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Abstract
In this paper, we present a novel method for refining correspondences between 3D point clouds. Our method is compatible
with the functional map framework, so it relies on the spectral representation of the correspondence. Although, differently from
other similar approaches, this algorithm is specifically for a particular functional setting, being the only refinement method
compatible with a recent data-driven approach, more suitable for point cloud matching. Our algorithm arises from a different
way of converting functional operators into point-to-point correspondence, which we prove to promote bijectivity between maps,
exploiting a theoretical result. Iterating this procedure and performing spectral upsampling in the same way as other similar
methods, ours increases the accuracy of the correspondence, leading to more bijective correspondences. We tested our method
over different datasets. It outperforms the previous methods in terms of map accuracy in all the tests considered.

CCS Concepts
• Computing methodologies → Computer graphics; Machine learning;

1. Introduction

3D shape matching is a widely investigated task in computer vision
and geometry processing. It has countless technical applications in
engineering, biology, medicine, and other fields where shape reg-
istration methods are instrumental [BCBB16; SCT*19]. This prob-
lem aims to compute correspondences between pairs of 3D shapes.

The correspondence problem is particularly challenging when
several parts of the surfaces undergo different non-rigid deforma-
tions. These can make it difficult to derive a reliable correspon-
dence between the two surfaces [DYDZ22]. Moreover, if we deal
with point clouds, the complexity grows even more since a success-
ful solution must deal with large variability in shape deformations
and must be robust to noise and missing information in the input
data.

In the seminal work of Functional maps [OBS*12], shape match-
ing is solved by exploiting a low-rank functional representation,
which can be optimized with less computational effort than the
original correspondence. To improve the representation’s accuracy
and increase the estimate performance, a widely adopted approach
is to find ways to refine a first approximation of the map, promot-
ing additional properties. For instance, a simple and flexible solu-
tion is the ZoomOut algorithm [MRR*19], an iterative method to
perform spectral upsampling and increase the accuracy of the esti-
mated correspondence, forcing the map to be an isometry between
the shapes. Unfortunately, these functional solutions have been tied
so far to the Laplace-Beltrami eigenfunctions [Lev06], which give
a spectral representation that strongly depends on the geometry of

Source Target Sota Ours

Figure 1: Performance example of our method. Our method (Ours)
helps improve the results of the state-of-the-art (Sota) we consider
in our evaluation. In all our visualizations, we depict correspond-
ing points with the same color.

the shapes at hand. This choice is not stable enough to deal with the
point clouds class of data, where the discretization of the Laplace
Beltrami operator is often an inaccurate approximation.

Linearly-invariant embedding, proposed by [MRMO20],
presents a data-driven way of substituting the Laplace Beltrami
operator basis with an alternative set of basis learned by a convo-
lutional neural network [QSMG16] to solve the problem of point
clouds shape matching, showing state-of-the-art performances.
However, this approach suffers from dimensionality limitations,
which more standard refinement methods fail to overcome. Indeed,
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the learned basis is non-orthogonal and optimized for a particular
functional representation based on the adjoint operator [HO17].
This suggests that the learned bases are incompatible with the
approaches designed for an orthonormal basis in a different
functional setting.

In this paper, we target this problem, proposing a novel refine-
ment algorithm based on the adjoint operator representation of the
correspondence, and so compatible with the data-driven basis. Our
refinement deploys a dimensional upsampling to increase the accu-
racy of the representation, sharing the idea underlying other similar
algorithms. At the same time, it exploits a new method to convert
the functional map into the actual point-to-point correspondence.
We theoretically prove that the proposed method promotes a bijec-
tive map, implicitly assuming it as the left inverse of a correspon-
dence between the shapes in the opposite direction. Performing
this conversion iteratively makes the map ’more bijective’, mean-
ing that the number of points mapped from different preimages is
greater, and increases its accuracy. In Figure 1, we visualize the im-
provement on the state-of-the-art method achieved by our approach
for an example pair.

Our method directly promotes a specific feature of the corre-
spondence that is independent of geometrical deformations. For
this reason, the proposed algorithm results more stable for point
clouds, where geometric information is limited, and performs bet-
ter for matching scenarios where large deformations occur. More-
over, our method is designed to exploit the adjoint operator rep-
resentation of the map, so it is compatible with Linearly-invariant
embedding. Applying our method to the Linearly-invariant embed-
ding pipeline, we reach the best results in the case of non-isometric
point cloud shape matching since we combine an optimal data-
driven functional representation with the new refinement proper-
ties.

2. Related work

In this section, we briefly review all the approaches to the shape-
matching problem most closely related to ours. For an in-depth
treatment of the area, we refer to the surveys [VZHC11; Sah20].

Functional maps Our work strongly fits within the functional
map framework, originally introduced by [OBS*12]. This work
exploits the spectral representation of 3D shapes, converting the
point-to-point correspondence between two of them into a map
between real-valued functions defined on their surfaces, namely a
functional map. Furthermore, by selecting a set of basis functions
for these functional spaces, the functional map can be encoded by
a more compact matrix. Then, this matrix can be estimated as the
linear operator that aligns a given set of probe functions plus other
regularization through an optimization process. A general overview
of the area is given in [OCB*17]. This seminal work inspired a full
range of applications, including [EB17; RCB*17; MMM*20], to
name a few.

Different extensions have been developed in recent years. Some
methods optimise the conversion between the functional map and
the correspondence, such as [RMC15]. A full range of works devel-
oped methods to include different properties in the spectral repre-
sentation, such as isometries [OBS*12], accurate descriptor preser-

vation [NO17], orientation [RPWO18] or bijectivity [ERGB16].
The recent [RMWO21] proposes a new approach to optimize and
convert discrete maps to include different properties. Other works
combine the spectral representation of the correspondence with dif-
ferent techniques, such as [ELC19], which combines functional
maps with extrinsic shape alignment, or [RMOW20], which an-
alyzes the full space of solutions to extract multiple diverse and
accurate estimates.

A particularly interesting variation has been made in [HO17],
where the adjoint operator has been introduced to give a different
functional representation of the correspondence. The role of this
operator has been explored in later works as [MRMO20; PRM*21].

Refinement methods The functional map approach represented
a revolutionary approach to the shape-matching problem, however,
it suffers from diverse limitations. To increase the accuracy of esti-
mated correspondences, different techniques have been developed
recently. Our work is strongly related to a class of iterative meth-
ods such as the ICP [OBS*12], the ZoomOut [MRR*19], and the
Iterative Meta Algorithm [PRM*21]. All these methods operate
in the spectral domain performing an iterative upsampling of the
spectral dimension of the representation. All these methods aim
to give a more precise functional representation without increas-
ing the complexity of the optimization. Various extensions of these
works have been proposed recently, such as in the recent [PKO],
which proposes a landmark preserving variation of ZoomOut, or
in [HRWO20], which exploits dimensional upsampling to promote
consistency among a collection of shapes. Moreover, other recent
refinement techniques focus on solving scalability [MO23] and
smoothness [MRSO22] issues in the functional framework.

Data-driven approaches The majority of spectral approaches
rely on axiomatic choices, such as Laplace Beltrami eigenfunc-
tions as spectral basis [Lev06] and dense descriptor fields [ASC11;
TSD10] as probe functions. Inspired by the astonishing results that
machine learning can reach in other computer vision fields some
methods exploit recent machine learning techniques and archi-
tecture to solve the correspondence problem [SACO22; GFK*18;
TCM*21; LDO22]. Various works tight together the functional
map framework with learning approaches. Some methods, includ-
ing the recent [AO23], inspired by [LRR*17], present data-driven
alternatives to the computation of probe functions in a supervised
[DSO20], or unsupervised [DCO22] setting. Particularly related to
our work is Lineraly-invariant Embedding [MRMO20], which pro-
poses a data-driven alternative to the Laplace Beltrami basis ex-
ploiting a point-based architecture [QSMG16] to give a spectral
representation of the correspondence for point clouds.

3. Background, notation, and motivations

In this section, we first introduce some necessary elements and fix
a notation to understand the following parts of the paper.

3D shapes Theoretically, a 3D shape X can be modeled as a
compact two-dimensional manifold embedded in R3. Along with
the surface, we will consider the space of squared-integrable real-
valued functions defined on the shape’s surface L2(X ), defined as

L2(X ) := { f : X → R,s.t.
∫
X
| f (x)|2dx <∞}
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This functional space is known to be a Hilbert space, with the inner
product

⟨ f ,g⟩L2(X ) =
∫
X

f (x)g(x)dx

From a computational point of view, we consider the shape dis-
cretized as a point cloud, unordered collections of nX points, repre-
sented by their 3D coordinates. In the discrete setting, each function
f : X → R is represented as a vector f = ( fi)

nX
i=0 = ( f (xi))

nX
i=0

Shape matching If we consider two 3D shapes X = {xi}nX
i=1

and Y = {y j}nY
j=1, we can assume there exists a meaningful cor-

respondence TXY which map each point xi into its corresponding
y j. The goal of shape matching is to estimate this correspondence.
TXY can be represented as an array of vertex index or as a si-
milar permutation matrix ΠYX ∈ RnX×nY such that ΠYX (i, j) =
1, if TXY (xi) = y j and ΠYX (i, j) = 0 otherwise.

Functional maps Given TXY : X →Y , and considering L2(X )
and L2(Y), TXY induces via pull-back a linear map T F

YX :
L2(Y)→L2(X ), such that

∀g ∈ L2(Y), T F
YX (g) = g◦TXY .

If we equip the functional spaces with bases φX = [φi]ki=0 and
φY = [φ j]kj=0, we can represent each function as a vector of the co-
efficients of its representation in basis, thus for each f ∈ X ,g ∈ Y
there exist vector of coefficients a = (ai) and b = (b j) such that
f = ∑l aiφ

i
X = φX a and g = ∑l b jφ

j
Y = φYb. Thanks to this repre-

sentation and the linearity of the functional map we have:

T F
YX (g) = T F

YX (∑
j

b jφ
j
Y ) = ∑

j
b jT

F
YX (φ

j
Y )

But T F
YX (φ

j
Y ) = ∑i ci jφ

i
X for some ci j ∈ R, thus

T F
YX (g) = ∑

j
b jT

F
YX (φ

j
Y ) = ∑

j
∑

i
b jci jφ

i
X

where T F
YX (g) = f = ∑i aiφ

i
X . Therefore, the functional map T F

YX
can be encoded as a compact matrix CYX = [ci j]

k
i, j=0 between the

coefficient’s spaces, denoted as ξX and ξY .

In this setting, recalling the matrix representation ΠYX , the
functional matrix can be found as

CYX = (φX )†ΠYX φY (1)

where † denote the Moore-Penrose pseudoinverse.

Note that CYX ∈ Rk×k, where k is the dimension of the basis
chosen. If we consider the discrete setting, where shapes are com-
posed of n points, we can select just the first k = n bases in the
spectral decomposition to have a full representation. However, to
decrease the complexity of the original matching problem we have
to select k << n bases, introducing an approximation in the prob-
lem, but reducing the complexity of the estimation. Indeed the core
of this approach is to represent the correspondence as a map of a
reduced dimension, optimized as the map that aligns corresponding
functions defined on the shape’s surfaces.

This representation is the core aspect of the functional map
pipeline, which consists of the following steps:

1. Compute a basis of k eigenfunctions φX ,φY .
2. Compute a set of K corresponding functions GX ⊂ L2(X ) and

GY ⊂ L2(Y), discretized as matrices of Rn×K .
3. Optimize CYX via the following optimization problem

CYX = argmin
C

∥C(φ†YGY )−φ
†
X GX ∥2

2 +Ereg(C) (2)

where Ereg(C) is a regularization term, that can include different
kinds of energies.

4. Finally, convert the optimized map CYX in the correspondence
ΠXY . The functional operator maps the indicators functions of
corresponding points, which are functions centered in each point
of the shapes and are represented in basis by the coefficient vec-
tor dx = (φi

X (x))i, so CYX d⊤
TXY (x) = d⊤

x . So an efficient way to
convert the map is by solving the problem:

TXY (x) = argmin
y

∥φY (y)C
⊤
YX −φX (x)∥2 ∀x ∈ X (3)

or equivalently

ΠYX = argmin
Π

∥ΠφYC⊤
YX −φX ∥2 (4)

This optimization can be solved by a nearest neighbor search
between the rows of φYC⊤

YX and φX . So that

TXY = NNSearch(φYC⊤
YX ,φX ) (5)

Adjoint operator There is also an alternative way of repre-
senting the correspondence with a spectral approach, introduced in
[HO17], and extended in [MRMO20; PRM*21]. As the Riesz theo-
rem states, the functional map T F

YX univocally induces its ’adjoint’
operator T A

XY : L2(X )→L2(Y), as

⟨T A
XY f , g⟩L2(Y) = ⟨ f , T F

YX g⟩L2(X )

Given a x ∈ X , we define δx, namely the Dirac delta centered in
x as the functional distribution for which ⟨δx,h⟩ = h(x) holds for
every function h ∈ L2(X ). T A

XY is the linear operator that theoret-
ically maps δx to its corresponding delta ∀x ∈ X as stated in the
following remark.
Remark. For each x ∈X , we denote δx as the Dirac delta centered
in x. Then, given the adjoint operator, we have that:

T A
XYδx = δTXY (x) (6)

In the discrete setting the equation (6) is translated into

AXYdx = dTXY (x), ∀x ∈ X ,

where dTXY (x) = φY (TXY (x))
⊤ and dx = φX (x)T are the full coef-

ficients of the delta functions in the respective basis. Thus, applying
the transpose on both sides, we can write:

φX (x)A⊤
XY = φY (TXY (x)) ∀x ∈ X (7)

or equivalently in matrix notation

φX A⊤
XY = ΠYX φY

This equation leads to two modifications to the functional map
pipeline
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• The correspondence induces a linear operator

A⊤
XY = φ

†
X ΠYX φY =CYX (8)

• We can reconstruct the point-to-point map as

TXY (x) = argmin
y

∥φX (x)A⊤
XY −φY (y)∥2 ∀x ∈ X (9)

or equivalently

ΠYX = argmin
Π

∥φX A⊤
XY −ΠφY∥2 (10)

And this can be solved by

TXY = NNSearch(φY ,φX A⊤
XY ) (11)

On the left side of Figure 2 there is a graphical representation of
the two operators in the functional map setting.

Dimensional upsampling The spectral representation of the
correspondence helps minimize the complexity of the problem, cre-
ating a trade-off between the complexity of the optimization and the
accuracy of the solution. The ZoomOut algorithm [MRR*19] is a
method to increase the precision of the representation, leading to
more accurate correspondences and keeping the problem complex-
ity unchanged.

Starting from a first estimate of the functional map Ck
YX , com-

puted considering k eigenfunctions, the algorithm iteratively per-
forms the following steps:

• Ck
YX is converted into Π

k
YX via Equation (4) using k eigenfunc-

tions.
• Π

k
YX is converted into Ck+1

YX via Equation (1) considering k+ 1
eigenfunctions.

This method is proven to have strong performances in a large vari-
ety of situations, despite its simple implementation.

A variation of this algorithm is presented by Iterative Meta Al-
gorithm, as called in [PRM*21]. This algorithm considers the ad-
joint operator and the equation related to this operator, (10) and (8)
to convert the maps. This refinement algorithm has some limita-
tions and performs worse than some other more regularized meth-
ods such as ZoomOut, which during upsampling promotes the or-
thonormality of the maps and so more isometric correspondences.

Basis and descriptors choice The quality of the estimations
given by these approaches is strongly tied with the corresponding
functions G and the basis φ chosen. Originally the corresponding
functions chosen were axiomatic and we composed of functions
describing landmarks points or descriptors of the shapes, such as
[ASC11] or [SOG09]. However, recently several approaches have
been proposed to learn the probe functions from data [DSO20;
HLR*19].

The basis classically chosen is composed of Laplace Beltrami
operator eigenfunctions [Lev06]. However, in dealing with point
clouds, this choice could be problematic, since its computation
can be unstable and unreliable. For this reason, Linearly-invariant
Embedding [MRMO20] proposed a data-driven alternative to the
Laplace Beltrami operator to learn basis directly from data exploit-
ing PointNet architecture.

Motivations This data-driven approach reaches state-of-the-art

Standard

X Y

L2(X ) L2(Y)

ξX ξY

TXY

ΠYX

T A
XY

T F
YX

φX
AXY

φY

CYX

Bijective

X Y

L2(X ) L2(Y)

ξX ξY

TXY

ΠYX

T F
XY

T A
YX

φX φY

AYX

Figure 2: Functional representation in the two settings. On the
left, is the standard functional representation with an adjoint or
functional map. On the right, the new representation is considered
in which the correspondence induces the functional operators in
the opposite direction.

results in some challenging point cloud shape-matching scenarios,
and most interestingly, it is compatible with the functional map
pipeline. However, it suffers from two major limitations:

• The network is able to learn only basis with a limited dimension-
ality (20), hielding to worse correspondences if the basis dimen-
sion increases.

• Although we can refine the correspondences initialized by
Linearly-invariant embedding pipeline using ZoomOut algo-
rithm with Laplace Beltrami operator eigenfunctions, it seems
impossible to perform upsampling using directly the learned em-
bedding. Indeed the Zoomout algorithm is incompatible since it
relies on the orthonormality of the basis and the functional repre-
sentation, while the learned embedding is learned following the
adjoint operator representation. Moreover, other adjoint-based
methods such as the Iterative Meta Algorithm aren’t enough reg-
ularized to give acceptable results.

In this work we target these limitations, proposing a regularized
refinement method that performs spectral upsampling, exploiting
a different adjoint-based conversion method for the map, and so
compatible with Linearly-invariant embedding pipeline.

4. Proposed method

In this section, we show how, by adding a hypothesis on the un-
known correspondences and exploiting theoretical results, we can
improve conversion and perform a refinement using the bases from
Linearly-invariant embedding.

4.1. Adjoint bijective conversion

As stated in [PRM*21], we can extract a pointwise map TXY from
the adjoint AYX , in the opposite direction with respect to what we
have seen until now, so that, instead of using (11), we can extract

TXY = NNSearch(φYA⊤
YX ,φX ) (12)

However, this operation is the equivalent of solving the problem

TXY (x) = argmin
y

∥φY (y)A
⊤
YX −φX (x)∥2, ∀x ∈ X .

This conversion is not justified in the smooth setting since AYX is
not univocally induced by the map TXY , which instead univocally
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determines the inverse AXY . For this reason, to adopt the conver-
sion in Equation 12, we need to consider some additional hypothe-
ses on the correspondence. In Figure 2 we can see the differences
between this new functional configuration, compared to the stan-
dard setting.

Under the assumption that TXY is bijective, we can prove that
the adjoint can also transport the deltas in the opposite direction
with respect to equation (6).
Proposition 1. If TXY : X →Y is bijective then

T A
YX δTXY (x) = δx ∀x ∈ X (13)

Proof. If TXY is bijective, there exists its inverse TYX such that

TYX (TXY (x)) = x ∀x ∈ X (14)

TYX induces via pull-back T F
XY : L2(X )→L2(Y), and its adjoint

operator T A
YX : L2(Y)→L2(X ). As we have seen in equation (6),

T A
YX maps the Dirac’s δ of y ∈ Y into the δ of x ∈ X , so

T A
YX δy = δTYX (y) = δx

, ∀y ∈ Y and x = TYX (y) ∈ X . So, by definition of the adjoint
operator and using condition (14), ∀ f ∈ L2(X ) and ∀x ∈ X , we
have:

⟨T A
YX δTXY (x) , f ⟩L2(X ) = ⟨δTXY (x) , T F

XY f ⟩L2(Y) =

⟨δTXY (x) , f ◦TYX ⟩L2(X ) =

= f (TYX (TXY (x))) = f (x) = ⟨δx , f ⟩L2(X )

By comparing the first and the last terms in the previous calculation,
we have the thesis.

We should note that we can weaken the bijectivity hypothesis.
Indeed the thesis holds if it satisfies the condition (14), which states
that there is a left-inverse for TXY . So the proposition holds even
for injective correspondences.

In the discrete setting, as we derived Equation (7) from Equation
(6), we can derive the following equation from (13):

φY (TXY (x))A
⊤
YX = φX (x), ∀x ∈ X (15)

This means that, if Equation 13 holds, we can extract the point-
to-point map TXY solving the problem

TXY (x) = argmin
y

∥φY (y)A
⊤
YX −φX (x)∥2, ∀x ∈ X (16)

or equivalently

ΠYX (x) = argmin
Π

∥ΠφYA⊤
YX −φX∥2, ∀x ∈ X (17)

which can be solved by Equation 12.

We believe that this conversion method helps to find a more con-
strained correspondence since it implicitly assumes the existence
of a left inverse of TXY , by which the adjoint map is induced. This
assumption leads to a more injective correspondence, increasing its
accuracy. The following proposition formalizes this observation.
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0 20 40
10−2

10−1

100

Basis dimension

G
eo

de
si

c
er

ro
r

Near-isometric pairs

FMAP
ADJ
Ours

0 20 40
10−2

10−1

100

Basis dimension

Non-isometric pairs

FMAP
ADJ
Ours

Linearly-invariant embedding

0 10 20 30
10−2

10−1

100

Basis dimension

G
eo

de
si

c
er

ro
r

Near-isometric pairs

FMAP
ADJ
Ours

0 10 20 30
10−2

10−1

100

Basis dimension

Non-isometric pairs

FMAP
ADJ
Ours

Figure 3: Recovery error for different basis dimensions in case
of near-isometric pairs from the FAUST dataset (left), and non-
isometric pairs from the SHREC19 dataset (right), using Laplace
Beltrami basis (up) and Linearly-invariant embeddings (down). We
compared different ways of converting the maps into the correspon-
dence using Equation (3) (FMAP), (9) (ADJ), (17) (Ours).

Source Target Lie Lie B Ours

Figure 4: Qualitative performance example of the new methods.
Note that the new approach hields to more precise correspon-
dences, matching more accurately points with unclear positions in
the source shape, for example, in the forearm or the hand of these
shapes.

Proposition 2. Given a surjiective TYX and AYX the matrix rep-
resentation of the adjoint operator T A

YX . The solution to the prob-
lem:

TXY (x) = argmin
y

∥φY (y)A
⊤
YX −φX (x)∥2 ∀x ∈ X , (18)

satisfies the following:

TYX (TXY (x)) = x ∀x ∈ X (19)
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Proof. Let TXY be the exact solution (in the full basis) of the prob-
lem 18, then

φY (TXY (x))A
⊤
YX −φX (x) = 0

=⇒ φX (x) = φY (TXY (x))A
⊤
YX .

but AYX is univocally induced by TYX by Equation (7). This is
the equivalent of saying that for each y ∈ Y it holds φY (y)A

⊤
YX =

φX (TYX (y)). Since this holds for each y ∈ Y , if y = TXY (x) for a
certain x ∈ X , then

φX (x) = φY (TXY (x))A
⊤
YX = φX (TYX (TXY (x)))

Finally, thanks to the surjectivity of TYX , this chain of equiva-
lences holds for each x ∈ X . We have the thesis by comparing the
φX argument in the left and right sides of the last equality.

We remark that the surjectivity hypothesis is necessary to lead
the thesis to hold for each point x ∈ X . In practice, we could have
situations where this hypothesis cannot be satisfied. However, the
thesis still holds for a subset of points x ∈ TYX (Y)⊂X . This result
can be seen as the inverse of Proposition 1. The main consequence
is that the correspondence found by our method admits a left in-
verse, and so it is injective.

Recovery error In Figure 3, we compare this conversion method
with the methods arising from the standard setting by analyzing
their recovery error. This metric is the accuracy of a correspon-
dence that is converted by a functional map derived directly from
ground truth, and it is useful to compare different conversion meth-
ods. From the plots, we can state that:

• If we use the functional conversion method based on Equation
(3) we cannot get acceptable estimations using the learned em-
bedding.

• The adjoint-based conversions are preferable in the case of non-
isometric pairs. In particular, our bijective conversion is slightly
better than the standard one in almost all situations.

4.2. Adjoint Bijective ZoomOut

The new relations between TXY and AYX highlights how (17) can
help find more injective correspondences. So under the bijectivity
hypothesis, we can find a new iterative algorithm that promotes
bijectivity between the shapes:

• Ak
YX is converted into Π

k
YX via equation (17) using k basis.

• Π
k
YX is converted into Ak+1

YX via

Ak+1
YX =

(
(Πk

YX φ
k+1
Y )†φ

k+1
X

)⊤ (20)

We remark that under the bijectivity hypothesis, Equation (20) is
equivalent to the standard way of deriving the adjoint matrix from
the correspondence of Equation (8). This can be easily proved since
if TXY is bijective, then Π

†
YX = Π

⊤
YX = ΠXY and so:

AYX =
(
(ΠYX φY )

†
φX

)⊤
=(

φ
†
YΠ

†
YX φX

)⊤
=

(
φ
†
YΠXYφX

)⊤
This algorithm shares the same ”philosophy” of the ZoomOut

algorithm with its iterative structure, but, instead of promoting the
orthogonality of the functional map and so the isometry of the cor-
respondence, it promotes its bijectivity.

In Figure 4 we give a qualitative example of the performance
of the bijective conversion and of the Adjoint Bijective ZoomOut
compared to the standard Linearly-invariant embedding pipeline.

5. Results

We evaluate our method on the correspondence problem between
non-rigid 3D point clouds, considering the class of human shapes.
Although our method is general and can be applied to every shape
category, We use this class because of the availability of data and
baselines for comparison.

5.1. Experimental setting

Dataset We tested our method on three different datasets. A
popular dataset to analyze real identities and poses is FAUST
[BRLB14], composed of ten subjects in ten different poses. We
considered the version in which 1K points have been sampled for
each shape version of it. Additionally, we considered the version
in which the points are perturbated by Gaussian noise, introduced
in [MRMO20]. Moreover, we challenge our method on SHREC’19
[MMR*19]. Such a dataset is composed of 44 shapes with differ-
ent discretization, densities, and characteristic features. For each
shape in SHREC19, we sampled 500 points uniformly covering
the surface via Farthest Point Sampling. Then we add to these 500
points the other 500 points sampled at random to select the final
set of 1000 points. Finally, we recovered the ground truth corre-
spondence between these subsampled shapes through the nearest
neighbor search in the 3D space. Since the Linearly-invariant em-
bedding approach by itself does not perform well on the majority of
these couples, we considered only a portion of pairs (34) in which
the Linearly-invariant embedding estimation was reasonable.

Baseline Our main competitor is the Linearly-Invariant Embed-
ding approach [MRMO20] (LIE) since we build our refinement
explicitly to improve the performance of this method. We con-
sidered also a refined version of this approach in which we used
the ZoomOut algorithm [MRR*19] with the Laplace Beltrami ba-
sis (LIE+ZO). We also compared our method with the standard
functional map framework (FMAP), and its version refined by
ZoomOut (FMAP+ZO). For the methods that require the Laplace
Beltrami basis, we considered the approximation of the operator for
point clouds proposed in [SC20]. Our contribution is the applica-
tion of the new conversion method of (12) applied to the LIE frame-
work (LIE B), a version refined via ZoomOut using Laplace Bel-
trami basis (LIE B+ZO) and the application of the new refinement
method to the correspondence found by this initialization (LIE B +
Ours).

Architecture and parameters In the case of Laplace Beltrami
operator basis baselines, we computed k̃ = 30 eigenvectors and
40 Wave Kernel Signature descriptors [ASC11]. We initialized the
map using 20 basis and 40 descriptors, then used the remaining 10
basis functions to perform the refinement.
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Figure 5: Error curves for the three datasets considered (from left to right: FAUST, FAUST + Noise, SHREC19). In these plots, the x-axis
represents a varying geodesic distance threshold, ρ, and the y-axis shows the average percentage of points p for which d(TXY (p),T gt

XY (p))<
ρ. The higher the curve, the better the performance. The perfect accuracy is represented by a curve that starts from (0,100). We report the
legend once, on the right, since the colors are consistent for all the plots.

In the case of Linearly-invariant embedding, we trained two net-
works to learn 20 basis and 40 descriptors. Then we trained a dif-
ferent network to have 30 basis atoms, which have been involved in
the refinement. All the networks have been trained over 12k Shapes,
split in 10k for the training set and 2k for the test set, from the SUR-
REAL dataset [VRM*17] as done in [MRMO20]. We adopt the
PointNet architecture [QSMG16] to train every network we com-
pare in our evaluation. A sample code of our implementation can
be found online at link https://github.com/gviga/AB-
ZoomOut.

Metrics To analyze the method’s performance we evaluate dif-
ferent properties of the estimate with different metrics. We evaluate
the accuracy of TXY with respect to a known map T gt

XY using the
evaluation method presented by [KLF11]. Moreover, we evaluated
the bijectivity of the estimated correspondence using the following
error:

Ebi j(TXY ) = ∥Π
⊤
YX 1−1∥2 (21)

where 1 is a vector of ones, and the orthonormality of the induced
map via

Eortho(AYX ) = ∥A⊤
YX AYX − I∥2 (22)

5.2. Non-rigid point clouds matching

First, we consider the accuracy of the correspondences estimated
by the methods considered. In Table 1, we gather the quantitative
values of the error metric. In Figure 5, we plot the error curves
in the three datasets. Moreover in Figure 6, we give a qualitative
comparison of the estimates in two relevant situations. From these
results we can conclude that:

• The Adjoint Bijective conversion method leads to more accurate
estimates. Indeed, the accuracy of the map found using this con-
version method results from 6% to 7% improved.

• The Adjoint Bijective ZoomOut refined maps reach the best ac-
curacy so far, with an increase from 12% up to 18%. In particu-

Source Target Lie Lie+Zo Lie B+Zo Ours

Source Target Lie Lie+Zo Lie B+Zo Ours

Figure 6: Two qualitative comparisons. Our method always im-
proves the result of Lie. On the top row, we report an example where
our approach does not match correctly some parts of the shapes
such as the right foot of the shape. On the bottom row, we show
an example where our method improves the accuracy of the corre-
spondence in challenging situations where ZoomOut with Laplace
Beltrami basis fails.

lar, differently from the ZoomOut algorithm, it can increase the
accuracy in the FAUST+Noise dataset.

We note that some results for the SHREC’19 dataset are marked
with an asterisk. Indeed, in this case, the correspondences com-
puted via the functional map have been recovered directly from the
author’s [MMR*19] estimations. These estimations have been per-
formed starting from the triangular mesh discretization since they
have been proven to be more reliable compared to the one com-
puted directly from the point cloud discretization.
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Model FAUST FAUST+Noise SHREC19

FMAP 0.0804 0.1062 0.2260*
FMAP + ZO 0.0581 0.0877 0.2448*

LIE 0.0476 0.0537 0.1495
LIE + ZO 0.0449 (-6%) 0.0568 (+6%) 0.1351 (-10%)

LIE B 0.0440 (-8%) 0.0522 (-3%) 0.1402 (-6%)
LIE B + ZO 0.0418 (-12%) 0.0566 (+5%) 0.1241 (-17%)

LIE B + Ours 0.0364 (-24%) 0.0461 (-14%) 0.110 (-26%)

Table 1: Correspondence accuracy using different methods. The
percentages reported are with respect to our main comparison LIE.

Model Acc Bij Ortho

LIE 0.0476 72.40 10.73
LIE B 0.0440 70.26 14.02

LIE + ZO(lie) 0.354 566.23 17.85
LIE + IMA 0.0482 71.88 6.63
LIE + ZO 0.0449 55.33 1.51

LIE B + ZO 0.0418 55.41 1.50
LIE B + Ours 0.0364 55.0 11.81

Table 2: Values of different metrics on the Faust dataset after dif-
ferent dimensional upsampling methods

5.3. Refinement analysis

We now focus our analysis on the properties of Adjoint Bijective
ZoomOut as a refinement method. In addition to the refinement
methods already considered, we also consider the ZoomOut algo-
rithm [MRR*19] performed on the learned embedding (ZO(lie))
and the Iterative Meta Algorithm (IMA), introduced in [PRM*21].
We report here the results from the experiments on the FAUST
dataset. In Figures 7 and 8, we show the value of metrics during
the iterations, while in Table 2 we show the quantitative values af-
ter the refinement.

First, as anticipated, if we perform the ZoomOut iterations using
the learned basis, we get unreliable correspondences, and the accu-
racy error explodes. We can compare the other refinements only if
we rule out this method, which fails. From the right plot of Figure
7 and from the first column of Table 2, we can see that the Adjoint
Bijective ZoomOut consistently increases the accuracy of the es-
timation during the iterations, outperforming the other methods in
all the dataset considered.

Finally, we consider the orthonormality of the induced maps. In
this case, the ZoomOut algorithm with Laplace Beltrami basis is
the only refinement to act on this property. These results show that
even if our refinement forces the bijectivity in obtained maps, it
does not promote solutions that represent isometries.

Moreover, analyzing the bijectivity error we can see that our
method decreases its values compared to relative initialization, and
it is the only method that decreases this metric consistently during
the iterations, as we can see from the left plot of Figure 8. These re-
sults represent quantitative proof of the theoretical motivation that
led us to design our novel method.
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Figure 7: Accuracy of the estimated correspondence varying the
basis dimension. On the left, we include the ZoomOut algorithm
performed using Linearly-invariant embedding, on the right we
zoom the graph to compare more precisely the other methods.
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Figure 8: Bijectivity and orthonormality errors varying the basis
dimension.

6. Conclusions

In the context of data-driven solutions for solving pointwise cor-
respondences among point clouds, we analyzed some limitations
of the recently proposed Linearly-invariant embedding pipeline
[MRMO20]. To overcome these limitations, we compared different
ways of converting a functional operator into a point-to-point cor-
respondence, proving theoretically that our new conversion method
promotes bijectivity between shapes. As a consequence, the accu-
racy of the solution increases using this new method. Moreover,
using the bijectivity as a prior constraint, we propose an iterative
refinement algorithm to perform spectral upsampling and refine
pointwise maps compatible with the Linearly-invariant embedding
pipeline.

The results shown by the experiments back up our theoretical
analysis. We evaluate the obtained maps through standard metrics,
proving the accuracy improvements of the refined maps. Moreover,
we select a metric to assess the bijectivity of the estimated cor-
respondence quantitatively, testing the theoretical observations on
which we based our work. Our model represents a valid adjoint-
based alternative to the ZoomOut algorithm and a preferable choice
in the case of Linearly-invariant embedding.
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7. Limitations and future work

Our method suffers from some limitations. First, since it is pre-
sented as an ad-hoc refinement for the Linearly-invariant embed-
ding pipeline, it cannot perform well in situations where Linearly-
invariant embedding does not initialize the map accurately. More-
over, considering the Laplace Beltrami basis, the ZoomOut algo-
rithm is still the preferred choice for spectral upsampling.

However, our work sheds light on some properties of spectral
solutions for point cloud correspondence and an application of a
new implicit bijectivity constraint, so it has more general value
and gives rise to intriguing future directions. In particular, these ap-
proaches could be merged with other refinement techniques, such
as the work of [HRWO20] in the case of a collection of shapes.
Moreover, it could be applied to other frameworks that exploit non-
orthonormal bases, such as the recent work of [HSA*23], in which
the role of the adjoint operator is analyzed when using this kind of
basis.
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[Sah20] SAHILLIOĞLU, YUSUF. “Recent advances in shape correspon-
dence”. The Visual Computer 36.8 (2020), 1705–1721 2.

[SC20] SHARP, NICHOLAS and CRANE, KEENAN. “A Laplacian for Non-
manifold Triangle Meshes”. Computer Graphics Forum 39.5 (2020). Ed.
by JACOBSON, ALEC and HUANG, QIXING, 69–80. DOI: 10.1111/
cgf.14069 6.

[SCT*19] SÁNCHEZ-BELENGUER, CARLOS, CERIANI, SIMONE, TAD-
DEI, PIERLUIGI, et al. “Global matching of point clouds for scan regis-
tration and loop detection”. Robotics and Autonomous Systems 123 (Oct.
2019). DOI: 10.1016/j.robot.2019.103324 1.

[SOG09] SUN, JIAN, OVSJANIKOV, MAKS, and GUIBAS, LEONIDAS. “A
concise and provably informative multi-scale signature based on heat dif-
fusion”. Computer graphics forum 28.5 (2009), 1383–1392 4.

[TCM*21] TRAPPOLINI, GIOVANNI, COSMO, LUCA, MOSCHELLA,
LUCA, et al. Shape registration in the time of transformers. 2021. arXiv:
2106.13679 [cs.CV] 2.

[TSD10] TOMBARI, FEDERICO, SALTI, SAMUELE, and DI STEFANO,
LUIGI. “Unique signatures of histograms for local surface description”.
Proc. ECCV. Springer. 2010, 356–369 2.

[VRM*17] VAROL, GÜL, ROMERO, JAVIER, MARTIN, XAVIER, et al.
“Learning from Synthetic Humans”. CoRR abs/1701.01370 (2017).
arXiv: 1701.01370. URL: http://arxiv.org/abs/1701.
01370 7.

[VZHC11] VAN KAICK, OLIVER, ZHANG, HAO, HAMARNEH, GHAS-
SAN, and COHEN-OR, DANIEL. “A survey on shape correspondence”.
Computer Graphics Forum 30.6 (2011), 1681–1707 2.

© 2023 The Author(s)
Eurographics Proceedings © 2023 The Eurographics Association.

46

https://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://arxiv.org/abs/2012.00888
https://doi.org/10.1111/cgf.14069
https://doi.org/10.1111/cgf.14069
https://doi.org/10.1016/j.robot.2019.103324
https://arxiv.org/abs/2106.13679
https://arxiv.org/abs/1701.01370
http://arxiv.org/abs/1701.01370
http://arxiv.org/abs/1701.01370

