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Figure 1: Flux-limited diffusion (c) is an extension to the classical diffusion approximation (a). It improves accuracy, but is based on ad-hoc
assumptions about volumetric transport. We add the PN -method (b) to the toolbox of deterministic methods in rendering and investigate its
benefits and tradeoffs against flux-limited diffusion.

Abstract
Rendering highly scattering participating media using brute force path tracing is a challenge. The diffusion approximation
reduces the problem to solving a simple linear partial differential equation. Flux-limited diffusion introduces nonlinearities
to alleviate the approximation error but introduces several ad-hoc assumptions. Both methods are based on the spherical
harmonics expansion of the radiance field, that is truncated after the first order. In this paper, we investigate the open question of
whether higher orders provide a viable alternative to these two approaches. Increasing the order introduces a set of increasingly
complex coupled partial differential equations, whose growing number and complexity make them very difficult to work with.
We use a computer algebra framework for representing and manipulating the underlying mathematical equations and use it to
derive the time-independent real-valued PN -equations for arbitrary orders. We further present a staggered-grid PN -solver and
generate its stencil code directly from the expression tree of the PN -equations. Finally, we discuss how our method compares
to prior work for various standard problems. We will release our computer algebra system, solver, and data as open source to
ensure reproducibility of all of our results.

1. Introduction

Simulating light transport in participating media remains a chal-
lenging problem for image synthesis in computer graphics. Due to
their ability to produce unbiased results and conceptual simplicity,
Monte Carlo based techniques have become the standard approach.
The main downside of these methods are their computational de-
mands when rendering media with strong scattering or anisotropy.

Deterministic methods have enjoyed less popularity, because
they suffer from discretization artifacts, produce biased results,
cannot be coupled easily with surface rendering problems and are

trickier to implement. However, their appeal lies in the fact that
they produce a global solution across the whole domain and have
better performance for certain problems.

The work on path-guiding techniques from recent years has
shown how approximate representations of the steady-state trans-
port in a scene can be used to accelerate Monte Carlo integration
techniques, such as path tracing. Instead of generating these ap-
proximate representations using Monte Carlo methods, determinis-
tic methods may offer a viable alternative. Hybrid methods could
combine the performance benefits of deterministic methods with
accurate and unbiased Monte Carlo results.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

https://diglib.eg.orghttps://www.eg.orgDOI: 10.2312/sre.20181170

https://doi.org/10.2312/sre.20181170


D. Koerner & J. Portsmouth & W. Jakob / PN -Method for Multiple Scattering in Participating Media

Deterministic methods also lend themselves to applications
where fast approximate solutions are preferable over correct, but
slowly converging results. For this reason, we suggest it is impor-
tant for volume-rendering researchers to study deterministic meth-
ods and have a solid understanding of their characteristics and per-
formance traits for typical rendering problems.

The PN -method is a deterministic method which is popular in
fields like medical imaging and nuclear sciences, but has not found
use in computer graphics thus far. The purpose and main contribu-
tion of our paper is to gain a solid understanding of its foundations
and present a method for using it in the context of rendering. In
particular, we present these theoretical and practical contributions:

• We derive and present the time-independent real-valued PN -
equations and write them down in a very concise and compact
form which we have not found anywhere else in the literature.
• We introduce a staggered-grid solver, for which we generate

stencil code automatically from a computer algebra represen-
tation of the PN -equations. This allows us to deal with the in-
creasingly complex equations which the PN -method produces for
higher order. It further allows our solver to be used for any (po-
tentially coupled) partial differential equations, which result in a
system of linear equations after discretization.
• Finally, we compare the PN -method for higher orders against

flux-limited diffusion and ground truth Monte Carlo integration.

In the next section, we will discuss related work and its rela-
tion to our contribution. In Section 3 we revisit the deterministic
approach to light transport simulation in participating media and
outline the discretization using spherical harmonics. In Section 4
we introduce our computer algebra representation, which we re-
quired to derive the real-valued PN -equations. This representation
is also a key component of our solver, which we present in Sec-
tion 6. Section 7 discusses application of the solution in the context
of rendering. We compare our PN -solver against flux-limited diffu-
sion for a set of standard problems in Section 8. Finally, Section 9
concludes with a summary and review of future work.

2. Previous work

Light transport in participating media is governed by the radiative
transfer equation (RTE), first studied in the context of astrophysics
by Chandrasekhar [Cha60] and later introduced to computer graph-
ics by Kajiya [Kaj86]. Today, this equation is typically solved us-
ing Monte Carlo methods. In strongly scattering media or in the
presence of highly anisotropic phase functions, these methods can
become prohibitively expensive. For example in the case of a high
albedo medium like milk where tracing paths with a huge number
of scattering events is necessary.

In contrast to path-tracing, the PN -method gives a solution by
solving a system of linear equations. It is derived by discretizing
the angular variable of the radiative transfer equation into spheri-
cal harmonics (SH). This gives rise to a set of coupled, complex-
valued partial differential equations, called the PN -equations. The
subscript N refers to the spherical harmonics truncation order.

The PN -method has a long history in other fields and was never
applied in graphics. Kajiya [KVH84] explained the theory, but did

not give any details on implementation or how to solve it. In fact, as
Max [Max95] pointed out, it is not clear if Kajiya succeeded at all
at applying the method, as all of the results in his paper were pro-
duced with a simpler method. This is further strengthened by our
observation that a straightforward finite difference discretization of
the PN -equations produces unusable results, due to oscillation arti-
facts in the solution. We derive the real-valued PN -equations with a
staggered-grid solver, that produces artifact-free solutions.

Figure 2: Solving the 2D checkerboard problem using naive col-
located grids produces oscillating artifacts (left). Our solver uses
staggered grids and produces artifact free results (right).

Similar to PN , the classical diffusion approximation (CDA) is
a deterministic method, which arrives at a solution by solving a
system of linear equations. It corresponds to the PN -equations when
N = 1 (truncation after the first SH order), which can be collapsed
to a simple diffusion equation, giving the method its name. CDA
has a long history in other domains, such as astrophysics [Ish78]
and was introduced to graphics by Stam [Sta95].

CDA suffers from severe energy loss close to regions with strong
density gradients. The problem can be addressed by a modifica-
tion known as the Variable Eddington factor (VEF) method, which
nonlinearly adjusts the diffusion coefficient to improve the solu-
tion near density gradients and low-density regions. Flux-limited
diffusion, developed in the context of astrophysics by Levermore
et al. [LP81] and later introduced to graphics by Koerner et
al. [KPS∗14], is the most prominent example.

VEF is based on the observation that the behavior of volumetric
transport is closely linked to the density of the material: in the dif-
fusive regime, thick highly scattering media is present and causes
photons to change directions in short succession, while the trans-
port regime in thin and highly absorbing media causes photons to
travel long straight lines. In the absence of scattering (e.g. pure vac-
uum), the non-linear diffusion coefficient turns the diffusion equa-
tion into an advection equation. The idea behind VEF is to derive a
better diffusion coefficient by seeing it as a means to spatially blend
between the diffusive and pure transport regime.

It is an open and unresolved question whether the PN -method
with truncation at higher order, gives any benefit over using first
order non-linear diffusion. This question has also been raised in
other domains [OAH00] and resolving it is one of our motivations.
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3. Discretized Radiative Transfer Equation

Our method derives from the radiative transfer equation (RTE),
which expresses the change of the radiance field L, with respect
to an infinitesimal change of position in direction ω at point~x:

(∇·ω)L (~x,ω) =−σt (~x)L (~x,ω)

+σs (~x)
∫

Ω

p
(
ω
′ ·ω
)

L
(
~x,ω′

)
dω
′

+Q(~x,ω) .

The left hand side (LHS) is the transport term, and we refer to
the terms on the right hand side (RHS) as collision, scattering, and
source term, respectively. The symbols σt , σs, p, and Q refer to the
extinction- and scattering coefficient, phase function and emission.

The RTE is often given in operator notation, where transport,
collision, and scattering are expressed as operators T , C and S,
which are applied to the radiance field L:

T (L) =−C (L)+S (L)+Q . (1)

Deterministic methods are derived by discretizing the angular
and spatial domain. This gives rise to a linear system of equations,
which can be solved using standard methods. For the PN -method,
the angular variable is first discretized, using a truncated spherical
harmonics expansion. This results in the PN -equations, a system of
coupled PDEs that still depend on a continuous spatial variable.

The number of equations grows with the truncation order N. This
is why the discretization is laborious and difficult to do without er-
rors if done by hand. We therefore use a computer algebra repre-
sentation to automate this process. After giving an outline of the
general discretization in this section, we will present our computer
algebra representation in the next section. The PN -equations that
result from our automated discretization are given in Section 5.

Since the radiance field L is real, we use the real-valued SH basis
functions Y l,m

R , which are defined in terms of the complex-valued
SH basis functions Y l,m

C :

Y l,m
R =


i√
2

(
Y l,m
C − (−1)m Y l,−m

C

)
, for m < 0

Y l,m
C , for m = 0
1√
2

(
Y l,−m
C − (−1)m Y l,m

C

)
, for m > 0

(2)

We express the projection into the spherical harmonics basis
functions with a projection operator P:

P l,m( f ) =
∫

Ω

f (~x,ω)Y l,m
R (ω)dω = f l,m (~x) .

The PN -equations are derived by first expressing all direction-
dependent parameters in spherical harmonics. The radiance field
L in Equation 1 is therefore replaced by its SH reconstruction L̂,
introducing an error due to truncation at order N:

L̂ (~x,ω) =
N

∑
l=0

l

∑
m=−l

Ll,m (~x)Y l,m
R (ω)≈ L (~x,ω) .

After substitution, all angular parameters are expressed in terms
of spherical harmonics, but they still depend on the continuous an-
gular variable ω. As a next step, we project each term of the RTE
into spherical harmonics, using the projection operatorP . This pro-
duces a single equation for each l,m-pair. The PN -equations there-
fore can be written as:

P l,mT
(

L̂
)
=−P l,mC

(
L̂
)
+P l,mS

(
L̂
)
+P l,m (Q) . (3)

Once the PN -equations have been found, the spatial variable~x is
discretized using a finite difference (FD) voxel grid (using central
differences for differential operators).

Following this discretization, the radiance field L, is represented
as a set of SH coefficients per voxel. Flattening these over all vox-
els into a single vector, gives the solution vector~u. The RHS vector
~Q is produced similarly. The projected operators can be expressed
as linear transformations, which can be collapsed into a single co-
efficient matrix A (see Figure 3):

(T +C−S)~u = A~u = ~Q . (4)

T , C, S are matrices, which result from the discretized transport,
collision and scattering operators respectively.

SH coefficients per voxel

Spatial discretization
(FD grid)

6

Y×X Y×X

Y×X

Figure 3: Structure of coefficient matrix A and solution vector ~u
after discretization of the PN -equations on a finite difference grid.

So far, we have only given the PN -equations in high-level op-
erator notation (Equation 3). Carrying out the full derivation cre-
ates large, unwieldy equations and requires a string of expansions,
manipulations and applications of identities. These are challenging
and error-prone if done by hand. We therefore used a computer al-
gebra representation, which allowed us to derive and discretize the
PN -equation in a semi-automatic fashion.

4. Computer Algebra Representation

We use a computer algebra representation for working with the PN -
equations. It represents the equations using a tree of mathematical
expressions, which represent numbers, symbols and other expres-
sion types, such as integrals, derivatives, sums, products and func-
tions. Further, manipulators can be executed on these expression
trees to perform substitution, constant folding, reordering of nested
integrals, application of identities and more complex operations.
Finally, frontends allow rendering the expression tree into differ-
ent forms, such as LATEX and C++ source code. While we ended up
implementing our own lightweight framework, off-the-shelf pack-
ages, such as SymPy (www.sympy.org), exist and would be equally
suitable for our use case.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

35



D. Koerner & J. Portsmouth & W. Jakob / PN -Method for Multiple Scattering in Participating Media

2)b+a(
2

yx

+

ba

representation expansion

rendering

∗

+

b

yx

a 2

+

yx

2∗

a 2

b

Figure 4: A computer algebra framework allows to represent equa-
tions as mathematical expressions trees. It further provides a set of
functions for manipulating the tree according to valid mathemat-
ical operations, such as the binomial expansion above. Frontends
allow generation of source code from the expression tree.

Using the computer algebra representation, we perform the
derivation steps required to arrive at the real-valued PN -equations
(the derivation steps shown in the supplemental material were al-
most all rendered from the expression tree). More importantly, we
use the representation to perform the discretization and generate
the stencil code used by our solver. This is detailed in section 6.1.

5. Real-valued PN -Equations

With the help of a computer algebra representation framework, we
are able to easily derive and work with the large and unwieldy PN -
equations. It is impossible to present the derivation steps in a mean-
ingful way within the scope of this paper. Displaying a single inter-
mediate step could easily take more than ten A4 pages. We there-
fore decided to give only the final result in this section, and present
the derivation in a supplemental document. We present here the fi-
nal PN -equations, for a general N and in three dimensions, in a very
compact form which we have not found elsewhere in the literature

Since the real-valued SH bases (Equation 2) have different defi-
nitions for m < 0, m = 0 or m > 0, we also get different projections
for S l,m, depending on the sign of m.

For m = 0 we have
1√
2

cl−1,−1
∂xLl−1,1− 1√

2
d l+1,−1

∂xLl+1,1 1√
2

cl−1,−1
∂yLl−1,−1

− 1√
2

d l+1,−1
∂yLl+1,−1 +al−1,0

∂zLl−1,0 +bl+1,0
∂zLl+1,0

+σtLl,m−σsλl pl,0Ll,m = Ql,m , (5)

and for m < 0 (upper sign) and m > 0 (lower sign) we have

1
2

cl−1,±m−1
∂xLl−1,m∓1− 1

2
d l+1,±m−1

∂xLl+1,m∓1− 1
2

β
m
x el−1,m±1

∂xLl−1,m±1

+
1
2

β
m
x f l+1,±m+1

∂xLl+1,m±1∓ 1
2

cl−1,±m−1
∂yLl−1,−m±1

± 1
2

d l+1,±m−1
∂yLl+1,−m±1∓β

m
y

1
2

el−1,±m+1
∂yLl−1,−m∓1

±β
m
y

1
2

f l+1,±m+1
∂yLl+1,−m∓1 +al−1,±m

∂zLl−1,∓m +bl+1,±m
∂zLl+1,∓m

+σtLl,m−σsλl pl,0Ll,m = Ql,m , (6)

with

β
m
x =


0, for m =−1

2√
2
, for m 6= 1

1, otherwise
, β

m
y =


2√
2
, for m =−1

0, for m 6= 1
1, otherwise

and

al,m =

√
(l−m+1)(l +m+1)

(2l +1)(2l−1)
bl,m =

√
(l−m)(l +m)

(2l +1)(2l−1)

cl,m =

√
(l +m+1)(l +m+2)

(2l +3)(2l +1)
d l,m =

√
(l−m)(l−m−1)
(2l +1)(2l−1)

el,m =

√
(l−m+1)(l−m+2)

(2l +3)(2l +1)
f l,m =

√
(l +m)(l +m−1)
(2l +1)(2l−1)

λl =

√
4π

2l +1
.

In the next section we will present the solver that we use to solve
the PN -equations.

6. PN -Solver

The truncation order N is the key input parameter to the solver.
With higher values, manual implementation of the solver from the
equations would be arduous, error-prone and time-consuming. We
therefore decided to make use of the computer algebra representa-
tion and designed our solver around it.

The solver consists of two components. The first is a precompu-
tation (Section 6.1), which is excuted once for every single value
of N. This step runs a partial evaluation on the mathematical ex-
pression tree and applies the spatial discretization in a reference
space we call stencil space. The precomputation step automatically
generates source code from the resulting expression tree.

The generated stencil code is compiled with the runtime compo-
nent (Section 6.2) of our solver. This component receives the ac-
tual problem as input, including grid resolution and RTE parameter
fields. It then builds the linear system and solves it using standard
methods. An overview of the solver is given in Figure 5.

6.1. Precomputation

The result of the precomputation is a stencil, which can be used
during runtime to build the linear system for a given problem. The
stencil is a pattern of indices into the solution vector, along with
values. It expresses how the sum of the weighted solution vector
components relate to the RHS for a given unknown in the system
and therefore contains most information required to fill the system
matrix A and RHS-vector ~Q row by row. Note that while the coef-
ficients may change, the sparsity pattern of the stencil is identical
for different rows.
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Figure 5: Overview of our PN -solver. After generating the stencil source code from the expression trees representing the PN -equations, the
linear system A~u = ~Q is built using RTE parameter fields and additional user input, such as grid resolution and type of boundary conditions.
The resulting system is solved for~u, which is then used in our rendering application.

Stencil generation entails discretizing a PDE at a hypothetical
center voxel (i, j,k) (assumed to mean the voxel center most of the
time). Finite differences create weighted references to other voxels
(e.g. i+1, j,k). After bringing the discretized equation into canon-
ical form (a weighted sum of unknowns), one can write the stencil
by reading off the weights and offsets (Figure 6). Voxel (i, j,k) will
only be known during runtime, when the stencil is executed for a
particular unknown (row). Then the offsets can be used to find the
component index into the solution-vector, and weights can be eval-
uated for concrete world space position. We refer to the space with
the hypothetical voxel (i, j,k) at the center as stencil space.

)�x(q=...) +�x(φ∂x
∂
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∂
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φi+1 −

2

h2
φi +

1

h2
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h
+ ... = qi,j
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Figure 6: Creating the stencil code requires several steps, usually
done by hand. We express the given problem in a computer algebra
representation and use it to fully automate the process.
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cretization is done
by parsing the ex-
pression tree from
the root. The dis-
crete substitute for
the continuous po-
sition variable ~x is
initialized with i jk. Differential operator nodes are replaced by a
subtree, which expresses the finite difference approximation (in-
cluding voxelsize factor h). The subtree of the differential opera-
tor node is duplicated for different offsets to the discrete variable
(i, j,k). Since this offset only applies to the subtree, a stack is main-
tained by the parser to manage scope. Whenever the parser encoun-
ters the continuous variable~x in the expression tree, its node in the
tree is replaced by the discrete substitute, currently on top of the
stack. Nested differential operators yield higher order finite differ-
ence stencils as expected.

·· φ

∗

1

code generation+

...

2h , j+i 1

Factorization
into canonical form
is done as a ma-
nipulation pass on
the mathematical
expression tree.
The result allows
us to implement the
code generation in
a straightforward fashion. For each term, the i jk-offset is retrieved
from the unknown. The factor-expression, which is multipled
with the unknown, is extracted from the tree and used to generate
source code for evaluating the factor-expression during runtime
(including calls for evaluating RTE-parameter fields).

staggered grid interpolation

)i, j, k(

Our solver sup-
ports placement of
coefficients at arbi-
trary staggered grid
locations (see Fig-
ure 7). This means
that during the dis-
cretization step, the
discrete location (i, j,k) (at which the unknown is meant to be eval-
uated) might not coincide with the location of the unknown. To
solve this, depending on how the two are located relative to each
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Figure 7: Staggered grids place coefficients at different locations
within the finite difference grid.

other, the parser returns an expression which interpolates the co-
efficients at (i, j,k) from their defined locations. If those happen
to coincide, the coefficient itself is returned. This is also done for
RTE parameters, such as σt or pl,m, which are always located at the
voxel center.

6.2. Runtime

The stencil code is generated once for every value of N and com-
piled with the runtime component of our solver. The runtime ex-
ecutes the stencil for every voxel to populate the system matrix A
and RHS vector ~Q with numerical values.

The number of rows is determined by the number of voxels times
the number of coefficients per voxel (see Figure 3) and can there-
fore become very large for high resolution and high truncation or-
der. The matrix A is square and extremely sparse, due to the local
structure of the finite differences discretization. Unfortunately, it
is non-symmetric due to the transport term and not diagonal dom-
inant, which rules out many iterative methods for solving linear
systems. Iterative methods are useful, as they allow balancing accu-
racy against performance by tweaking the convergence threshold.
We address this by solving the normal form AT A~u = AT ~Q instead.
This gives a symmetric and positive definite system matrix AT A,
albeit with a higher condition number. Investigation of other solu-
tion schemes (e.g. multigrid) would be an interesting avenue for fu-
ture work. However, more importantly, in the presence of vacuum
regions, the matrix A becomes singular and the system cannot be
solved at all. This requires the introduction of a minimum thresh-
old for the extinction coefficient σt .

Our solver supports Neumann and Dirichlet boundary condi-
tions. They are handled transparently by the code which generates
the stencil. Whenever the stencil accumulates coefficients into a
boundary location, the framework either ignores the write opera-
tion (Dirichlet BC) or accumulates into the row and column in A
of the coefficient in the closest voxel inside the domain (Neumann
BC). This is done by changing the index of the written component.

7. Rendering

We use an approach similar to Koerner et al. [KPS∗14], where we
seperate the radiance field into single scattered light Lss and multi-

ple scattered light Lms:

L (~x,ω) = Lss (~x,ω)+Lms (~x,ω) . (7)

The single scattered light is folded into the emission term Q:

Q(~x,ω) = Lss(~x,ω) = σs (~x)
∫

Ω

p
(
ω
′→ ω

)
Lu
(
~x,ω′

)
dω
′ . (8)

This means that our solver will solve for the multiple scattered
light Lms. The quantity Lu is the uncollided light, which was emit-
ted from the light source and attenuated by the volume without un-
dergoing any scattering event. We compute it using a few light sam-
ples per voxel, which quickly converge to a useful result for Dirac
delta light sources.

Running the solver gives solution vector ~u. We then un-stagger
the solution by interpolating all coefficients to voxel centers. The
additional coefficients at boundary voxels are no longer needed.
This operation is represented as a matrix that produces a three-
dimensional voxel grid with SH coefficients for order N at the cen-
ter of each voxel.

For rendering, we use a simple forward path tracing approach,
where we start tracing from the camera. At the first scattering event,
we use next event estimation to account for Lss. Then we sample a
new direction according to the phase function. Instead of contin-
uing tracing into the new direction, we evaluate the in-scattering
integral using L̂ms. The SH coefficients at ~x are found by trilinear
interpolation from the voxel grid of SH coefficients.

8. Results

In this section, we present results for a set of standard problems in
order to validate and evaluate our method. We also compare against
classical diffusion (CDA) and flux-limited diffusion (FLD).

Our computer algebra framework and the precomputation has
been implemented in Python. The runtime component of our solver
has been implemented in C++. We use a naive implementation of
a CG solver, which has been modified such that we do not need to
expliticly compute the normal form of the linear system to solve.
We use the sparse matrix representation and sparse matrix vector
product from the Eigen linear algebra library (eigen.tuxfamily.org).

The solver for classical diffusion is based on the diffusion equa-
tion, which is derived by collapsing the P1-equations:

∇
(

1
3σt
∇L0,0

)
=−Q0,0 . (9)

Since our solver can work with any PDE which results in a linear
system of equations, we put Equation 9 into our computer algebra
representation and provide it as an input to our solver, which gen-
erates the correct stencil code automatically.

Since FLD is based on a non-linear diffusion equation, we were
not able to use our system in the same way. Our implementation
closely follows the implementation in [KPS∗14] (though ours runs
on CPU) and we refer to their paper for more details.
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8.1. 2D checkerboard

First we ran our solver on the 2D checkerboard, a very common
test case in other fields. The problem has dimensions 7× 7 and is
discretized with resolution 71×71. Unit size blocks are filled with
purely absorbing medium σa = 10 in a checkerboard pattern. All
other blocks are filled with a purely scattering medium with σs = 1.

Solving the standard checkerboard problem, allows us to vali-
date our solver against the solver from Seibold et al. [SF14], which
solves for the time-dependent and complex-valued PN -equations
in the 2D case only. The 2D case is derived by assuming that all
SH coefficients, RTE parameters and boundary conditions are z-
independent. This causes all SH coefficients and moment equations
for which l+m is odd to vanish. Due to the time-dependency, their
approach is to do explicit incremental steps in time. We run their
solver for many timesteps to get a result close to steady state.

Figure 8: Comparison of the result for the checkerboard test using
StaRMAP’s time-stepping solver [SF14] (left) against our steady-
state solver (right) with N = 5. Our results are in good agreement.

As can be seen in Figure 8, the results from our solver are in good
agreement with the results from Seibold et al. [SF14] and verify
the correctness of our implementation. Converging to a residual of
10e−10 takes 0.27s for P1 and 25s for P5.

8.2. Point source problem

We also run our solver for the point source problem, a single point
light in a homogeneous medium. This not only helps to validate our
implementation for the 3D case, but also provides information on
the accuracy of these methods. We use the Grosjean approximation,
which was introduced by D’Eon et al. [dI11] as a very accurate
approximation to the ground truth solution.

For our test case, we choose a FD resolution of 80× 80× 80,
an extinction coefficient σt = 8.0 and albedo α = 0.9. We run the
solver for different truncation values N. In Figure 9 a, we see that
the solution becomes increasingly accurate for higher truncation
order. The ground truth is underestimated when N is odd, and over-
estimated when N is even. We further see that the P1 solution ex-
actly matches the results from CDA, which confirms that the latter
is only a collapsed version of the former. The time to solve is sig-
nificant with 10m for P1 and 45m with P5. With these performance
characteristics, our PN -solver is clearly not competitive in compar-
ison with CDA and FLD solver, which are much faster.

(a) PN vs. ground truth (b) P5 vs. CDA and FLD

Figure 9: Lineplot through the 3D solution of our solver for the
point source problem for various order N (left). Solution for P5
compared against classical diffusion, flux-limited diffusion and an-
alytical solution (right).

8.3. Nebulae

Finally, we run our solver on a procedural cloud dataset to get an
idea of its performance in more practical applications. Figure 1b
shows the result of P5 for a procedurally generated heterogeneous
cloud with an isotropic phase function. We see that at order N = 5,
our method can capture indirect illumination similarly well as FLD
and is significantly better than CDA as expected. The indirectly
illuminated region at the bottom appears to be closer to the path-
traced result as opposed to the solution from FLD which is very flat
in that region. However, in many other areas, P5 seems to still suffer
a lot from the problem of energy loss near transitions from dense
regions to vacuum. It appears that going higher order a few steps
mitigates this only slowly at a high cost of compute and storage.

The main characteristic of the nebulae dataset is the presence
of vacuum. We found that having vacuum regions in the dataset
will cause the condition number to become infinite and the solver
practically does not converge. We therefore introduced a minimum
threshold for the extinction coefficient σt . Every voxel with an ex-
tinction coefficient smaller than the threshold is set to the threshold
value. In Figure 10 we show the effect of the minimum threshold on
the convergence behavior. As it increases, convergence improves.

9. Conclusion

In this paper, we introduced the PN -method to the toolbox of de-
terministic methods for rendering participating media in computer
graphics. We derived and presented the real-valued PN -equations,
along with a staggered grid solver for solving them. We showed
how to use the results in a rendering system and ran our solver for
various standard problems for validation.

We originally set out to understand how non-linear diffusion
compares to PN for increasing order. Although the lack of higher
moments makes the FLD solution very flat, its energy conserving
nature and comparably small resource footprint make it a much bet-
ter approach when compared to PN , which becomes increasingly
costly for higher values of N.
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Figure 10: Convergence behavior of our solver with N = 1 for the
nebulae dataset and for varying minimum thresholds of the extinc-
tion coefficient σt . Threshold values and an estimate for the con-
dition number of A (Matlabs condest function) are shown next to
the plots. The convergence deteriorates as the threshold decreases.
Once it reaches zero, the presence of pure vacuum makes the con-
dition number infinite.

The literature in other fields often states that the PN method—
when solved in normal form like we do—is able to deal with vac-
uum regions. We found this misleading. The PN -method in normal
form indeed does not break down completely in the presence of
vacuum as diffusion based methods do (due to σ

−1
t in the diffusion

coefficient). However, in the presence of vacuum, the condition
number of the system matrix becomes infinite and does not con-
verge either. Therefore PN based methods also require minimum
thresholding of the extinction coefficient and offer no benefit for
vacuum regions.

Much more work needs to be done in order to make the PN
method competitive in performance to alternative solutions for vol-
ume rendering. We believe this can be made possible by employ-
ing a multigrid scheme for solving the linear system of equations.
We implemented a multigrid solver, but did not find the expected
performance improvements. This is possibly due to the coupling
between coefficients within a voxel, which does not work well to-
gether with the smoothing step. We want to study this in the future.

Unique to our system is that it uses a computer algebra represen-
tation of the equation to solve as input. Discretization in angular
and spatial domain is done using manipulation passes on the repre-
sentation. The stencil code, which is used to populate the system of
linear equations, is generated from the expression tree. This way,
we can easily deal with coupled PDEs and avoid the time consum-
ing and error prone process of writing stencil code by hand.

When researching the application of PN in other fields, we
came across a rich variety of variations on the PN -method, such
as simplified PN (SPN ) [McC10], filtered PN (FPN ) [RARO13],
diffusion-correction PN (DPN ) [SFL11] and least-squares PN
(LSPN ) [HPM∗14]. These variations have been introduced to ad-
dress certain problems of the standard PN -method, such as ringing
artifacts, dealing with vacuum regions and general convergence.
Our solver can be applied to any (potentially coupled) PDE and
therefore can generate stencil code for all these variations by sim-

ply expressing the respective PDEs in our computer algebra repre-
sentation and providing this as an input to our solver. This would
allow an exhaustive comparison of all these methods and we con-
sider this as future work.

Finally, since the approach of our solver is very generic, we also
would like to explore its application to other simulation problems
in computer graphics.
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