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Abstract
We present an efficient 3D interaction technique: generalizing the well known trackball approach, this technique unifies and
blends the two common interaction mechanisms known as panning and orbiting. The approach allows to inspect a virtual object
by navigating over its surrounding space, remaining at a chosen distance and performing an automatic panning over its surface.
This generalized trackball allows an intuitive navigation of topologically complex shapes, enabling unexperienced users to visit
hard-to-reach parts better and faster than with standard GUI components. The approach is based on the construction of multiple
smooth approximations of the model under inspection; at rendering time, it constrains the camera to stay at a given distance to
these approximations. The approach requires negligible preprocessing and memory overhead and works well for both mouse-
based and touch interfaces. An informal user study confirms the impact of the proposed technique.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Interacting with a 3D environment has always been a very common
and basic task in 3D graphics and many different solutions are de-
scribed in literature and used in interactive applications. The track-
ball/arcball tool is one of the most common solutions for inspecting
3D models by controlling a virtual camera. The implementation of
this tool is present in almost all 3D interactive systems and it offers
orbit operation to rotate around a pivot point, combined with pan
and zoom operations. This approach provides to both experienced
and novice users a powerful instrument to drive the visualization of
3D models. Even if very successful, this approach presents some
flaws. By design this tool focuses the analysis on an exocentric in-
spection task, so, after a series of orbit+pan operations, the user can
get lost. This happens because the trackball pivot (the camera look-
at point) can be located considerably distant from the virtual object
surface under inspection so subsequent rotations move the virtual
camera in unexpected positions. This issue is usually patched by
introducing the focus operation: experienced users know when to
reset the trackball pivot to a convenient location, but a novice may
found the circumstances extremely disorienting. Moreover, in an
ideal inspection session the user should be able to drive the cam-
era to obtain an automatic fly over its surface. Using the standard
trackball this kind of inspection requires the user to continuously
perform a series of pan, orbit, focus and zoom operations:

• pan actions allow to move the camera in the xy-plane to frame
another portion of the object;

• then, orbit the camera to look at the surface with a comfortable
angle;

• then, perform a focus operation to retarget the region of interest;
• finally, zoom to adjust the distance from the object, depending

on the level of detail required in the inspection.

This sequence of operation is usually repeated several times,
which breaks the continuity of the inspection process. Moreover,
in the case of topologically complex objects presenting many cavi-
ties and protrusions, this approach can often take the camera eye to
cross the object surface, resulting in an undesirable effect.

These issues occur because the interaction interface is not
environment-aware: the standard trackball moves and reorients the
virtual camera, without taking into account the specific object
shape. We propose an innovative manipulation technique called
Generalized Trackball. We introduce additional constraints which
limit the camera freedom but, at the same time, avoid the drawbacks
reported above and provide an improved user experience. Our main
goal is to drive the camera to keep the virtual object surface always
framed and at a fixed distance. Orbit, pan and focus operation are all
merged in single panning operation that smoothly moves the cam-
era as if it is hovering above the surface (similarly to the HoverCam
solution [KKS∗05]). Our technique allows unexperienced users to
explore with accuracy every detail of a generic 3D model, relying
on an input interface with just two degrees of freedom. Moreover,
another important constraint in our design has been the need to re-
duce as much as possible the resources requirements (memory and
processing). In particular we do not want to force the application
to run an extensive and costly preprocessing of the mesh to be ren-
dered, because one of our design goal was to develop a solution

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/stag.20161368

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/stag.20161368


Luigi Malomo, Paolo Cignoni, Roberto Scopigno / Generalized Trackball for Surfing Over Surfaces

easily portable on low-performance mobile systems (smartphones
or tablets).

We started from the same inspiration principles of the HoverCam
paper, but the technique presented here allows to go beyond the
limitations of that previous solution and proved to offer an efficient
free navigation control. More precisely, the contributions of this
paper include:

• a clean formalization of the behavior of the camera in the space
surrounding the object based on the definition of Curvature
Bounded Surface;

• a mesh-less adaptive multi resolution representation of the sur-
face that allows to efficiently compute an approximation of the
Curvature Bounded Surface (Section 3.1) that leads to smooth
camera movements;

In the following sections we give a brief overview of the state of
the art, introduce our approach and present a first naive implemen-
tation solution. Then we formalize the problem, clarify our con-
straints in terms of use of resources and performances, and finally
explore the implementation alternatives, focusing on challenging
aspects. Next we describe the implementation details of our solu-
tion and finally we present the results and discuss limitations and
possible improvements.

2. Related Work

The purpose of this section is not to provide a comprehensive sur-
vey over 3D camera control techniques. For a full review of current
state of the art refer to [CON08, JH13].
The problem of interactive 3D camera control mainly consists of
mapping inputs with limited degrees of freedom (DOF) to higher
dimension transformations, matching the user control scheme to
the perceptual feedback of the interface. The main solution devel-
oped to interactively observe and inspect a 3D model is the virtual
trackball [CMS88, Bel88, Sho92, HSH04]. The trackball tradition-
ally allows 3D rotations with just 2 DOFs input devices, such as
the mouse. A state of the art implementation can be found in the
open-source tool MeshLab [CCR08].
The safe 3D navigation technique [FMM∗08] has been designed
to overcome the lost-in-space effect of the standard trackball tools.
It has explicit pivot indication, avoids camera-to-surface collision
and provides alternative egocentric look-around metaphor for in-
door environment visualization.
Other solutions provide different interaction metaphors (see
[WO90]). Hachet et al. [HDKG08] realized a point-of-interest tech-
nique that allows to directly specify camera target location with a
simple pointing interface and then adjust, using an overlaying wid-
get, the desired viewing angle. That results in the camera moving
from the current shot to the newly specified one.
Solutions for the exploration of complex scenes (e.g. buildings in-
teriors) require to precalculate possible paths, e.g., by perform-
ing a cell-and-portal subdivision, created using a distance field,
and supporting the creation of camera paths for scene walkthrough
[AVF04]. Other techniques are targeted to virtual environment ex-
ploration and, using a traditional flying vehicle interface, avoid col-
lisions with the surrounding geometry constraining the camera with
force-fields [WDK01, MMGK09].

Viewcube [KMF∗08] proposes a 3D widget overlaid onto the scene
that easily allows to transform the camera to view from each one of
the 27 canonical directions (top, front, left, etc.).
Another general trend is to build interaction techniques that re-
duces the DOFs with respect to complete free camera movement
and maps simple input operation to a combination of low level
transformation to comply to the specific application. This idea is
used in [LC15] to allow the user to easily control a camera for cin-
ematographic purposes. Other approaches limit the camera DOFs
to provide a simpler and most effective object inspection. Ro-
driguez et al. [RAMG14] proposed an auto-centering virtual track-
ball based on real-time screen space stochastic sampling. Marton
et al. [MAG∗12] further reduce the DOFs by introducing a focus
sliding interaction metaphor with automatic zooming. Hanson et
al. [HW97] constrain virtual camera position to a patch surface that
offers convenient environment exploration and/or object inspection
using 2-DOFs interaction. Each keynode of the patch has a set
of precomputed or authored camera properties associated (up vec-
tor, orientation, focal length, etc.) that interpolates within the sur-
face. Other solutions provide authored views [BKF∗02, BKFK06],
adding some limitation to the effective view selection.

Recently two other papers have been published on this subject
[MRB∗14] and [Bou14]; both of them target the main idea of a
camera orbiting around the scene surface, but they adopt a screen
space approach that builds partial local approximation of the vis-
ible scene. On the other hand our techniques is based on a global
approach that builds up a multi resolution representation that al-
lows to consider also global, non visible, portions of the scene to
determine the camera paths in a more robust and continuous way.

The HoverCam approach [KKS∗05] is targeted to exocentric in-
spection task and is the technique most similar to our solution.
HoverCam allows to interactively navigate a model with a hover-
craft metaphor: the user can move the camera as if it’s hovering
above the surface, while staying at a fixed distance from the closest
point on the model and looking at it. But it adopts local computa-
tion to avoid the known distance field drawbacks. As briefly stated
in the introduction, we follow a similar approach, but our design
is more flexible and cheaper in terms of computational resources
(because we start with an accurate mathematical model and then
derive an approximate implementation that accomplishes the pre-
scribed behavior and the performances), as better demonstrated in
the following. Moreover our approach, being based on smooth ap-
proximation of the original surface, does not suffer of the jerkyness
in the camera movement that affected HoverCam, please compare
the accompanying video with the ones of [MMGK09].

3. Defining the Generalized Trackball

Inspecting an almost spherical object using orbit and zoom opera-
tions of a standard trackball is very intuitive. Orbiting the trackball
allows the camera to focus on any surface region while the zooming
operation controls how close to look at it. Starting from this track-
ball interaction scheme we can provide an alternative interpretation
for the manipulation technique, involving two parametric surfaces,
camera eye and camera target surfaces. We define SE as the spheri-
cal surface with radius rE which is the space of possible camera eye
points E. ST as the spherical surface of radius rT of possible camera
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Figure 1: The standard trackball allows to orbit around an object
on a spherical surface. We can generalize this idea by forcing the
camera to move over a surface closer to the original shape of the
object. In blue the surface of possible camera eye positions. In red
the surface of the corresponding camera targets.

target points T , that wraps the 3D model (see Fig. 1 left). We also
define a one-to-one correspondence between each point E and the
associated target T , obtaining a function f that for each point on
SE returns one point on ST . For every camera position the distance
between E and T is d = rE− rT . We can then redefine the orbit op-
eration: displacement of screen-space input maps to movement of
eye point E over the surface SE ; as point E changes, the target is set
to T = f (E). Zooming operation changes the radius rE of surface
SE , thus modifying the distance d between eye and target.

This interpretation is easy to formalize for spherical surfaces.
Our goal is to extend this design to arbitrarily complex objects: this
means that we have to define a generic surface ST that optimally
approximates the model shape, a new space of possible eye points
SE and a function that maps E to T . A simple and straightforward
solution consists in defining ST equal to the 3D model surface (see
Fig. 1 right). Then we define SE as the offset surface of distance
d for the 3D model (the locus of points whose minimum distance
from the model geometry is d). The new f maps each point E to the
closest point on the surface T . With this solution every eye-target
vector ~ET is normal to both ST and SE surfaces (when normal is
defined). This technique is ideal for convex shapes but for generic
3D models presenting concavities it does not work.
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Figure 2: Left: Naive trackball generalization for a concave object
surface. Right: Curvature-Bounded Surface (green) generated for
the same surface.

3.1. Curvature-Bounded Surface

Considering the simple concave shape of Fig. 2 we can notice that
the surface SE presents some singularities (the highlighted regions)
where the normal is undefined and there is no obvious mapping
from the camera eye point to a camera target on ST . The HoverCam
technique [KKS∗05] solves this issue using an algorithmic solution
that is based on local input movement and geometric calculations.
We propose instead a formal approach relying on a well defined sur-
face that is C1 and bounded in curvature: the Curvature-Bounded
Surface (CBS), defined as

CBSM(d) = offset(−d
2
,offset(d,M))

where d is the distance and M is the 3D model surface. The offset
function builds the surface defined by all the points at distance d
from M (a distance field isosurface). Using the Mathematical Mor-
phology terminology [Ser83,LL88] our CBS can be obtained from
M with a dilate operation of value d followed by an erode operation
of d

2 (see Fig. 2, right).

The CBS has a lot of useful properties. First and most impor-
tantly the CBS for a surface M at distance d has the curvature
upper-bounded by the value c = 2

d since the curvature radius can-
not be less than d

2 . This implies that the surface ∈ C1. The conti-
nuity is obvious since the CBS is an offset surface. It is derivable
because our CBS has upper-bounded curvature. As a consequence
every point on the CBS has a defined normal.

Given the parametric surface CBSM(d), a point P on it and his
associated normal ~NP, the point

P′ = P+~NP ·
d
2

(1)

lies on the offset surface of M with distance d. Moreover, it can be
proved that P′ is the point on the isosurface closest from P.

Our Generalized Trackball (GT) is thus defined by means of the
CBS. Given a 3D mesh model with surface M we define the space
of possible camera eye point as SE = offset(d,M) and the surface of
associated target points as ST = CBSM(d). With this technique we
map screen-space input movement to displacement of target point
T over ST , instead of E. When T changes, we retrieve the new eye
point E using the Equation 1 which becomes:

E = f−1(T ) = T +~NT ·
d
2

(2)

Here, the f proposed in the trivial solution is inverted to make it a
proper function defined for all values T ∈ ST .

We also know that given a point P and a model surface M,
∃ d̄ | P ∈ CBSM(d̄). Accordingly we can define a CBS field that
for every point returns the value d̄ of the corresponding CBS sur-
face.

We can now provide an algorithm for the GT. The generalized
orbit operation (pan) moves the target T over the corresponding
CBS of distance d. With the zoom operation, we change the value
of d to d′. To find the corresponding T ′ ∈ CBSM(d′), we perform
an ascent (or descent) along the CBS field gradient until we found
the value d′ and thus the point T ′. For each new value of T , we
compute the corresponding eye point E using the Equation 2 (see
Fig. 3).
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4. Data structures for efficient implementation

The GT formalized so far provides an exocentric camera manipula-
tion technique extremely robust and coherent. But we should take
into account constraints for its actual implementation, like the real-
time performance requirement.
Implementing a volumetric field with realtime performance is a
challenging task, even using state of the art algorithms and spa-
tial indexing structures (e.g., [LH07]). Starting from a model sur-
face, one idea is to generate a series of offset surfaces and compute
their corresponding CBS. Then we could take a number of samples
from each of the isosurfaces and set the obtained values into an
optimized structure that will become our CBS field. Unfortunately,
this kind of structures are not optimal for our purposes, since the
field gradient (isosurface normals) would present noise. For visual
representations (shaded surface), slightly noisy normals can be tol-
erated, but when they are used as view directions even subtle vari-
ations can result in significant interaction disruption. In addition,
we must consider that such data structures, even if compressed, oc-
cupy a substantial amount of memory and their use would require
a time-consuming preprocessing phase.
To address performance requirements we adopted a new strategy.
We observed that an exact implementation of the formalized math-
ematical model is not needed; the only requirement is to provide
visual continuity during the inspection process.

4.1. KD-tree distance field and normal field

For each point in space we need the distance from the model surface
M and a normal directed to the closest region. The key idea for an
efficient implementation is to have an approximate distance field
and a continuous vector field of normals that is quite coherent with
the former. We realized both using an auxiliary data structure that
relies on a KD-tree.

Given a 3D model, a preprocessing phase creates a point cloud
PCr that approximates its surface with uniformly distributed point
samples (Fig. 4). The point generation is performed with a fast
poisson-disk sampling strategy, which ensures that the distance
between any two points is greater than a given sample radius r
[CCS12]. This preprocessing time is negligible with respect to the
file loading time.
The KD-tree built over PCr is extended to approximate a distance
field with an implicit representation, thus let us call it KD-tree dis-
tance field. For every point in space, we can perform a nearest-

Object
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d

Figure 3: Camera eye-target vectors for the Generalized Trackball.
The CBS is the space of possible targets.

Figure 4: Poisson-disk sampling of a 3D model.

neighbor query (NN) on the KD-tree, get the closest point within
PCr, and return the distance from it. This approach is really fast,
but the point sampling discretization produces many singularities
on the isosurface produced (Fig. 5). The latter are also present in
the case of concave surface regions (Fig. 2).
To eliminate this issue, we propose an alternative distance field ap-
proximation that smooths all singularities and produces almost C1

isosurfaces. Instead of getting the closest point within the PCr we
perform a k-nearest-neighbors (k-NN) query to get k closest sam-
ple points. Field values are computed by averaging the distances di
from each of the k points with a gaussian based method. Precisely:

d =

√
∑

k
i=1 ωi ·d2

i

∑
k
i=1 ωi

with ωi = e
−g·

((
di

dmin

)2
−1
)

where ωi is the gaussian-like weight for each of the k distances,
dmin is the minimum distance among all distance values, and g is
the scale factor used to tweak the gaussian weighting.

Experimentally we found that k = 16 provides a good trade-off
between performance and smoothness. Fig. 6 shows a section of an
isosurface generated with the KD-tree distance field using 16-NN

d

Object

Samples

Offset
surface

Figure 5: Singularities (in yellow) on the offset surface generated
from a KD-tree distance field.
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Figure 6: Isosurface sections generated with NN (red) and 16-NN
queries (green).

queries, compared to the same obtained with simple NN procedure.

Similarly, we implemented a KD-tree normal field that approx-
imates the gradient of the distance function. To be exact, we did
not provide a vector field consistent with the distance field gradi-
ent, but we created an ad-hoc continuous function that returns for
each point a vector directed towards the closest region of the PCr.
In practice, we take the k closest points from the query point Q,
we average them obtaining Pavg, and finally we yield the normal-
ized vector ~PavgQ. The function that computes the average is the
following:

Pavg =
∑

k
i=1 ω̂i ·Pi

∑
k
i=1 ω̂i

For normal calculation we couldn’t use the same weighting strategy
with respect to distance field. Since each of the k points contributes
to normal evaluation, the most distant point must have a null contri-
bution. That’s because, varying the query point Q, the k-NN points
changes discretely: in particular the most distant point is dropped
in favor of a new different one. In these cases we obtain normal
discontinuities, since a point is exchanged in the normal evaluation
function, while his weight and all other terms remain the same.
Weights ω̂i need to be different to solve this issue:

ω̂i = 1−

(
d2

i −d2
min

d2
max−d2

min

)
where dmax is the maximum distance among the k distance values.

4.2. Approximated CBS

The approximate distance and normal fields presented above allow
to efficiently implement our approach based on CBS. Let us re-
member that the camera eye space is the distance field isosurface
with distance d, which in our case is:

SEd = {E | Dfield(E) = d}

with Dfield being the KD-tree distance field function. The camera
target space is then defined by an approximate version of the Cur-

vature Bounded Surface C̃BS(d) defined it in terms of our distance
and normal field:

STd = C̃BS(d) = {P | P = Q− ~Nfield(Q) · d
2

and Q ∈ SEd}

with ~Nfield being the KD-tree normal field function. Since we elim-
inated the singularity issue with the approximate fields implemen-
tation, we can now have for the GT a proper function f : R3→ R3

that maps each camera eye point in a corresponding target point:

f (E) = T = E− ~Nfield(Q) · Dfield(E)
2

5. Interaction

In the following we describe the implementation of the GT base
operations.

Panning. The pan operation moves the camera remaining at a fixed
distance d from the object surface, i.e. the camera is floating above
the 3D mesh and looking always at the surface. Given a camera eye
point E ∈ SEd and a corresponding target T = f (E), for a mouse
based (or touch) drag input we want to obtain a new eye point
E′ ∈ SEd and target T ′ = f (E′) such that the vector ~T T ′ is con-
sistent with the input displacement vector.
We can’t use the input to displace E on the SEd isosurface because
small movements in the regions corresponding to 3D model con-
cavities will result in the camera changing abruptly its orientation,
producing an evident visual discontinuity.
Since there is no direct method that given a displacement vector
allows to move the point T along the implicit CBS surface STd , we
developed an iterative algorithm to find the new eye point E′ that
maps to the desired camera target T ′ = f (E′).

Due to performance reason, we cannot have a mesh representa-
tion of the isosurface SEd , so we need an operator that allows to re-
trieve points on it using only a few distance field queries. Therefore,
we introduced a distance field ray-casting operator that performs a
linear search within the field until the d value is found. For an exact
distance field the implementation is easy. To find a point at distance
d̄ starting from a ray with origin P0 and direction ~D, the algorithm
evaluates d = Dfield(Pi); if

∣∣∣ d̄−d
d̄

∣∣∣< ε the Pi point is returned. Else,

Pi+1 = Pi +~D ·
∣∣d̄−d

∣∣ (3)

is computed and a new iteration is performed. If after a fixed num-
ber of iterations the relative error keeps increasing, the ray casting
operation is assumed to be divergent and is then stopped. This al-
gorithm is conservative: it does not use derivatives of the field and
always finds, if present, the first point in ray direction that evalu-
ates to d̄. The algorithm works exploiting the triangular inequal-
ity property of the distance field, which is not guaranteed in our
KD-tree implementation. For this reason our ray casting operation
is different and only possible from lower to higher distance val-
ues (Dfield(P0) < d̄). We changed the advance factor of the linear
search: the step of Equation 3 becomes

Pi+1 = Pi +~D ·
∣∣d̄−d

∣∣ · Dmin(Pi)

d
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Figure 7: Left: the space of points Oi used to perform ray casting operations. Center: simplified 2D section for the searching algorithm.
Right: series of camera eye-target vectors generated with fixed step panning operations along one direction.

where Dmin is the distance field value computed using single near-
est neighbor query. This solution accounts for field compression:
it rescales the increment for search point along ray direction ex-
ploiting the fact that compression factor of the field decreases with
growing values of d. Let’s call this newly introduced operation
ray(origin,direction,d), where d is the distance of the target iso-
surface to be intersected.

We discuss GT mouse based interactions; extension to touch in-
terfaces is rather straightforward. For simplicity’s sake, assume to
start from a situation in which we have a camera point E, a corre-
sponding target T = f (E) and Dfield(E) = d. With a mouse drag
movement the user translates the cursor from a screen-space point
P1 to another P2. We want to translate the target T to a position T̃
such that ~∆T = T̃ − T is consistent with screen-space translation
~∆P = P2−P1.

Let’s fix the X and Y axes to be always aligned to screen-
space x and y axes (the z axis will result identical for both
world- and screen-space and it is directed from the screen sur-
face towards the user). For an orthogonal projection the vectors
are basically the same (only scaling factor between screen-space
and world space coordinates must be considered). For a perspec-
tive projection instead, considering screen-space coordinates x ∈
[−aspect ratio,+aspect ratio] and y∈ [−1,+1], the translation vec-
tor is computed as:

~∆T = ~∆P ·
d
2
· tan

(
FOVy

2

)
where FOVy is the field of view vertical angle of the camera and
d
2 is the distance between E and T . With this computation, the
screen-space translation is scaled to achieve a perceptually coher-
ent world-space displacement located on the plane orthogonal to
view direction and passing through the camera target T . The prob-
lem is that T̃ is not guaranteed to be on the surface STd and also we
cannot invert the f function to retrieve the corresponding new eye
point. The final and most important step is therefore an optimized
space research algorithm that finds the desired eye point E′ ∈ SEd

such that ‖T̃ − (E′ − d · ~Nfield(E
′))‖2 is minimum (i.e. the point

E′ for which its corresponding target point is the closest to T̃ ). We
take the plane orthogonal to view direction that includes both T and
T̃ and create on it a space of points defined as Oi = T + ~∆i, where
~∆i = (x,y,0)T is a space of bidimensional displacement vectors. For
every point on the plane we can perform a ray casting operation to

obtain a point on SEd isosurface:

Ei = ray(Oi, ~Nfield(E),d)

Then, given the candidate Ei, we can obtain the corresponding tar-
get Ti = f (Ei). Now we can transform the space-search into a min-
imization problem:

min
i
(‖T̃ −Ti‖) where Ti = f (ray(Oi, ~Nfield(E),d))

The minimization problem was solved with the NEWUOA soft-
ware [Pow06]. From these results we can retrieve the new eye point
E′ = ray(T +(x,y,0)T , ~Nfield(E),d) and the new target T ′ = f (E′)
(Fig. 7).

A situation that may reduce the algorithm precision or definitely
break it occurs when the input displacement is excessive, e.g., when
the user performs a very fast mouse move. We overcome this is-
sue by splitting large movements in a series of length-bounded dis-
placements, sequentially launching the procedure for each one of
them.

Zooming. The idea behind the zoom operation is actually very sim-
ple: the distance d defining the distance from the model surface is
varied; consequently, camera eye and target points are moved to
the newly obtained parametric surfaces SEd and STd . Similarly to a
standard trackball implementation, the zoom is geometric and the
d value is changed with the mouse wheel notch to the new value
d′. The new camera points E′ and T ′ are computed using with the
same procedure used by the panning algorithm. The only difference
is that reference target point T̃ is equal to T and the ray casting op-
eration is performed using the distance d′ to retrieve intersection
points Ei on the isosurface SEd′ .
Zoom operation, like panning, works only locally: when the d value
changes too much, the iterative procedure could not converge to the
correct new camera position. Analogously to the panning case, we
split distance displacement into a sequence of smaller operations.

Z-Rotation. During a panning operation, while moving along a
curved surface, the view direction vector ~ET may vary signifi-
cantly. As already noted in [KKS∗05], these direction changes re-
quire an up-vector policy to be defined. In general in our technique
we used the local up-vector mode, in which screen-space displace-
ment vector tries to always match world-space translation along
camera movement, resulting in up-vector drifting due to this con-
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Figure 8: Point clouds resulting from poisson-disk sampling using subsequently halved radii.

strain. For models that have an obvious up-orientation we switch to
the global up-vector policy.

6. Scale dependency

For close object inspection the method delivers exactly the ex-
pected behavior: it is extremely intuitive and produces smooth cam-
era movements perceptually coherent with the user interaction. If
we focus on far object inspection (e.g., when the entire object is
fully framed), the expected interaction should be very similar to
the standard trackball (the camera eye moving over a quasi spheri-
cal surface).

The competition between these two behaviors results in a shak-
iness effect, that has been noted as well for the HoverCam imple-
mentation and may show up also at medium distances. Moreover,
at great distances the KD-tree queries become slower because the
nearest-neighbor algorithm must visit a consistent portion of the
tree.

Figure 9: Eye-target camera vectors at different distances obtained
using scale dependent field approximation.

To solve this issue we introduced a modification that copes with
both the performance issue and the disturbing camera movement
for distant observation. The distance field is represented at different
scales, by means of scale-dependent KD-trees, constructed start-
ing from different poisson-sampled mesh surfaces, each one repre-
senting a given scale (by iteratively halfening the sampling radius
ri = r̄/2i, see Fig. 8). In practice the optimized implementation of
our KD-tree, for a structure indexing 20K points, allows to perform
hundreds of thousands of field queries per second. The specific dis-
tance fields to be queried will depend on the distance of the viewer.
We omit the details for the sake of reducing the paper length.

The multi scale approach allows to achieve the desired camera
smoothness during the object inspection: in the case of close in-
spection, panning makes the camera hover above the surface, while
in the case of distant observation the behavior is very similar to the
standard trackball orbit operation. That’s because the smoothness
of the fields increases with growing distance: for low values the
resulting offset surface wraps the model with close approximation
while with increasing distances the surface degenerates to a sphere
(see Fig. 9).

Object

Safe zone

E

Efar

In addition to scale depen-
dency, we added another sim-
ple modification that enables a
more comprehensive view for
the object. Since the camera
eye point evaluates to d on the
distance field we are sure that
the model geometry is at least
at distance d from that point.
Thanks to this property, we can
offset the eye point E along the
negative view direction (see side figure).
Applying this feature the space of camera eye points is no longer
an offset surface but the perceptual feedback for the user is not
negatively affected. As a simple analogy to compare the different
approaches, imagine a squared room with some paintings on one
wall. The classical approach enables to look at the wall at most
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from the center of the room; the camera offsetting, instead, allows
to look at it from the opposite wall.

7. Results and Evaluation

Performance. The main advantage of point-sampling is that the
number of samples is regardless of the actual resolution detail of
the model (the number of faces), so the computational cost is uni-
form across models and thus can be easily forecasted. For models
counting 1-2M of triangles, we found that a minimum sampling ra-
dius equal to 1/100th of the bounding volume diameter is a good
value. Except for meshes with great variance of primitives size, this
allows to interactively observe with great detail even the single ge-
ometry primitives.
Experimental data show that the linear search ray-operator con-
verges within 2-7 iterations, each performing two queries to distinct
KD-trees field (to implement scale dependency). The NEWUOA
optimization process takes, on average, 80 iterations to converge.
During interaction, at most 30K KD-tree NN queries per second
are required.
The memory overhead for the proposed technique is given by the
point-clouds and the KD-trees built on them. With the parameters
shown above, the point-cloud of the most dense sampling level
counts 10-30K points that implies a small memory footprint (less
than 2Mb). For computationally limited devices it is possible in-
crease the overall efficiency by simply widening the minimum sam-
pling radius. The limitation of such a choice could be seen only on
very complex models that would not be possible to visualize on
such devices.

An empirical evaluation of the quality and speed of the manipu-
lation experience can be assessed by looking at the accompanying
video.

Evaluation. In order to assess the effectiveness of the GT we de-
signed the following user study based on two tasks that requires
the close inspection of a 3D model. The user was requested to per-
form the task twice with the two different interaction mechanisms
(standard trackball and GT). We choose the following two tasks:

• Given a 3D model of a car, we asked to the user to closely inspect
it by selecting for each wheel a single view that should frame the
wheel completely and show it from a direction parallel to the
wheel axis;

• Given a 3D model of a piece of art (a medieval stone cross with
detailed carving), we asked to the user to inspect the model and
frame, similarly to previous test, four features but with a specific
order.

The interaction mechanisms was randomly chosen for each user.
Instruction were presented to the users by means of a printed de-
scription that included images of the target views to be reproduced.
We used 12 subjects, half of the subjects were 3D expert, with long
experience in many different environments (like high-end 3D mod-
eling tools, visualization systems, etc.) and the other half had no ex-
perience in 3D manipulation (except console gaming experience).
The Table 1 reports the average times, in seconds, needed for an
user to perform the tasks. The results of the user study clearly show
that the GT was significantly simpler to use. Our approach allowed
to complete the tasks in a time that was on average 24% shorter

for both naive and expert user. Looking at the times we can note
that the ‘Cross’ task was significantly harder than the ‘Car’ task:
average times of both naive and expert users and with both interac-
tion mechanisms were higher. In this case the relative improvement
using our approach is higher for harder task: 27%. We could say
that probably when the interaction is more difficult the benefits of a
more sophisticated mechanism are more evident. We also collected
feedback from our test subjects and in all cases the GT was the pre-
ferred choice. The most common motivation provided is that our
interaction scheme provides a more pleasant experience and feels
more natural.

Standard Trackball Generalized Trackball
expert naive all expert naive all

Car 45.3 88.1 66.7 33.9 74.2 54.1
Cross 71.0 115.5 93.3 52.5 83.6 68.8
Total 58.1 101.9 80.0 43.2 78.9 61.0

Table 1: Average times for completing the tasks (standard trackball
vs. GT) for naive and expert users.

8. Conclusions

We presented the Generalized Trackball, a solution to control in a
very intuitive and direct manner the interactive inspection of 3D ob-
jects with complex shape. The solution proposed is effective, effi-
cient and can be applied to both mouse-based platforms and mobile
devices adopting a touch-based interface. Our approach features a
very small memory overhead and negligible preprocessing times; it
is based on a robust mesh-less adaptive representation that works
on any kind of model without introducing topology constraints. We
assessed the system with naive and expert users, confirming the sig-
nificance of the proposed technique in shortening interaction times.

Future extensions. We envision several possible improve-
ments to the GT approach. First of all, despite GT sup-
ports a very natural and intuitive exocentric object in-
spection, there is still a theoretically unsolved issue.

Object

SE

!

For objects with a complex topology,
presenting many holes and cavities, the
distance field gradient may be undefined
because in some internal regions where
there can be points equally distant from
different portions of the object surface
(see side figure). The normal field that
we use achieves normal smoothing in
correspondence with concave object re-
gions, but in this situations we cannot
provide a consistent value because there is no actual value. For this
reason, if following exactly the presented framework, the camera
could remain stuck, zoom-out could not be performed and the pan
operation behaves like an egocentric technique. In this case only
a zoom-in operation can take the camera eye to a distance value
where the field achieves again the expected behavior. For practical
purposes, to recover from these situations, we simply move towards
the last admissible position traversed by the user at the target dis-
tance. While there can be situations in which this approach could
lead to non optimal paths, in practice is simple to be implemented
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and works well.
In the future we would like to solve this issue in a more clean way,
by using a zoom-out operation that allows the camera eye to fol-
low the undefined gradient region (using the outer medial axis of
the model detected with the distance field). In this way we will be
able to execute an operation similar to the push-out mode of the
Multiscale 3D Navigation technique [MMGK09].

Another possible extension would be to explore alternative ap-
proximations for the object surface and the distance field. One thing
in particular that would be helpful is to produce a parametric rep-
resentation for the mesh surface that smoothly approximates the
original topology. Perhaps this approach may speed-up the camera
manipulation performance and, hopefully, provide direct methods
for the offset surfaces calculations.
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