Supplementary Material: Controlling and Sampling Visibility Information on the Image Plane

Christian Lessig

Otto-von-Guericke Universität Magdeburg

1. Sampling Expansions for Arbitrary Sampling Locations

In the following, we summarize the central ideas required to construct sampling expansions for arbitrary sampling locations λ_k . We refer to [LDF14] for further details.

Let $\mathcal{H}(X)$ be a Hilbert-space, defined over a set X, where pointevaluation δ_x is a continuous functional. Then, by the Riesz representation theorem, there exists a function $k_x \in \mathcal{H}(X)$, possibly a different one for every $x \in X$, such that

$$\delta_x(f) = \langle k_x, f \rangle = f(x) \tag{1}$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product on \mathcal{H} . The function $k_x(y)$ is known as reproducing kernel.

To see the connection between sampling theorems and reproducing kernels, let $\{\lambda_j\}_{j\in\mathcal{N}}$ be a set of locations with $\lambda_j \in X$. Then, under suitable conditions on the distribution of the λ_j , the induced set $\{k_{\lambda_j}\}_{j\in\mathcal{N}}$ will be a frame, that is an in general redundant basis for \mathcal{H} . This implies the existence of dual functions $\tilde{k}_j(y)$ such that any $f \in \mathcal{H}$ can be written as

$$f(x) = \sum_{j \in \mathcal{N}} \langle f(y), \tilde{k}_j(y) \rangle k_j(x) = \sum_{j \in \mathcal{N}} \langle f(y), k_j(y) \rangle \tilde{k}_j(x)$$
(2)

where the second equality follows by duality and we abbreviated $k_j(x) \equiv k_{\lambda_j}(x)$. Using the reproducing property in Eq. 1, we can write the last equation as

$$f(x) = \sum_{j \in \mathcal{N}} f(\lambda_j) \tilde{k}_j(x).$$
(3)

Eq. 3 is the general form of a sampling expansion or theorem. The classical Shannon theorem is a special case where $\mathcal{H}(X)$ is the space of Fourier-bandlimited functions over \mathbb{R}^n , the λ_n are formed by a dilated integer grid and $\tilde{k}_n(x) = k_n(x) = \operatorname{sinc}(x - n)$.

One can work numerically with the above construction using the series representation of $k_x(y)$ in an orthonormal basis $\{\phi_i\}$ for \mathcal{H} :

$$k_x(y) = k_y(x) = \sum_i \phi_i(x) \phi_i(y). \tag{4}$$

Assuming $\{\phi_i\}$ is *M*-dimensional with $M < \infty$, or has been truncated appropriately, and the same is true for $\{\lambda_j\}_{j \in \mathcal{N}}$, i.e $|\mathcal{N}| = N < \infty$, then the basis representation of the set $\{k_{\lambda_j}\}$ in $\{\phi_i\}$ can

© 2017 The Author(s) Eurographics Proceedings © 2017 The Eurographics Association be written in matrix form

$$K_{\phi} = \begin{pmatrix} \phi_1(\lambda_1) & \cdots & \phi_M(\lambda_1) \\ \vdots & \ddots & \vdots \\ \phi_1(\lambda_N) & \cdots & \phi_m(\lambda_N) \end{pmatrix} \in \mathbb{R}^{N \times M}.$$
(5)

This provides the change of basis matrix from $\{\phi_i\}$ to the reproducing kernel basis formed by the $k_j(x)$. In fact, it is easy to see that multiplying a signal's basis representations (f_1, \dots, f_M) in $\{\phi_n\}$ with K_{ϕ} yields the pointwise values $f(\lambda_j)$ that form the basis function coefficients in the expansion in Eq. 3. It is also not hard to see that when $\mathcal{H}(X)$ is the space of polynomials in the monomial basis over \mathbb{R} then K_{ϕ} is the classical Vandermonde matrix.

It can be shown that the basis function coefficients of the dual kernel functions \tilde{k}_j with respect to $\{\phi_i\}$ are given by the column of the sampling matrix $S_{\phi} = K_{\phi}^{-1}$. Since the construction of K_{ϕ} only requires the evaluation of the basis functions ϕ_i at the sampling locations λ_j this provides a practical means to construct the sampling theorem in Eq. 3.

2. Convolution of H(x) and Raised Cosine

The raised cosine function $Cr_{B,\beta}$ is defined in the frequency domain as

$$\hat{Cr}(\xi) = \begin{cases} 1 & |\xi| < B\tilde{\beta}_{-} \\ \frac{1}{2} \left(1 + \cos\left(\frac{\pi}{2B\beta} \left(|\xi| - B(1-\beta) \right) \right) \right) & B\tilde{\beta}_{-} \le |\xi| \le B\tilde{\beta}_{+} \\ 0 & \text{otherwise} \end{cases}$$

with $\tilde{\beta}_{-} = 1 - \beta$ and $\tilde{\beta}_{+} = 1 + \beta$. It has the spatial representation

$$\operatorname{Cr}_{B,\beta}(x) = \begin{cases} \frac{\pi B}{2}\operatorname{sinc}\left(\frac{1}{2\beta}\right) & x = \pm \frac{1}{4B\beta} \\ 2B\operatorname{sinc}\left(2Bx\right)\frac{\cos\left(2\pi B\beta x\right)}{1 - (4B\beta x)^2} & \text{otherwise} \end{cases}$$

For $\beta = 1/n$ the convolution of H(x) and the raised cosine func-

tion $\operatorname{Cr} B, \beta(x)$ is for $n = 3, 5, 7, \cdots$ given by

$$\begin{split} \mathrm{SCr}(x) &= \frac{1}{8\pi^2} \left(2\pi + (-1)^{\frac{1-\beta}{2\beta}} \left(\mathrm{Si}\left(\frac{\pi}{2}\frac{\beta-\bar{\beta}_+}{\beta T}\right) + \mathrm{Si}\left(\frac{\pi}{2}\frac{\beta+\bar{\beta}_+}{\beta T}\right) \right. \\ &+ \mathrm{Si}\left(-\frac{\pi}{2}\frac{\beta-\bar{\beta}_-}{\beta T}\right) + \mathrm{Si}\left(-\frac{\pi}{2}\frac{\beta+\bar{\beta}_-}{\beta T}\right) \right) \\ &- 2\mathrm{Si}\left(\frac{\pi\beta-x}{T}\right) + 2\mathrm{Si}\left(\frac{\pi\beta+x}{T}\right) \right) \end{split}$$

and for $n = 2, 4, \cdots$ by

$$\begin{aligned} \mathrm{SCr}(x) &= \frac{1}{8\pi^2} \left(2\pi + (-1)^{\frac{1}{2\beta}} \left(-\mathrm{Ci}\left(\frac{\pi}{2}\frac{\beta-\bar{\beta}_+}{\beta T}\right) + \mathrm{Ci}\left(\frac{\pi}{2}\frac{\beta+\bar{\beta}_+}{\beta T}\right) \right. \\ &+ \mathrm{Ci}\left(-\frac{\pi}{2}\frac{\beta-\bar{\beta}_-}{\beta T}\right) - \mathrm{Ci}\left(-\frac{\pi}{2}\frac{\beta+\bar{\beta}_-}{\beta T}\right) \right) \\ &- 2\mathrm{Si}\left(\frac{\pi\beta-x}{T}\right) + 2\mathrm{Si}\left(\frac{\pi\beta+x}{T}\right) \right) \end{aligned}$$

where Ci(x) is the cosine-integral. Furthermore

$$\begin{aligned} \beta_{-} &= \beta - 1\\ \beta_{+} &= \beta + 1\\ \bar{\beta}_{-} &= -2\beta x + T\\ \bar{\beta}_{+} &= 2\beta x + T. \end{aligned}$$

References

[LDF14] LESSIG C., DESBRUN M., FIUME E.: A Constructive Theory of Sampling for Image Synthesis Using Reproducing Kernel Bases. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4 (jul 2014), 1–14. 1