Science ? Fundamental Concepts
and a Heuristic Example. In Data Science, Classification, and Related
Methods (1998), Springer Japan, pp. 40–51. 1

[KPHH11] KANDEL S., PAEPCKE A., HELLERSTEIN J., HEER J.:
Wrangler: Interactive Visual Specification of Data Transformation
Scripts. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Vancouver, BC, Canada, May 7–12 2011), CHI
’11, ACM, pp. 3363–3372. doi:10.1145/1978942.1979444. 1

[KPHH12] KANDEL S., PAEPCKE A., HELLERSTEIN J. M., HEER J.:
Enterprise Data Analysis and Visualization: An Interview Study. IEEE
Transactions on Visualization and Computer Graphics 18, 12 (2012),
2917–2926. doi:10.1109/TVCG.2012.219. 1, 2

[KRA∗18] KERY M. B., RADENSKY M., ARYA M., JOHN B. E., MY-
ERS B. A.: The Story in the Notebook: Exploratory Data Science Using
a Literate Programming Tool. In Proceedings of the CHI Conference
on Human Factors in Computing Systems (Montreal QC, Canada, April
21–26 2018), CHI ’18, ACM. doi:10.1145/3173574.3173748.
1

[KRKP∗16] KLUYVER T., RAGAN-KELLEY B., PEREZ F., GRANGER
B., BUSSONNIER M., FREDERIC J., KELLEY K., HAMRICK J.,
GROUT J., CORLAY S., IVANOV P., AVILA D., ABDALLA S., WILL-
ING C.: Jupyter Notebooks – a publishing format for reproducible
computational workflows. Positioning and Power in Academic Pub-
lishing: Players, Agents and Agendas (2016), 87–90. doi:10.3233/
978-1-61499-649-1-87. 2, 3, 5

[LBE20] LIU J., BOUKHELIFA N., EAGAN J. R.: Understanding the
Role of Alternatives in Data Analysis Practices. IEEE Transactions on
Visualization and Computer Graphics 26, 1 (2020), 66–76. doi:10.
1109/TVCG.2019.2934593. 2

[M0̈7] MÜLLER M.: Dynamic Time Warping. Springer Berlin Heidel-
berg, 2007, pp. 69–84. doi:10.1007/978-3-540-74048-3_4.
4

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

6

https://doi.org/10.1007/978-0-85729-079-3
https://doi.org/10.1007/978-0-85729-079-3
https://doi.org/10.1109/TVCG.2016.2598592
https://doi.org/10.1109/TVCG.2016.2598592
https://doi.org/10.1109/TVCG.2018.2865040
https://doi.org/10.1109/TVCG.2018.2865040
https://doi.org/10.1109/TVCG.2017.2743990
https://doi.org/10.1109/TVCG.2017.2743990
https://doi.org/10.1007/s41019-016-0005-1
https://doi.org/10.1007/s41019-016-0005-1
https://doi.org/10.1108/IJICC-07-2014-0031
https://doi.org/10.1108/IJICC-07-2014-0031
https://distill.pub/
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/TVCG.2019.2934593
https://doi.org/10.1109/TVCG.2019.2934593
https://doi.org/10.1007/978-3-540-74048-3_4


Schmidt and Ortner / Visualization in Notebook-Style Interfaces

[Mee19] MEEKS E.: 2019 Annual Data Visualization Survey Results.
https://bit.ly/38GLV1D, Aug. 2019. [accessed 2020-02-15]. 2

[MHK∗19] MATHISEN A., HORAK T., KLOKMOSE C. N., GRØNBÆK
K., ELMQVIST N.: InsideInsights: Integrating Data-Driven Reporting in
Collaborative Visual Analytics. Computer Graphics Forum 38, 3 (2019),
649–661. doi:10.1111/cgf.13717. 5

[Mic20a] MICROSOFT: IntelliSense in Visual Studio Code. https://
code.visualstudio.com/docs/editor/intellisense,
2020. [accessed 2020-03-07]. 6

[Mic20b] MICROSOFT: Microsoft Power BI. https://powerbi.
microsoft.com, 2020. [accessed 2020-02-29]. 1

[ML17] MCNABB L., LARAMEE R. S.: Survey of Surveys (SoS) -
Mapping The Landscape of Survey Papers in Information Visualization.
Computer Graphics Forum 36 (2017), 589–617. doi:10.1111/cgf.
13212. 1

[Obs20] OBSERVABLE: The magic notebook for exploring data / Observ-
able. https://observablehq.com, 2020. [accessed 2020-03-01].
5

[PGL∗11] PARSONS M. A., GODØY Ø., LEDREW E., DE BRUIN T. F.,
DANIS B., TOMLINSON S., CARLSON D.: A conceptual framework
for managing very diverse data for complex, interdisciplinary science.
Journal of Information Science 37, 6 (2011), 555–569. doi:10.1177/
0165551511412705. 1

[PTMB09] PIRINGER H., TOMINSKI C., MUIGG P., BERGER W.: A
Multi-Threading Architecture to Support Interactive Visual Exploration.
IEEE Transactions on Visualization and Computer Graphics 15, 6
(2009), 1113–1120. doi:10.1109/TVCG.2009.110. 2, 3

[Pyt20] PYTHON: MASS (Mueen’s Algorithm for Similarity Search).
https://pypi.org/project/mass-ts/, 2020. [accessed
2020-03-04]. 4

[RBGH14] RAUTEK P., BRUCKNER S., GRÖLLER M. E., HADWIGER
M.: ViSlang: A System for Interpreted Domain-Specific Languages for
Scientific Visualization. IEEE Transactions on Visualization and Com-
puter Graphics 20, 12 (2014), 2388–2396. doi:10.1109/TVCG.
2014.2346318. 5

[RLW∗17] ROSENTHAL S. B., LEN J., WEBSTER M., GARY A., BIRM-
INGHAM A., FISCH K. M.: Interactive network visualization in Jupyter
notebooks: visJS2jupyter. Bioinformatics 34, 1 (2017), 126–128. doi:
10.1093/bioinformatics/btx581. 5

[RO12] ROMPF T., ODERSKY M.: Lightweight Modular Staging: A
Pragmatic Approach to Runtime Code Generation and Compiled DSLs.
Communications of the ACM 55, 6 (2012), 121–130. doi:10.1145/
2184319.2184345. 5

[SASS15] SCHULZ H.-J., ANGELINI M., SANTUCCI G., SCHUMANN
H.: An Enhanced Visualization Process Model for Incremental Visual-
ization. IEEE Transactions on Visualization and Computer Graphics 22,
7 (2015), 1830–1842. doi:10.1109/TVCG.2015.2462356. 6

[Sch20] SCHMIDT J.: Usage of Visualization Techniques in Data Science
Workflows. In Proceedings of the 15th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applica-
tions (Valletta, Malta, Feb. 27–29 2020), VISIGRAPP ’20, SciTePress,
pp. 309–316. doi:10.5220/0009181903090316. 2

[SMWH17] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT K.,
HEER J.: Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans-
actions on Visualization and Computer Graphics 23, 1 (2017), 341–350.
doi:10.1109/TVCG.2016.2599030. 5

[Tab20] TABLEAU: Tableau. https://www.tableau.com, 2020.
[accessed 2020-02-12]. 1

[WKD19] WOOD J., KACHKAEV A., DYKES J.: Design Exposition with
Literate Visualization. IEEE Transactions on Visualization and Com-
puter Graphics 25, 1 (2019), 759–768. doi:10.1109/TVCG.2018.
2864836. 5

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

7

https://bit.ly/38GLV1D
https://doi.org/10.1111/cgf.13717
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://powerbi.microsoft.com
https://powerbi.microsoft.com
https://doi.org/10.1111/cgf.13212
https://doi.org/10.1111/cgf.13212
https://observablehq.com
https://doi.org/10.1177/0165551511412705
https://doi.org/10.1177/0165551511412705
https://doi.org/10.1109/TVCG.2009.110
https://pypi.org/project/mass-ts/
https://doi.org/10.1109/TVCG.2014.2346318
https://doi.org/10.1109/TVCG.2014.2346318
https://doi.org/10.1093/bioinformatics/btx581
https://doi.org/10.1093/bioinformatics/btx581
https://doi.org/10.1145/2184319.2184345
https://doi.org/10.1145/2184319.2184345
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.5220/0009181903090316
https://doi.org/10.1109/TVCG.2016.2599030
https://www.tableau.com
https://doi.org/10.1109/TVCG.2018.2864836
https://doi.org/10.1109/TVCG.2018.2864836



