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Reference
1,024 spp, 567.9 s

Previous sampling using mono-lobe component
170 spp, 81.6 s

Our sampling using multi-lobe component
128 spp, 70.5 s

Figure 1: A glittering coloured glass sphere with a spatially varying microfacet density. A point light inside the sphere makes the surface
sparkle; an environment map further illuminates the scene. Left: our sampling scheme uses the BSDF’s multi-lobe term. Centre: reference
with 1,024 samples per pixel (spp). Right: the Gaussian mono-lobe approximation of the BSDF (previous work) is used for sampling. With
equal render time, our new sampling technique results in less variance compared to the previous technique. Timings are measured for 5122

image resolution.

Abstract
We propose an importance sampling scheme for the procedural glittering BSDF of Chermain et al. [CSDD20]. Glittering
BSDFs have multi-lobe visible normal distribution functions (VNDFs) which are difficult to sample. They are typically sampled
using a mono-lobe Gaussian approximation, leading to high variance and fireflies in the rendering. Our method optimally
samples the multi-lobe VNDF, leading to lower variance and removing firefly artefacts at equal render time. It allows, for
example, the rendering of glittering glass which requires an efficient sampling of the BSDF. The procedural VNDF of Chermain
et al. is a finite mixture of tensor products of two 1D tabulated distributions. We sample the visible normals from their VNDF
by first drawing discrete variables according to the mixture weights and then sampling the corresponding 1D distributions
using the technique of inverse cumulative distribution functions (CDFs). We achieve these goals by tabulating and storing the
CDFs, which uses twice the memory as the original work. We prove the optimality of our VNDF sampling and validate our
implementation with statistical tests.

CCS Concepts
• Computing methodologies → Reflectance modeling;
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1. Introduction

Reflectance modelling is one core concept of rendering where bidi-
rectional scattering distribution functions (BSDFs) describe how a
surface scatters light. These functions are composed of a bidirec-
tional reflection distribution function (BRDF) and a bidirectional
transmittance distribution function (BTDF). Photo-realistic render-
ing of a 3D scene is tantamount to computing an integral equation
in which BSDFs, modelling the surfaces’ materials, are included.
Nowadays, Monte Carlo methods are the standard approach to do
so. To converge as quickly as possible, these require efficient BSDF
sampling. In this paper, we focus on efficiently sampling a complex
BSDF for modelling glittering materials.

BSDFs with a mono-lobe whose orientation is strongly influ-
enced by the mirror reflection or refraction direction describe scat-
tering from glossy materials [MDH*20] such as rough metal and
glass (see left part of Figure 2). Some well-known glossy analytic
BSDFs based on the microfacet theory [CT82; WMLT07] repre-
sent glossy appearance with (possibly spatially varying) parameters
such as microfacet roughness. When it comes to modelling scatter-
ing from glittering materials, such as glittering metal or glass, as
shown in the right part of Figure 2, microfacet-based BSDFs be-
come much more complex and scale-dependent. At fine scales, the
BSDFs exhibit multiple lobes, encoding narrow directional peaks
of high reflection. At larger scales lobes aggregate, converging to a
mono-lobe glossy BSDF.

Glittering BSDFs have been modelled with discrete distri-
butions of flakes [JHY*14; AK16; WWH18] and with finite
mixture distributions [CSDD20; CLS*21]. The evaluation when
using a discrete distribution is performed by counting reflec-
tive microfacets within a ray footprint. These models are filter-
able [WWH18], can be importance sampled [AK16], and can be
evaluated in real-time [WDH20]. Models using finite mixture dis-
tributions [CSDD20; CLS*21] achieve high-performance render-
ings and are filterable, energy-conserving, and memory efficient.
However, these models lack good importance sampling, a crucial
variance reduction technique for Monte Carlo integration. It con-
sists in taking samples from a probability density function (PDF)
which should be as similar to the integrand (here the BSDF) as
possible.

In this work, we take advantage of the mixture formulation of
Chermain et al.’s [CSDD20] model and derive an efficient and opti-
mal importance sampling scheme to replace their mono-lobe Gaus-
sian approximation as a sampling PDF. Their BSDF is based on
microfacet theory and comprises a V-cavity masking-shadowing
function and a zero-mean, symmetrical, and normalised normal
distribution function (NDF). These properties allow us to leverage
the optimal importance sampling for the V-cavity model of Heitz
and d’Eon [Hd14] using the visible normal distribution function
(VNDF). Chermain et al.’s multi-lobe NDF is a mixture of ten-
sor products of transformed, tabulated, 1D marginal distributions.
To sample it, we precompute and tabulate the cumulative marginal
distributions functions (CDFs). Our sampling procedure then per-
forms a binary search on the CDFs, conditioned by discrete random
sampling of the ray footprint and the levels of detail.

Rough metal Rough glass Glittering metal Glittering glass

Reflection Transmission Reflection Transmission

Figure 2: BSDF lobes (top) and their associated material (bottom).
The glossy BSDF component is mono-lobe and models scattering
from rough metals and glasses (left). The glittering BSDF compo-
nent is multi-lobe and models scattering from glittering metals and
glasses (right).

In this article, we make the following contributions:

• We introduce an importance sampling technique for the glitter-
ing NDF of Chermain et al. [CSDD20] (Section 4.2). We prove
that the PDF of our sampling scheme equals the NDF and thus
that our scheme is optimal.
• We combine it with the technique of Heitz and d’Eon [Hd14] to

account for the incident direction in the sampler (Section 4.1).
• We measure the improvement of the convergence and show the

removal of fireflies (Section 6).
• We provide an open source implementation of our technique in

the pbrt-v3 renderer [PJH16]. We validate our implementa-
tion using the χ

2 statistical test [SA07] and the white furnace
test (Section 5).

As demonstrated in Figure 1, our method can also render glitter-
ing transparent materials, such as glass with flakes, frosted glass, or
ice. This is made possible by unifying three key properties. First,
a physically based BSDF avoids energy leaks that make the sur-
face appear too bright or too dark. Second, the BSDF is evaluated
quickly. Third, an efficient importance sampling makes the render-
ing converge quickly. Wang et al. [WHY20] also address efficient
rendering of glittering glass, but only when the rough microsur-
face is explicitly represented. In our case, the microsurface is rep-
resented by the procedural and multi-lobe NDF.

2. Related work

Reflectance modelling of glittering materials and importance sam-
pling of the corresponding NDFs is closely related to microfacet
theory and importance sampling of microfacet-based BSDFs. In
this section, we discuss related work in these fields.

2.1. Microfacet-based glossy BSDF

Torrance and Sparrow [TS67] introduced the microfacet the-
ory for specular reflections from rough surfaces. Later, Cook
and Torrance [CT82] applied this theory to computer graphics.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

46



X. Chermain, B. Sauvage, J.-M. Dischler & C. Dachsbacher / Importance Sampling of Glittering BSDFs based on Finite Mixture Distributions

Stam [Sta01] proposed an extension to transmittance, and Walter
et al. [WMLT07] further explored this topic by comparing differ-
ent normal distribution functions (NDFs) and describing efficient
schemes for sampling the microfacet models. Heitz [Hei14] inves-
tigated the properties of the masking-shadowing functions and in-
troduced the visible normal distribution function (VNDF). Heitz
and d’Eon [Hd14] reduced the variance of Monte Carlo estimators
by sampling the VNDF instead of the NDF. In our work, we use
their technique to take into account the view direction.

2.2. Microfacet-based glittering BSDFs

The aforementioned works consider mono-lobe NDFs, which
can only model reflection or transmission from glossy materi-
als [MDH*20]. To model glittering materials, specialised methods
using spatially varying, multi-scale, and multi-lobe NDFs are re-
quired. There are two main strategies for modelling such NDFs:
They can be computed from a high-resolution normal map during
rendering or they can be generated procedurally.

Normal map-based multi-lobe NDFs The methods based on nor-
mal maps are typically used to represent specular surfaces with cer-
tain details, such as scratches, waves, or glitters, and are memory
intensive –in the order of at least 30 MiB per normal map for the
most memory-efficient methods [WHHY20; AWKK21]. Drawing
a normal map by hand is tedious because it is difficult to predict
how the overall surface will look later. Therefore, the textures are
usually generated procedurally before rendering, for example, by
sampling a NDF to set flake orientations [AWKK21]. Moreover,
these techniques are not suited for spatial variations such as in Fig-
ure 1, because it requires enormous normal maps, much larger than
standard textures.

Importance sampling of the NDF contained in a ray footprint
P (called the P-NDF) is possible. First, a position within the ray
footprint P is sampled, then the sampled direction is computed by
reflecting the view direction with the normal at the sampled posi-
tion [YHJ*14; AWKK21]. Sampling of the visible normal distribu-
tion function (VNDF) is also possible [CCM19].

Procedural multi-lobe NDFs Jakob et al. [JHY*14] introduced a
stochastic discrete microfacet P-NDF which models glittering sur-
faces and converges to a mono-lobe NDF as the microfacet density
grows. The model is physically based, it can render highly realis-
tic images, and the memory cost is meagre. However, the render
times are high compared to materials using glossy BRDFs. This
approach models a discrete set of microfacets randomly placed
and oriented. The evaluation is based on a costly counting process
that traverses a 4-dimensional hierarchy. Wang et al. [WWH18] ap-
proximate the 4-dimensional search by two separate 2-dimensional
searches. They also store and pre-filter directional densities to in-
crease performance when seen from a distance, while the mem-
ory load increases to 5 MiB per roughness parameter. In both pa-
pers, they use importance sampling for the converged mono-lobe
NDF and not the multi-lobe P-NDF; for closeups, this leads to
higher variance in the Monte Carlo estimator. Later, Wang et al.
extended the model [WDH20] and introduced approximations to
achieve real-time performance. This method is also compatible

with real-time lighting based on environment mapping. However,
it consumes a considerable amount of memory with more than 256
MiB per roughness parameter. Atanasov and Koylazov [AK16] ap-
proximate the P-NDF of Jakob et al. [JHY*14] and introduce an
optimal importance sampling scheme by constructing a cumulative
table of weights. However, their NDF is no longer normalised. Note
that the aforementioned techniques do not offer spatial variations of
the model’s parameters in practice. Zirr and Kaplanyan [ZK16] pro-
posed a fast to evaluate procedural P-NDF, which is also based on
a discrete counting process. However, the model is not physically
based, and no importance sampling scheme is available. Hence, it
is not available for physically based renderers using multiple im-
portance sampling.

Chermain et al. [CSDD20; CLS*21] target high-performance
rendering. Unlike the previous discrete processes, they define a P-
NDF as a mixture of procedural, multi-scale, and normalised multi-
lobe NDFs. Their model is physically based (the P-NDF is nor-
malised), requires little memory (less than 1 MiB), and the model’s
parameters can be spatially varying. A recent extension [CLS*21]
demonstrates that their P-NDF is filterable and their BRDF com-
patible with LEAN normal map filtering [OB10]. However, it is not
suitable for offline renderers using multiple importance sampling
because no efficient sampling is available. In our work, we propose
an importance sampling scheme for the P-VNDF of this method.

3. Evaluation of the glittering BSDF

This section first reviews microfacet-based BSDFs [WMLT07;
Hei14; Hd14; HHdD16] (Section 3.1) and then the procedural glit-
tering P-NDF of Chermain et al. [CSDD20] (Section 3.2).

3.1. Evaluation of microfacet-based BSDFs

Scattering from rough surfaces is described with a microfacet-
based BSDF f (ωo,ωi), where ωo and ωi denote the observation
and incident direction, respectively. The BSDF is defined as the
sum of the BRDF fr(ωo,ωi) modelling reflectance and the BTDF
ft(ωo,ωi) modelling transmittance. It is more convenient to eval-
uate and sample the BSDF weighted by the dot product term
|ωi ·ωg|, where ωg is the geometric normal of the surface. The
weighted BSDF is

f (ωo,ωi)|ωi ·ωg| = ( fr(ωo,ωi)+ ft(ωo,ωi)) |ωi ·ωg| (1)

=
DP (ωhr ,ωo)G1(ωhr ,ωi)F(ωo,ωhr )

4〈ωo,ωhr 〉
+

DP (ωht ,ωo)G1(ωht ,ωi)η
2
o(1−F(ωo,ωht ))(

ηo(ωo ·ωht )+ηi(ωi ·ωht )
)2 〈ωo,ωht 〉

.

The terms ωhr and ωht are the half vectors of reflection and trans-
mission, respectively, and the terms ηo and ηi are the indices of
refraction of the observed and transmitted sides. The shadowing
function is denoted as G1, and F is the Fresnel term. The P-VNDF,
designated as DP (ωm,ωo), mainly defines the shape of the BSDF.
In the following, we elaborate on this expression.

Representation of the microsurface In microfacet theory, a mi-
crosurface is represented by a P-NDF DP (ωm). It gives the den-
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sity of a micronormal ωm within an area P†. The micronormals
ωm = (xm,ym,zm)

T are defined in the unit hemispherical domain
centred around the surface normal ωg. If the surface is transmis-
sive, we always define the geometric normal ωg on the observed
surface’s side, i.e., ωo ·ωg > 0 and ωm ·ωg > 0

Evaluation of the patch VNDF The P-VNDF DP (ωm,ωo) is
the P-NDF weighted by the projected area of each micronormal
〈ωo ·ωm〉 and by the masking function G1(ωo,ωm). The observa-
tion direction is ωo, and 〈ωo ·ωm〉 denotes the clamped dot product.
In their work, Chermain et al. [CSDD20] use the V-cavity masking
function [CT82]. The definition of the P-VNDF is [Hei14]:

DP (ωm,ωo) =
G1(ωo,ωm)〈ωo ·ωm〉DP (ωm)

ωo ·ωg
. (2)

Evaluation of the patch NDF The NDF is often expressed as
a transformation of a patch slope distribution function (P-SDF)
P22
P (m̃):

(ωm ·ωg)DP (ωm) =
P22
P (m̃)

(ωm ·ωg)3 . (3)

Here, the term (ωm ·ωg)DP (ωm) is the NDF projected onto the
tangent plane of the surface. The normal-to-slope transformation is
m̃ = (−xm

zm
, −ym

zm
)T , where the microslopes m̃ = (xm̃,ym̃)

T are de-

fined in R2.

3.2. Evaluation of the glittering patch SDF

This section reminds the definition and evaluation of the patch SDF
(P22
P in Equation 3) of Chermain et al. [CSDD20]. They define the
P-SDF as a finite mixture of transformed slope distribution func-
tions (SDFs) P22

M for a discrete level of detail (LOD) l and a cell s:

P22
P (m̃) =

blPc+1

∑
l=blPc

w(l) ∑
s∈P

WP (l,s)P
22
M (m̃, l,s). (4)

The continuous level of detail lP is computed with the minor length
of the ray footprint P as for anisotropic MIP map filtering [Hec89].
The function w(l) weights the adjacent discrete LODs blPc and
blPc+1; this weighting is normalised, i.e., ∑

blPc+1
l=blPc w(l) = 1. For

each LOD l, the surface is subdivided into cells of integer co-
ordinates s (the authors use a MIP grid hierarchy). The function
WP (l,s) weights each cell s within the ray footprint P , and this
function is also normalised, i.e., ∑s∈PWP (l,s) = 1. Please refer to
the original article for more details concerning this glint model.

Evaluation of the transformed SDF The transformed SDF
P22

M (m̃, l,s) (Equation 4) gives the density of the microslope m̃ at
LOD l within a cell s; it is normalised, i.e.,

∫
R2 P22

M (m̃, l,s)dm̃ = 1.
The SDF P22

M is generated by applying a linear transformation, the
2×2 matrix M, to the original slope m̃o associated with the original

† In this article, the patch P is the ray footprint, but usually, the patch P is
not mentioned and is set to the unit area for convenience

distribution P22
o (m̃o, l,s). The transformation is m̃ = Mm̃o and the

definition of the transformed SDF is:

P22
M (m̃, l,s) =

1
det(M)

P22
o (M−1m̃, l,s). (5)

Evaluation of the original SDF The original slope m̃o =
(xm̃o ,ym̃o) is obtained from the inverse transformation m̃o =M−1m̃.
Each component of the original slope is used independently to eval-
uate the original distribution, because P22

o is defined as the tensor
product of its marginal distributions P2−

o and P−2
o :

P22
o (m̃o, l,s) = P2−

o (xm̃o , l,s)P
−2
o (ym̃o , l,s). (6)

The marginal distributions are multi-scale, multi-lobe, tabulated 1D
functions and stored in a set of distributions called the dictionary in
the method of Chermain et al. [CSDD20].

4. Sampling of the glittering BSDF

This section explains how to sample the distributions defined in the
previous section. We begin by reviewing sampling a microfacet-
based BSDF (Section 4.1) and its VNDF using the V-cavity model.
Then we detail our importance sampling approach for the glittering
P-SDF (Section 4.2).

4.1. Sampling of the microfacet-based BSDF

Heitz and d’Eon [Hd14] detail importance sampling microfacet-
based BSDFs using VNDFs. In Algorithm 1, we summarise their
method using the V-cavity model. The probability density functions
(PDFs) resulting from the sampling procedures are shown in the
algorithm. The terms U1 and U2 are random numbers with uniform
probability U[0,1].

Algorithm 1: Sampling of f (ωo,ωi)|ωi ·ωg| (Eq. 1).

m̃← Sample PDF(m̃) = P22
P (m̃) (Eq. 4) B Alg. 2.

B PDF(ωm) = (ωm ·ωg)DP (ωm) (Eq. 3)

ωm← (−xm̃,−ym̃,1)T
√

x2
m̃+y2

m̃+1

B PDF(ωm,ωo) = DP (ωm,ωo) (Eq. 2)
ω
′
m← (−xm,−ym,zm)

T B Symmetrical micronormal

projArea← 〈ωo,ω
′
m〉

〈ωo,ωm〉+〈ωo,ω′
m〉

B Projected area of ω
′
m

if U1 < projArea then
ωm← ω

′
m

end

1 if U2 < F(ωo,ωm) then
B PDF(ωo,ωi) =

DP (ωhr ,ωo)F(ωo,ωhr )
4〈ωo,ωhr 〉

ωi← reflect(ωo,ωm)
else

B PDF(ωo,ωi) =
DP (ωht ,ωo)η

2
o(1−F(ωo,ωht ))

(ηo(ωo·ωht )+ηi(ωi·ωht ))
2〈ωo,ωht 〉

ωi← transmit(ωo,ωm)
end
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4.2. Sampling of the glittering patch SDF

In the following, we detail each part of our sampling technique
which is summarised in Algorithm 2. In Appendix A, we prove
its correctness, i.e., that it optimally samples P22

P .

Algorithm 2: Sampling of P22
P (m̃) (Eq. 4).

B Sample a LOD.
1 l← Sample PMF(l) = w(l)

B Sample a cell given a LOD.
2 s← Sample PMF(s) =WP (l,s)

B Sample a microslope given a LOD and a cell

3 B PDF(m̃o) = P22
o (m̃o, l,s) (Eq. 6)

xm̃o ← Sample PDF(xm̃o) = P2−
o (xm̃o , l,s)

ym̃o ← Sample PDF(ym̃o) = P−2
o (ym̃o , l,s)

m̃o = (xm̃o ,ym̃o)
T

B PDF(m̃) = P22
M (m̃, l,s) (Eq. 5)

4 m̃← Mm̃o B Transformation of the original sample

Sampling the finite mixture distribution The glittering patch
SDF P22

P (m̃) (Equation 4) is called a finite mixture distribution: it
is a mixture over LODs of a mixture over cells of distributions. To
sample this mixture, a LOD and a cell are first drawn as discrete
random variables according to a probability mass function (PMF)
defined by the mixture weights. Then, a microslope is drawn as a
continuous random variable according to the PDF P22

M .

Sampling the LOD l (Alg. 2, line 1). The PMF for l has two
events: blPc and blPc+ 1, with probabilities w(blPc) and 1−
w(blPc). As for the Fresnel term (Alg. 1, line 1), its sampling is
performed by testing w(blPc) against a uniform random variable.

Sampling the cell s (Alg. 2, line 2). For any given ray footprint P
and LOD l, the PMF for s equals WP (l,s) and has a low number
of events equal to the number of cells s ∈ P . Thus s can be drawn
on the fly by a) computing the PMF, b) computing the discrete cu-
mulative distribution function (CDF), c) drawing a uniform random
number U ∈ [0,1], and d) performing a binary search of the larger
cell index s such that CDF(s) ≤ U . This index gives the sampled
cell.

Sampling of the original SDF (Alg. 2, line 3). The 2D joint den-
sity function P22

o (m̃o, l,s) is separable (see Equation 6) and can
be expressed as the product of its 1D marginal densities. In this
case, random variables can be found by independently sampling
from P2−

o (xm̃o , l,s) and P−2
o (ym̃o , l,s) using inverse CDF sampling.

Since the marginal distributions are tabulated in a precomputed dic-
tionary, we precompute and tabulate the CDF of all of them. Using
a precomputed CDF is standard practice for sampling piecewise
linear 1D distributions [PJH16]. Then we sample from this CDF
on the fly using a binary search, in the same way as we sample the

cells s. Currently, the tabulated PDF and CDF size is 64, requiring
six fetches to sample a slope.

An alternative with a single fetch could consist in storing the
inverse CDF directly. However, it would cause memory and preci-
sion issues. Indeed, the input argument of the CDF is a slope m̃∈R.
The domain of the slopes is uniformly sampled, but the domain of
the CDF values may not be. Thus, it would require resampling the
CDF values uniformly. Unless using a memory consuming high-
frequency resampling, this would introduce numerical errors that
lead to a failure of the χ

2 validation tests. For future research, it
would be interesting to investigate such a precision versus speedup
trade-off.

Sampling of the transformed SDF (Alg. 2, line 4). Transform-
ing samples m̃o from the distribution P22

o (m̃o, l,s) with the trans-
formation m̃ = Mm̃o yields samples proportional to the PDF

1
det(M)

P22
o (M−1m̃, l,s). The density of the sample m̃ is exactly

P22
M (m̃, l,s) (Equation 5).

5. Implementation and validation

We have implemented our importance sampling in the pbrt-v3
renderer [PJH16]. We also provide the code and scripts to repro-
duce the results and the validation tests of the implementation.
Please see the supplemental document 2/2.

Timings and performance comparisons are performed on an In-
tel(R) Core(TM) i9-9900 CPU (16 threads, 3.10 GHz). Our mem-
ory usage is 384 KiB (CDFs included): the dictionary used in all the
renderings comprises 786 1D distributions with eight levels of de-
tail for each. For rendering, we use the forward path tracer because
pbrt-v3 only supports ray differentials [Ige99], and therefore the
pixel footprint is only available for the first ray intersection. For in-
tersections with a depth greater than one, we use the mono-lobe
glossy BSDF (Figure 2, left) instead of the multi-lobe glittering
BSDF (Figure 2, right) as in the method of Jakob et al. [JHY*14].

In Appendix A, we prove that our importance sampling scheme
is optimal for P22

P . To validate our implementation, we carried out a
χ

2 test and a white furnace test. The χ
2 test compares the PDF with

the histogram built by sampling this PDF. Passing the test means
that the sampling does not deviate from the distribution (i.e. sta-
tistically no significant difference). Our implementation passed the
test for the VNDF (Equation 2) as well as the BRDF and BSDF
(Equation 1).

The white furnace test places the virtual material in a uniformly
white environment [Hei14]. Thus the outgoing radiance is the inte-
gral of Equation 1, which is equal to the average of the shadowing
term G1. This integral is computed with a Monte-Carlo estimator
using importance sampling (formulas are provided in the supple-
mental document 1/2). Figure 3 shows the white furnace tests for
the dielectric and conducting spheres in Figures 1 and 4. Due to
the white environment, the glints should not be visible, and thus
the bright pixels are fireflies. Conversely, with a sampler using the
mono-lobe approximation of the BSDF, many fireflies are visible,
even above 1,000 samples per pixel for the dielectric material. Fur-
thermore, the estimator converges slowly compared to our estima-
tor using importance sampling of the multi-lobe component.
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1,024 spp, 388.7 s

Our

128 spp, 52.5 s32 spp, 15.5 s

Dielectric

Conductor

Our

Previous

42 spp, 15.6 s
Our

Previous

170 spp, 54.5 s

Previous

1,360 spp, 406.9 s

1,024 spp, 254.8 s

Our

128 spp, 34.5 s32 spp, 10.5 s

Our

Previous

42 spp, 11.5 s
Our

Previous

170 spp, 39.6 s

Previous

1,360 spp, 299.7 s

Figure 3: White furnace tests of conductors and dielectrics with
spatially varying microfacet density. Our sampling provides faster
convergence. Timings are measured for 5122 image resolution.

6. Results

Figure 1 shows spheres rendered under environment illumination.
The material is a glittering coloured glass modelled with the BSDF
of Equation (1). The inscriptions on the spheres are produced by
spatial variations of the glint density with a texture. The base ma-
terial (where there is no glitter) is modelled with a glossy BSDF
with very low roughness. The same scene is shown in Figure 4,
where the material is a glittering copper modelled with the BRDF
only. As shown in the close-ups, with similar render time, our sam-
pling scheme achieves results closer to the reference than the pre-
vious sampling technique using the mono-lobe approximation. In
particular, it reduces firefly artefacts that are due to very substan-
tial weights in the Monte Carlo estimator. These artefacts are even
more visible in the accompanying video.

In Figure 5, a more complex scene exhibits shadows, indirect
lighting (reflected by the dog), spatial variations of the microfacet

Reference
408.7 s, 1,024 spp

Previous sampling
64.6 s, 170 spp

Our sampling
55.6 s, 128 spp

Figure 4: Comparison of our sampling scheme (left) with the pre-
vious sampling scheme (right) for similar rendering times. The ref-
erence (middle) is obtained with 1,024 samples per pixels (spp). A
glittering copper sphere with spatially varying microfacet density
is illuminated by an environment map and a point light. Our sam-
pler converges faster, and there are fewer firefly artefacts. Timings
are measured for 5122 image resolution.

density (chessboard, cat), and transparency (Suzanne). We compare
our sampling method (top) to the previous sampling technique us-
ing the mono-lobe approximation (bottom). The top image has less
variance for a similar rendering time (please also see the insets and
the accompanying video).

Due to the extra cost for sampling from the multi-lobe compo-
nent of the BSDF, we observe that our sampling scheme draws
roughly 25% fewer samples for a similar rendering time, yet it still
converges faster.

To measure the performance of our importance sampling, we
monitor the convergence of the integral of the glittering BSDF as a
function of the number N of samples with different sets of param-
eters (width of the patch P , incidence angle of the view direction,
roughness). For each set of parameters, we run 1,000 realisations
of the estimator and store the 1,000 resulting curves. To make the
graphs more readable and statistically representative, we plot the
curves of pointwise quartiles F0%, F25% , F50% , F75% and F100%
defined as pointwise boxplots. We focus here on salient observa-
tions and provide mathematical details and extensive results in the
supplemental document 1/2.

Figure 6 compares our BSDF sampler (green) to the mono-lobe
approximation (red) in the most challenging sampling situations:
grazing angle observation, rough surfaces, and dielectric materials.
We make the following observations:

1. Both samplers converge to the same value.
2. Our BSDF sampler achieves faster convergence in the worst

case, as shown by the extremum curves F0% and F100% (dotted
lines).
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1,024 spp, 1,878 s

1,400 spp, 2,028 s

With our sampling

With previous sampling

Figure 5: Comparison of our sampling (top) to the sampling using the mono-lobe approximation (bottom). Even with 1,400 samples per
pixel, the previous sampling scheme exhibits firefly artefacts. Timings are measured for 1920×540 image resolution.

3. It has less variance: the inter-quartile F75%−F25% is lower.
4. The Monte Carlo weights never exceed one because, in our case,

the integrand divided by the PDF is the term G1.
5. Our BSDF sampler is insensitive to the number of micro-

facets within the patch P . Conversely, the mono-lobe sampling
scheme converges quicker as the number of microfacets in-
creases because P22

P converges towards the BSDF mono-lobe.
Note that in practice, it only becomes competitive with our
scheme when the glints become invisible.

6. The incidence angle has an impact on the convergence (see the
supplemental document 1/2). The lower the angle, the better the
convergence: this is due to the shadowing term in Equation 1,
which makes the dielectric BSDF sampling sub-optimal when
the incidence increases.

7. The roughness, for the same reason, has the same effect as the
incidence angle.

Measuring the rendering speed-up is a delicate task. It depends
on the complexity of the scene, the type of materials, and the light-
ing environment. It would also require a quantitative measure. Fig-
ure 3 is meant to give an idea of the speed-up. For the conductor
and the dielectric, our scheme with 32 spp has less observable vari-
ance than the previous method with 1,360 spp. For this scene, we
estimate our technique to converge 40 times faster.

7. Limitations and future work

In this paper, we discussed importance sampling of glittering BS-
DFs at three levels. (1) The SDF (Equation 4) is optimally sampled,
as well as (2) the VNDF (Equation 2); the view direction and the
masking effects (G1 term in Equation 2) are taken into account us-
ing the V-cavity model. (3) Sampling the BSDF as a whole is still
sub-optimal in our method because of the shadowing term. The
BSDF (Equation 1) assumes single scattering of light within the
microsurface. Therefore, samples that are shadowed are lost. The
BSDF should benefit from methods simulating multiple scattering
inside the V-Cavity [LJJ*18; XH18], and, in this case, the sampling
would be optimal.

Our current implementation is based on ray differentials [Ige99];
thus, the ray footprint is only available for the first ray intersection.
Therefore, we use the mono-lobe approximation of the glittering
BSDF (glossy case) for the following ray intersections, as it does
not require a ray footprint to be evaluated. With this approximation,
glints cannot be visible by reflection from rough surfaces. This ef-
fect would require covariance tracing [BYRN17] or the ray-cones
method [ACB*21].

As for the glossy BSDF model, the microgeometry cannot be
observed with the glittering BSDF, only the reflection or transmit-
tance from it. We suggest using normal map based methods to this
end. An interesting future work could be converting the explicit mi-
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100 102 104
0

1

2
148 microfacets

100 102 104
0

1

2
2,379 microfacets

100 102 104
0

1

2
166,496 microfacets

Figure 6: Convergence of our sampling scheme (green curves) compared to the sampling of the mono-lobe (red curves) as functions of the
number of samples. Top row: plot of the projected P-NDF (Equation 3) and rendering of the dielectric material. The curves of pointwise
quartiles are plotted: the median F50% in solid line; F25% and F75% in dashed lines; F0% and F100% in dotted lines. The material is dielectric,
the incidence angle is grazing (1.5 rad), and the roughness is high (α = 0.6). From left to right, there are K = 148, 2,379, and 166,496
microfacets within the pixel footprint. With our scheme, the convergence is faster, and the variance is lower.

crogeometry in the ray footprint into glittering BSDF parameters,
like LEAN [OB10] and LEADR [DHI*13] mapping do with glossy
BRDFs.

8. Conclusion

This paper proposed a scheme to importance sample the multi-lobe
glittering BSDF of Chermain et al. [CSDD20]. This BSDF was
used for real-time rendering, and it is now suitable for offline photo-
realistic physically based rendering. The core algorithm optimally
samples the slope distribution function, which is a finite mixture
distribution. Then the visible normal distribution function is op-
timally sampled, based on the work of Heitz and d’Eon [Hd14].
Compared to the previous mono-lobe approximation, it results in a
much faster convergence of the Monte-Carlo integration, allowing
for high-quality rendering of glittering materials, including trans-
parent materials such as glass. We provide an open source imple-
mentation, which is statistically validated.
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Appendix A: Demonstration of our algorithm’s correctness.

Here we prove that Algorithm 2 provides an optimal sampling
of P22
P , by showing that the joint probability of Xm̃ and Ym̃ is equal

to Equation (4). To do so, we derive the probability distributions
for the random variables L, S, Xm̃o , Ym̃o , Xm̃ and Ym̃.

From the algorithm, we have the probabilities

P(L = l) = w(l) (7)

P(S = s|L = l) = W (l,s), (8)

and the densities

p(Xm̃o = xm̃o |S = s,L = l) = P2−
o (xm̃o , l,s) (9)

p(Ym̃o = ym̃o |S = s,L = l) = P−2
o (ym̃o , l,s). (10)

For any fixed values l and s, Xm̃o and Ym̃o are independent, so
their joint probability is the product (Equation 6) of the marginal
distributions (Equation 9 and (10)):

p
([

Xm̃o

Ym̃o

]
=

[
xm̃o

ym̃o

]
|S = s,L = l

)
= P22

o

([
xm̃o

ym̃o

]
, l,s

)
. (11)

Using a change of variable and equation (5), we have

p
([

Xm̃
Ym̃

]
=

[
xm̃
ym̃

]
|S = s,L = l

)
= P22

M

([
xm̃
ym̃

]
, l,s

)
. (12)

From the law of total probability

p
([

Xm̃
Ym̃

]
|L = l

)
= ∑

s
P(S = s|L = l)p

([
Xm̃
Ym̃

]
|S = s,L = l

)
(13)

and thus, from (8) and (12)

p
([

Xm̃
Ym̃

]
=

[
xm̃
ym̃

]
|L = l

)
= ∑

s
W (l,s)P22

M

([
xm̃
ym̃

]
, l,s

)
. (14)

From the law of total probability, again,

p
([

Xm̃
Ym̃

])
= ∑

l
P(L = l)p

([
Xm̃
Ym̃

]
|L = l

)
(15)

and thus from (7), (14) and (4)

p
([

Xm̃
Ym̃

]
=

[
xm̃
ym̃

])
= P22
P

([
xm̃
ym̃

])
. (16)
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