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Figure 1: Many applications benefit from the ability to construct tight bounding planes with arbitrary normals. (a) In real-time
ray tracing, a naïve way to construct world-space bounds for a moving object is to wrap the transformed object-space AABB
(blue) with a world-space AABB (red). In contrast, our method makes it possible to take the world-space axes to object space
and construct tightly fitting bounding planes to yield a better result (green). (b) In view frustum culling, both object-space AABB
and tight world-space AABB (red) may indicate false visibility. Using a bounding plane constructed with the same normal as the
frustum plane (green) enables better culling. (c) When determining per-object shadow map extents for a directional light, using
the object’s bounding box results in wasted texels (red). Bounding the object with planes fit according to light direction (green)
provides better usage of the available shadow map resolution. (d) For object-vs-object overlap test in collision detection, we
can rapidly test for non-overlap by choosing a potential separating axis (blue) and constructing a pair of bounding planes
(green) perpendicular to the chosen axis. This can give more accurate results than using object bounding boxes (red).

Abstract
We introduce apex point map, a simple data structure for constructing conservative bounds for rigid objects. The
data structure is distilled from a dense k-DOP, and can be queried in constant time to determine a tight bounding
plane with any given normal vector. Both precalculation and lookup can be implemented very efficiently on current
GPUs. Applications include, e.g., finding tight world-space bounds for transformed meshes, determining per-
object shadow map extents, more accurate view frustum culling, and collision detection.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Boundary representations

1. Introduction

Bounding representations for objects are immensely useful
in computer graphics. They can be used for quick determina-
tion of various overlap and intersection tests, because if over-
lap/intersection does not occur against a conservative bound-

ing volume, it will not occur against the object either. A myr-
iad of different bounding volume representations for differ-
ent tasks are described in the scientific literature. We cannot
hope to touch all of them in this paper, but direct the inter-
ested reader to surveys on the topic ( [vdB99], [Eri04] ch. 4).

c© The Eurographics Association 2015.

DOI: 10.2312/sre.20151166

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sre.20151166


Laine & Karras / Apex Point Map for Constant-Time Bounding Plane Approximation

A common source of grief is that bounding representa-
tions can be wrongly aligned for the task we would like to
use them for. For example, in real-time ray tracing, the main
acceleration structure is often a bounding volume hierarchy
(BVH) of axis-aligned bounding boxes (AABBs). Dynami-
cally moving rigid objects can be handled by transforming
the ray into the object’s model space when such object is en-
countered during ray traversal. For this purpose, a separate
world-space BVH is reconstructed or refitted every frame,
where each leaf stores a transformation matrix for one object
and points to the corresponding per-object BVH [WBS03].
However, finding good world-space axis-aligned bounds for
the leaves of the world-space hierarchy is problematic. The
traditional, naïve way is to take the object’s model-space
AABB, transform it into world space, and wrap it with a
world-space AABB. As illustrated in Figure 1(a), this can
result in overly conservative AABB which leads to false
hits and unnecessary ray-vs-object traversals. Similar prob-
lems arise in many other applications such as view frustum
culling [AM99], shadow map fitting [BS07], and collision
detection (e.g., [GLM96]), depicted in Figure 1(b–d).

All of these problems are due to available bounding vol-
umes being misaligned for the task at hand. In this paper,
we introduce apex point map, a data structure that allows
rapid construction of bounding planes with arbitrary nor-
mal vectors. This altogether removes the need to wrestle
with badly aligned bounding representations, as perfectly
oriented bounds are always available at low cost.

The bounding planes generated by our method are not ex-
act, but they are conservatively correct and we demonstrate
that they generally fit the object tightly. The accuracy can be
tuned through the resolution of the apex point map, which
also affects the memory consumption and the cost of precal-
culation. The subsequent bounding plane construction has a
constant cost regardless of the resolution.

Background. Constructing a bounding plane for a given
polygonal mesh is a matter finding the extremal point along
the desired normal vector and positioning the plane so that
it passes through this point. The exact solution can be found
in linear time by testing each vertex of the mesh in turn, but
this becomes prohibitively expensive as the number vertices
increases. The execution time can be reduced drastically by
using a simpler bounding representation in place of the orig-
inal object. For accurate results, the bounding representation
needs to capture the shape of the object faithfully.

A particularly versatile bounding representation was orig-
inally proposed by Kay and Kajiya [KK86] and later came to
be called discrete orientation polytope (k-DOP) [KHM∗98].
The idea is to construct k bounding planes for the origi-
nal object using a fixed set of normal vectors, typically dis-
tributed uniformly in the direction space. The object is then
approximated using a convex polytope defined as the inter-
section of k half-spaces, each corresponding to one of the
bounding planes [KZ97].

While the k-DOP representation can be used directly for
constructing bounding planes, this approach suffers from
two major shortcomings. First, it requires extracting the sur-
face topology of the intersection polytope, which is remark-
ably difficult to do in a robust fashion. This is studied in the
field of linear programming where it is known as the vertex
enumeration problem. Second, no efficient method exists for
finding the extremal k-DOP vertex along a given vector, ne-
cessitating a costly linear scan over the vertices.

2. Apex point map

Our data structure is a derived representation of a dense
k-DOP, designed to enable extremely simple and efficient
bounding plane lookups. Instead of storing distance values
for a discrete set of directions, we divide the direction space
into a set of facets and store a single apex point for each facet
to act as a conservative representative of the k-DOP surface
geometry. We organize the apex points according to an im-
plicit indexing scheme through careful choice of the k-DOP
plane normals, allowing us to find them in constant time.

Our method consists of a precalculation phase (Sec-
tion 2.1) followed by a lookup phase (Section 2.2). The pre-
calculation is done once per object by first approximating
the object using a traditional k-DOP and then distilling the
resulting planes into a set of apex points. These operations
can be parallelized perfectly and involve only a single scan
over mesh vertices, resulting in excellent fit for the current
GPUs (Section 4). In the lookup phase, the apex point map
is consulted for a given plane normal by first identifying the
appropriate facet in direction space and then using the asso-
ciated apex point to generate a valid bounding plane.

2.1. Precalculation

We choose the plane normal vectors in our initial k-DOP
so that they point towards the vertices of a cube with each
face tessellated into n× n squares. Figure 2 illustrates these
normal directions (red dots) with resolution n = 8. Due to
sharing of vertices at cube edges and corners, we have a total
of k = 6n2 + 2 planes in the k-DOP. This direction cube is
most conveniently oriented to be axis-aligned in the model
space of the object, and from now on we will assume this is
the case.

We subdivide each of the 6× n× n squares on the direc-
tion cube into two triangular facets, resulting in 12n2 facets
in total. For each such triangle, we take the three k-DOP
planes at its vertices and compute their intersection point.
Note that this is always well defined, as the plane normals
come from three obviously non-collinear points on the di-
rection cube. This intersection point is the apex point for the
facet. Figure 2 shows one facet highlighted in red, and the
k-DOP normals whose planes determine its apex point are
shown as red arrows.
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Figure 2: Points on the tessellated direction cube (red dots)
define the normal vectors of the original k-DOP planes. The
surface of the cube is tessellated into facets, each of which
is assigned an apex point during the precalculation. High-
lighted red triangle illustrates a facet covering the directions
between three k-DOP plane normals (red arrows). Blue ar-
row indicates a possible bounding plane normal for which
the apex point stored for the highlighted facet would be used.

The apex points constitute the entire output of the precal-
culation phase. Because there are 12n2 facets and we store
one three-dimensional apex point for each, this yields 144n2

bytes using 32-bit floating point numbers. With n = 8 reso-
lution illustrated in Figure 2, the total memory consumption
of one apex point map is therefore 9 KB. We do not need to
store the k-DOP normals, as they are implicitly defined.

Note that the direction cube that determines the original
k-DOP normals and the facets exists only in the direction
space. It is thus not in any sense centered about the object
being bounded.

2.2. Bounding plane lookup

Let us now look at how a bounding plane can be constructed
based on the apex point map. Given the desired normal n for
the bounding plane, we first determine which facet of the di-
rection cube it points at. For this purpose, n has to be trans-
formed into the space where the direction cube is defined,
i.e., the model space of the object.

For example, when given the vector illustrated as blue ar-
row in Figure 2, we need to find the index of the highlighted
red facet. Due to the regular tessellation, this costs no more
than a couple dozen arithmetic instructions.

After the facet index is known, we fetch its apex point
from the precalculated data. The offset of the bounding plane
is determined simply by requiring that it passes through
the apex point. In other words, with the given normal vec-
tor n and fetched apex point p, the final bounding plane is
n ·x+d = 0, where d =−n ·p. This completes the bound-
ing plane calculation.

Quite often there is a need to determine two bounding
planes with opposite normals, for example when determin-
ing a world-space AABB for a transformed object. This can

be exploited by storing the apex points for each facet and
its opposite facet together, which lets us calculate the facet
index only once per two planes. The performance of deter-
mining a single bounding plane does not suffer from this
optimization.

3. Discussion

To see why our combination of precalculation and lookup
produces conservatively correct bounding planes, let us con-
sider the original k-DOP for the object for a moment. The
k-DOP is clearly a conservative bounding volume for the
object. Because it is an intersection of half-spaces, remov-
ing any of the half-spaces can only make the result more
conservative.

In particular, picking any three half-spaces from the orig-
inal k-DOP produces a conservatively correct bounding vol-
ume for the object, albeit an infinite one. Assuming these
three k-DOP planes have a common point—which is al-
ways true in our case—they form an infinite pyramid-shaped
bounding volume V with the intersection point p at its apex.
The point stored in the apex point map for a facet is exactly
this point, calculated for the subset of the three k-DOP planes
whose normals point at the facet’s vertices.

Therefore, our lookup phase works correctly as long as
the fetched apex point p is a part of such pyramidal volume
V that can be bounded by a plane with normal n. Because n
passes through the direction cube facet for which p was cal-
culated, we know that n is surrounded by the normal vectors
of the faces of V . It is easy to see that when this is the case,
a plane with normal n can bound V , and the best bound is
obtained by positioning the plane so that it passes through p.

Our method shares similarities with the k-DOP realign-
ment method of Zachmann [Zac98], where instead of enu-
merating the surface vertices of a k-DOP, it is assumed that
they are the same as for a “generic” k-DOP where all planes
have a constant offset of one. This allows one to assign a
vertex (i.e., a plane triplet) of one k-DOP to each plane of
another k-DOP with a different orientation, and to reuse
this correspondence while processing two k-DOP hierar-
chies that are rotated with respect to one another. However,
no implicit indexing is employed in Zachmann’s method, so
the calculation of the correspondences is not a constant-time
operation per plane.

Compared to convex hull based methods, our precalcula-
tion is vastly simpler, and the memory consumption (with
given resolution) of the apex point map is constant regard-
less of the mesh geometry. Comparing to oriented bounding
boxes (OBBs), our data structure can be seen as their su-
perset, as it allows constant-time construction of OBBs with
arbitrary orientations. Due to our larger memory consump-
tion, we envision apex point maps to be useful mostly on
a per-object granularity, but less suitable than AABBs and
OBBs for per-node bounds in large hierarchies.
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Anisotropic scale optimization. For objects that are rea-
sonably spherical, a regularly tessellated direction cube pro-
vides good distribution of k-DOP normals. However, objects
that are flatter on one or two axes may suffer from an even
distribution of k-DOP normals.

An easy, non-invasive improvement to the basic method
is to scale the direction cube anisotropically according to the
inverse per-axis scale of the input object. This is conceptu-
ally equivalent to pre-scaling the object so that its model-
space bounding box becomes a cube. To implement this,
we apply a per-component scale factor to the k-DOP normal
vectors during precalculation, and to the lookup normals n
during the bounding plane computation.

Extension to skinned meshes. Our method can be ex-
tended to support skinned meshes by computing a separate
apex point map for each bone (i.e., skinning matrix), taking
its weight to be one for each influenced vertex. When com-
puting a bounding plane for the entire mesh, we query each
of the apex point maps, transforming n through the respec-
tive bone transformation matrices, and take the most conser-
vative plane offset as the result.

This works because each skinned vertex position is a con-
vex combination of its transformed positions with each in-
dividual bone that influences it (with a weight of one). As
these extreme positions are included in the individual apex
point maps, the conservative bounding plane for these will
bound the final vertex position as well. The result is more
conservative than with rigid objects, though.

Alternative direction space parameterizations. We
have used a regularly tessellated cube as the parameteriza-
tion for the direction space, but other alternatives are also
possible. For example, octahedral maps [ED08] would pro-
vide a similarly simple way to compute facet indices dur-
ing lookup, and would thus be suitable for our purposes. We
have not examined the performance and quality implications
of alternative parameterizations.

4. Implementation

The most computationally intensive part of our method is
generating the k-DOP for a given mesh, which involves cal-
culating a dot product between each mesh vertex and k-
DOP plane normal and tracking the maximum value for each
normal. Since our plane normals always come in antipodal
pairs, we can track both the minimum and maximum and
consider only a half of the plane normals to reduce the total
number of dot products by 50%. With n = 8, we thus need a
total of k/2 = 193 dot products per vertex.

For maximum efficiency, we implemented the k-DOP
generation in CUDA using a two-level parallelization
scheme, where the vertices are distributed across warps (i.e.,
groups of 32 threads), and the normals are distributed across
individual threads in a warp. Each warp tracks the minimum
and maximum dot products for the full set of plane normals

Mustang Fairy Armadillo

Buddha Veyron Hairball

Figure 3: Test scenes used in the performance and quality
measurements.

and processes a subset of the mesh vertices. The first thread
in a warp tracks the first m = dk/32e normals, the second
one tracks the m subsequent normals, and so on. We treat
m as a compile-time constant and employ loop unrolling
to process one vertex in 5m warp instructions (3×FFMA,
2×FMNMX) while keeping all the data in registers.

To read the vertices from global memory efficiently, we
dereference 32 consecutive vertices at a time using the
__restrict__ modifier. We then broadcast each vertex
in turn across the threads using the __shfl intrinsic, cal-
culate the dot products, and proceed to the next 32 vertices.
At the end, we perform global reduction over the per-warp
results by having each thread write out its minimum and
maximum into a global memory using atomic operations.
We minimize the reduction overhead by launching a fixed
number of resident warps and distributing the work among
them in batches of 128 vertices using a global counter.

5. Results

We benchmarked the performance of the precalculation
phase on an NVIDIA GTX 980 GPU using six meshes (Fig-
ure 3) as test input. The results are summarized in Table 1.
The column for resolution n = 8, corresponding to illus-
tration in Figure 2 is highlighted. On large vertex counts,
we see precomputation performance of approximately 1.5M
vertices per millisecond using this resolution, and approxi-
mately 360K vertices per millisecond for the smallest one
tested. The construction of the apex point maps is therefore
a relatively cheap operation if performed at scene load time.

We assessed the quality of the bounds obtained with apex
point maps by constructing a world-space AABB for each
test mesh in 100 000 random orientations, and comparing the
resulting AABB surface area against the true world-space
AABB calculated for each orientation. Table 2 shows the av-
erage and worst-case AABB surface area increase compared
to the optimum. The anisotropic scale optimization was used
in these measurements.
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scene #vertices direction cube resolution n
2 4 6 8 10 12 14 16

Mustang 14259 .01 .02 .03 .04 .05 .06 .07 .09
Fairy 51390 .02 .03 .06 .07 .08 .09 .12 .15
Armadillo 172974 .04 .06 .11 .15 .20 .24 .31 .41
Buddha 543652 .10 .13 .25 .39 .53 .68 .89 1.16
Veyron 967113 .18 .22 .42 .66 .91 1.17 1.55 2.02
Hairball 1470000 .26 .33 .62 .98 1.35 1.76 2.34 3.03

Table 1: Precalculation time in milliseconds for various
scenes on NVIDIA GTX 980. For the highlighted n = 8 di-
rection cube resolution, we can process approximately 1.5M
vertices per millisecond for large meshes.

With the highlighted n = 8 cube map resolution, the
AABB computed using our method had only 1.3–2.2%
larger surface area than the optimal AABB, on average. Even
in the worst cases among the tested 100 000 orientations, our
AABB had at most 10% slack in this set of meshes. The
naïve method of using the transformed model-space AABB
corners (cf. the red box in Figure 1(a)) gave much more con-
servative results in both average and worst cases. From the
table, we see that even a small apex point map with resolu-
tion of n = 2 or n = 4 (consuming 0.56 KB and 2.25 KB of
memory, respectively) provided a significant improvement
over the naïve method. These improvements translate di-
rectly to, e.g., fewer ray-vs-object traversals in the real-time
ray tracing use case [WBS03].

The anisotropic scale optimization reduced the worst-case
AABB area increase in some scenes, but had no effect on the
average-case results. Wth resolution n = 8, the greatest im-
pact was in Buddha scene, where the worst-case AABB area
increase was 15.9% without the optimization, and 7.3% with
the optimization. Mustang improved from 8.0% to 4.9%, and
other scenes saw no appreciable benefit.

We did not benchmark the performance of bounding plane
construction using apex point maps, but we expect that the
per-plane memory fetch of apex point constitutes the ma-
jority of the cost. For example, when computing a bounding
box with an arbitrary orientation, we need to fetch six points,
whereas fetching an object-space AABB to implement the
naïve method would require fetching two points. We have
not identified a use case where such tiny performance differ-
ences would become significant.

6. Conclusion

We have presented apex point map, a practical data structure
for on-demand construction of arbitrary bounding planes for
rigid objects. We see it as a simple tool for use cases where
using conventional bounding boxes leads to overly conser-
vative results. Due to the small precalculation and bounding
plane lookup costs, the more accurate bounds can provide
a net benefit in various applications by enabling, e.g., more
aggressive culling of work.

Average AABB area increase in %

scene naïve direction cube resolution n
2 4 6 8 10 12 14 16

Mustang 44.2 10.8 5.0 2.9 1.8 1.3 0.9 0.6 0.5
Fairy 95.5 16.9 5.1 2.1 1.3 0.8 0.6 0.4 0.3
Armadillo 94.3 16.0 4.8 2.3 1.3 0.8 0.6 0.4 0.3
Buddha 57.7 13.4 5.0 2.6 1.5 1.0 0.8 0.6 0.5
Veyron 51.9 15.5 6.7 3.6 2.2 1.5 1.0 0.7 0.6
Hairball 124.7 19.7 5.0 2.2 1.3 0.8 0.6 0.4 0.3

Worst-case AABB area increase in %

scene naïve direction cube resolution n
2 4 6 8 10 12 14 16

Mustang 57.1 18.2 10.7 6.9 4.9 3.7 2.9 2.6 2.2
Fairy 170.6 62.3 21.7 10.4 10.0 7.4 5.7 5.5 3.9
Armadillo 168.9 47.1 22.6 14.3 9.6 5.3 4.5 3.7 3.8
Buddha 102.0 31.5 16.3 10.7 7.3 5.3 4.5 4.3 3.7
Veyron 69.2 25.7 14.4 8.5 6.1 4.5 3.5 2.8 2.4
Hairball 179.2 33.1 12.8 6.4 4.4 3.1 2.4 2.0 1.6

Table 2: Quality of world-space AABBs over 100 000 ran-
dom rotations for the mesh. Top: Average AABB area in-
crease (in %) over optimal AABB. Bottom: Worst-case
AABB area increase (in %) over optimal AABB. Column
“naïve” refers to the technique where transformed object-
space AABB is surrounded with a world-space AABB.
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