
International Conference on Artificial Reality and Telexistence

Eurographics Symposium on Virtual Environments (2014)

T. Nojima, D. Reiners, and O. Staadt (Editors)

Space-Time Maps for Virtual Environments

Andrei Sherstyuk1 and Anton Treskunov 2

1 University of Hawaii, USA
2 Samsung, USA

Abstract

Terrain image maps are widely used in 3D Virtual Environments, including games, online social worlds, and

Virtual Reality systems, for controlling elevation of ground-bound travelers and other moving objects. By making

use of all available color channels in the terrain image, it is possible to encode important information related to

travel, such as presence of obstacles, directly into the image. This information can be retrieved in real time, for

collision detection and avoidance, at flat cost of accessing pixel values from the image memory.

We take this idea of overloading terrain maps even further and introduce time maps, where pixels can also define

the rate of time, for each player at given location. In this concept work, we present a general mechanism of

encoding the rate of time into a terrain image and discuss a number of applications that may benefit from making

time rate location specific. Also, we offer some insights how such space-time maps can be integrated into existing

game engines.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Computer Graphics]: Multimedia Information

Systems—Artificial, augmented, and virtual realities

1. Introduction

2D terrain maps have been used for creating realistic land-

scapes in 3D environments for nearly three decades [Mil86].

Besides providing polygonal render meshes of the surface,

terrain maps enable direct control over elevation of all

objects moving on the terrain. Such objects include user

avatars, non-player characters, ground vehicles, and other

entities. Besides elevation values, terrain maps may provide

other location-specific information, such as slope angle and

surface material properties.

For convenience, most 3D graphics engines and authoring

tools allow to create terrain maps by importing pre-existing

images, for example, synthetic fractal clouds, as the first

draft of the terrain that can be refined as desired. Terrain

maps can also be exported as graphics images, for sharing

and assets packing purposes. In order to provide high preci-

sion in calculating object elevation, such images are stored

with 16-bits per pixel depth. For example, Unity 3D provides

the option to import and export terrain maps in 16-bit RAW

image format, compatible with most image editors.

The internal representation of terrain maps varies between

systems, from simple texture buffers, used in Flatland en-

gine [Fla] to complicated compiled data structures that sup-

port multiple level of surface detail in CryEngine [CT]. To

conserve run-time memory, most engines strip extra color

channels from RGB images when importing terrain images,

treating them as monochrome pixels. However, some en-

gines use the original image, which can be in RGB or even

in RGBA pixel formats. That opens many interesting oppor-

tunities for creative use of additional color channels.

Recently, it was shown how dedicated colors in terrain

maps (e.g., pure red pixels) can be used for detecting and

processing collisions with static and dynamic obstacles, in

real time [SK14]. The authors also suggested that unused

color channels in terrain maps may store extra scene in-

formation, such as layouts and intensities of spatially dis-

tributed sound and light sources. By doing so, every 3D

scene may be “soundscaped” or “lightscaped”, by painting

them in Photoshop, where hue value of the brush will define

a source type, and saturation will define its intensity.

In this concept work, we further explore the idea of en-

coding location-specific data into terrain maps. Namely, we

introduce a direct mapping between space and time, making

the time rate a local property of space.

c© The Eurographics Association 2014.

DOI: 10.2312/ve.20141363

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ve.20141363


A. Sherstyuk & A. Treskunov / Space-Time Maps for Virtual Environments

2. Time Maps for Virtual Worlds

Consider a test scene in Figures 1 and 2, showing some

virtual minimalistic Square City, surrounded by mountains.

The monochrome terrain map has the elevation data stored

as (r,g,b) float values, where all three color channels have

equal values r = g = b, ranging from 0 to 1, for every pixel

on the map. The pedestrian crossings, however, have g > r,

which makes these pixels look green. The scene was staged

and rendered in Flatland 3D engine [Fla].

We suggest to use g-values for controlling time incre-

ments in all internal clocks and other time-keeping struc-

Figure 1: Terrain map of Square City, set inside a volcanic

crater. Green pixels define places in the scene where time

runs faster. These locations correspond to two zebra cross-

ings, shown in rendered image in Figure 2.

Figure 2: “Fast-forward” zebra crossing in Square City.

When the walking character steps on green-pixel area, his

internal time advances using larger increments, making him

move faster.

tures, for all objects on the scene. In this example, the walk-

ing human character is animated with motion capture data

(MOCAP), repeating the walking cycle. If the update rate is

set to 30 FPS, the character’s joint angles are fetched and

re-sampled from MOCAP data arrays with the constant time

increment ∆t = 1/30 second. In the proposed system, ∆t is

modified by a location-specific function f (r,g,b):

∆t = f (r,g,b) ∆t0 (1)

where ∆t0 is the inverse frequency of the simulation

∆t0 = 1/FPS (2)

and transfer function f may be defined as

f (r,g,b) =

[

1 mono pixels,r = g= b

T (2g−1) color pixels
(3)

In this form, the values of the green channel completely

define how time increments are computed. Time may be ac-

celerated to some maximum value T (g = 1, f = 1), frozen

(g= 0.5, f = 0) and even reversed (g< 0.5, f < 0). All these

effects may be achieved by painting pixels on the terrain map

with a desired shade of green. Note, that the terrain map re-

mains fully functional for computing elevation, by accessing

values from other channels.

3. Related Work

In the test scene, shown in Figures 1 and 2, the time map

contains two accelerated zebra-crossings that are meant

to help organize pedestrian traffic. Thus, when used as a

travel aid, time maps bear certain resemblance to naviga-

tion meshes, that define areas on the scene where travel is

possible [Sno00]. Navigation meshes were adopted by many

game engines, including CryEngine, Unity 3D and Unreal,

for pathfinding purposes. Initially created by hands, these

meshes are now generated automatically, with various lev-

els of optimizations and quality control [KK14]. One of the

recent methods involves initial voxelization of the scene, fol-

lowed by extraction of walkable levels [OP13].

Similarly to navigation meshes, the proposed time maps

can be viewed as means of quantifying the entire navigable

space by maximal allowed travel speed up to T value (see

equation 3). However, time maps are different in three im-

portant aspects:

• the layout and intensity of zones with modified time rate

are not bound by local geometry;

• the resolution of space partitioning is limited only by the

size of the terrain map, and can be set to be arbitrarily fine;

• applications of time maps are not limited to aiding travel.

Because of these properties, time maps are able to produce

effects that can not be achieved by other methods. These will

be discussed next.

c© The Eurographics Association 2014.

46



A. Sherstyuk & A. Treskunov / Space-Time Maps for Virtual Environments

4. Using Time Maps in Virtual Worlds

We loosely grouped several suggested applications into two

categories: realistic and creative.

4.1. Better Travel and Urban Planning: Realistic Use

Applications from the first category mostly aim to facilitate

navigation in realistic or slightly futuristic urban scenes. Ze-

bra crossings, escalators, moving sidewalks and walkways,

as used in airports – these are examples how pedestrian traf-

fic can be improved by faster-than-life time flow.

Continuous modes of travel, such as walking or running,

are often more preferable to instantaneous teleportation, be-

cause they do no disrupt the sense of presence, especially

in immersive Virtual Reality (VR) settings. In some online

social worlds, for example, Blue Mars [BM], teleportations

are deliberately avoided, for the same reason. Limited use of

teleportation also helps minimize avatars popping in and out

in busy locations.

To help players get around faster, Blue Mars offered a

number of traveling devices, such as scooters, for outdoor

travel, and escalators for moving indoors, as shown in Fig-

ure 3. However, motorized vehicles are not available at all

locations. In addition, avatars can only walk but not run on

sloped surfaces, including staircases and escalators. Thus,

accelerated walking and running in selected areas may be

very effective. Because of large size of cities on Blue Mars

(4 sq. km), moving in fast-forward mode could save players

hours of tedious walking.

Similar issues exist in SimCity, a popular multiplayer ur-

ban simulator by Maxis [Sim]. In the latest version 4, the

limit in city size was increased from 4 to 16 sq. km, due to

demand from developers and general public.

Figure 3: Multi-level shopping mall in Beach City on Blue

Mars, connected with long escalators and staircases. In Blue

Mars, running is not allowed on sloped surfaces, thus, walk-

ing in fast-forward mode could be particularly helpful.

4.2. "Places Where Time Stood Still": Creative Use

It is easy to imagine how time maps can be employed in

less realistic worlds, where everything goes to enhance user

experience and game-play. Two cases are discussed below.

• Time Alterations in Social Settings

Certain locations may be painted with dark green pixels,

making players move in slow-motion. Such mass-induced

behavior will be appropriate in virtual temples, shrines,

mausoleums and various ceremonial sites where visitors

are expected to observe certain rules. Conversely, a little

speed-up of time rate could be welcome in more dynamic

settings, such as discotheques, sports bars and other places

of active recreation.

• Green Pixels of Altered Time as User Resource

In all previous examples, areas with altered time rate are

assumed to be permanently painted onto the map by a

scene designer. Alternatively, green pixels may by placed

and removed from the map by players themselves. Thus,

time-modifying pixels become a valuable game resource,

that players can mine in game or buy as a commodity.

As an example, consider Minecraft, “a game about break-

ing and placing blocks” [Min]. Players mine for resources

and use them to create their worlds. When playing on pub-

lic servers, great efforts are spent on building protection

around homes and bases, where players keep their posses-

sions, from raiders. Imagine if players could mine green pix-

els (or blocks, in Minecraft terms) of altered time in the same

way they mine for ore. By placing dark-green pixels on the

map, they could surround their homes with invisible perime-

ters, where time runs very slowly or even changes direction.

Trespassers will be “glued” or deflected from the perimeter,

unless they learn how to jump over the dark-green pixels, or

make a passage by placing counter-acting bright-green time-

accelerating pixels.

Another use for time-accelerating pixels is farming, a pop-

ular activity in Minecraft. Growing crops takes time, and that

time can be reduced by placing bright-green pixels on the

field.

5. Implementation

As was already mentioned, internal representation of terrain

maps varies greatly in existing 3D engines. Below, we briefly

compare implementation cost of time maps in three systems,

from lightweight Flatland to photorealistic CryEngine.

5.1. Flatland

Flatland is an open-source 3D engine that was developed

at Albuquerque High Performance Computing Center (AH-

PCC) to serve as a platform for research projects in VR [Fla].

Due to its simplicity and modular design, Flatland found

many uses outside of AHPCC, mostly in the fields of medi-

cal VR simulation and 3D user interface design.

c© The Eurographics Association 2014.

47



A. Sherstyuk & A. Treskunov / Space-Time Maps for Virtual Environments

Flatland has the most straightforward implementation of

terrain maps: they are based on conventional textures, with

RGBA color channels. Thus, the system is fully ready for

time maps, in its current state.

5.2. Ogre

Ogre is a popular open-source engine that was launched in

2001 and still remains in active development [Ogr]. Ogre

was among the first public engines that offered support for

stereo rendering, which made it a platform of choice for

many projects in VR.

In this system, terrain images are stored as monochrome

float values, with no room for extra channels. However, Ogre

allows to load and store an optional source image for terrain,

that can have pixels defined in variety of formats, including

RGB and RGBA. In addition, Ogre provides converters be-

tween the source image and internal terrain map representa-

tion, which makes the system compliant with the time maps

requirements.

5.3. CryEngine

CryEngine series was developed by CryTek GmbH [CT]

and was intended primarily as a licensed high-end pho-

torealistic platform for commercial 3D games. However,

over the past years, CryTek released most of the code and

started to provide support for developers. Thanks to recently

added support for stereoscopic display devices, CryEngine

is now actively used by academic community for research in

VR [BIPS12].

As Ogre, Unity 3D, and many other engines, CryEngine

stores terrain images as arrays of floats, with a single float

value per pixel. Unlike Ogre, though, CryEngine does not

keep the source terrain image at run-time. Fortunately, many

operations on terrain images are templated in the code. In

Sandbox, the level editor for CryEngine, terrain maps are

defined as

typedef TImage<float> CFloatImage;

which makes expanding monochrome pixels to RGB a triv-

ial task. In the real-time game code, this task is more com-

plicated, but still possible due to consistent use of templates

that allow reading data from image files in desired pixel for-

mats. However, rather than modifying existing terrain data

structures, a simpler and less-intrusive solution would be im-

plementing an additional RGB image for storing the time

map, similar to Ogre’s source image.

Summary: time maps can be implemented in modern game

engines with little effort.

6. Limitations and Future Work

Being a concept work, this paper offers simplified formulas

for computing time increment. An obvious problem arises

when painted green time pixels happen to have the same

value as red terrain pixels. This limitation ought to be ad-

dressed in the future work.

Such future work may have a complete implementation of

proposed time maps in one of aforementioned game engines,

so the evaluation of proposed technique could be performed.

7. Conclusion

We presented a novel extension of conventional terrain im-

age maps. Our approach is based on encoding the rate of

time into a dedicated color channel of the map. The result-

ing time maps enable explicit control over all time-related

processes for all entities in the virtual world, with the spa-

tial resolution of the terrain map. The proposed system may

be added to any 3D environment, where conventional terrain

maps are used. Most importantly, time maps provide a multi-

tude of exciting ways to control the virtual environment and

all its content.

References

[BIPS12] BRUDER G., INTERRANTE V., PHILLIPS L.,
STEINICKE F.: Redirecting walking and driving for nat-
ural navigation in immersive virtual environments. IEEE

Transactions on Visualization and Computer Graphics 18, 4
(2012), 538–545. 4

[BM] Blue Mars Online. http://www.bluemars.com. 3

[CT] CryEngine, Crytek. http://mycryengine.com. 1, 4

[Fla] Flatland, The Homunculus Project at the Albu-
querque High Performance Computing Center AHPCC.
http://www.hpc.unm.edu/homunculus. 1, 2, 3

[KK14] KALLMANN M., KAPADIA M.: Navigation
meshes and real-time dynamic planning for virtual
worlds. In ACM SIGGRAPH 2014 Courses (New
York, NY, USA, 2014), ACM, pp. 3:1–3:81. URL:
http://doi.acm.org/10.1145/2614028.2615399,
doi:10.1145/2614028.2615399. 2

[Mil86] MILLER G. S. P.: The definition and rendering of terrain
maps. In SIGGRAPH ’86 (1986), ACM, pp. 39–48. 1

[Min] Minecraft. http://minecraft.net. 3

[Ogr] Ogre Open Source 3D Graphics Engine.
http://www.ogre3d.org/. 4

[OP13] OLIVA R., PELECHANO N.: Neogen: Near optimal gen-
erator of navigation meshes for 3d multi-layered environments.
Computer & Graphics 37, 5 (2013), 403–412. 2

[Sim] SimCity Official Website.
http://www.simcity.com/. 3

[SK14] SHERSTYUK A., KIYOKAWA K.: Collision-free naviga-
tion with extended terrain maps. In Transactions on Computa-

tional Science XXIII, Gavrilova M., Tan C. J. K., Mao X., Hong
L., (Eds.), vol. 8490. Springer Berlin Heidelberg, 2014, pp. 139–
156. doi:10.1007/978-3-662-43790-2_8. 1

[Sno00] SNOOK G.: Simplified 3d movement and pathfinding us-
ing navigation meshes. In Game Programming Gems, DeLoura
M., (Ed.). Charles River Media, 2000, pp. 288–304. 2

c© The Eurographics Association 2014.

48

http://www.bluemars.com
http://mycryengine.com
http://www.hpc.unm.edu/homunculus
http://doi.acm.org/10.1145/2614028.2615399
http://dx.doi.org/10.1145/2614028.2615399
http://minecraft.net
http://www.ogre3d.org/
http://www.simcity.com/
http://dx.doi.org/10.1007/978-3-662-43790-2_8

