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Abstract

The medial axis can be viewed as a compact representation for an arbitrary model; it is an essential geometric structure in
many applications. A number of practical algorithms for its computation have been aimed at speeding up its computation and
at addressing its instabilities. In this paper we propose a new algorithm to compute the medial axis with arbitrary precision. It
exhibits several desirable properties not previously combined in a practical and efficient algorithm. First, it allows for a trade-
off between computation time and accuracy, making it well-suited for applications in which an approximation of the medial
axis suffices, but computational efficiency is of particular concern. Second, it is output sensitive: the computation complexity
of the algorithm does not depend on the size of the representation of a model, but on the size of the representation of the
resulting medial axis. Third, the densities of the approximated medial axis points in different areas are adaptive to local free
space volumes, based on the assumption that a coarser approximation in wide open area can still suffice the requirements of the
applications. We present theoretical results, bounding the error introduced by the approximation process. The algorithm has
been implemented and experimental results are presented that illustrate its computational efficiency and robustness.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling

1. Introduction

The medial axis of a solid D is the locus of points inside D, which
lie at the centers of all non-intersecting closed discs or balls in
D of maximum radius that have at least two contact points with
D [5, 28]. Given a medial axis of D and its associated radius func-
tion, it is easy to reconstruct the surface of D. Thus the medial axis
provides a compact representation of D. The medial axis is helpful
in many applications, such as shape analysis [24, 36], robot motion
planning [13, 18], image processing [22], computer vision [7, 23],
solid modeling [14, 17, 31] and mesh generation [1, 27]. In this pa-
per we present a novel approach to compute an approximated me-
dial axis based on the aforementioned definition.

While various algorithms to compute the exact medial axis of
simple polyhedra composed of a few hundreds of triangles exist
[21, 26, 28], it is non-trivial to scale them to more complicated
models. This is a consequence of the instability and the algebraic
complexity of the medial axis as a mathematical structure. A small
change of the surface can cause relatively large changes in the me-
dial axis; furthermore, the algebraic representation of the medial
axis usually is of higher degree than the surface of the solid. In
order to address the instability problem and reduce the compu-
tation time, algorithms to approximate the medial axis have been
proposed. These will be discussed in detail in Section 2.
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There are a number of applications for which computation time
is of critical concern, but an exact representation of the medial axis
is not needed. For example, robotic motion planning techniques
based on the medial axis have been devised [13, 18]. These meth-
ods exploit the fact that the medial axis captures points at a maximal
distance from obstacles and use it as a heuristic to find positions of
the robot that do not collide with the environment [18]. For this
application an approximated medial axis, which can be computed
efficiently, is very desirable. Furthermore, in narrow and geometri-
cally complex regions, a more detailed representation of the medial
axis is of interest, whereas in wide open regions the danger of col-
lision is low and a coarse representation suffices.

In this paper, we propose a novel algorithm to approximate the
medial axis. Motivated by applications such as robot motion plan-
ning, the proposed algorithm has the following characteristics:

1. The computation of the approximated medial axis can be per-
formed very efficiently. As shown in Section 7, the approxi-
mated medial axis of the model of the Stanford Bunny with
69,451 triangles can be computed in only 5.6 seconds on a stan-
dard PC. The approximated medial axis of the Happy Buddha
model, consisting of over one million triangles, can be com-
puted in 13.4 seconds. This is much faster than existing algo-
rithms with the same input.

delivered by

www.eg.org

— '» EUROGRAPHICS

: DIGITAL LIBRARY
diglib.eg.org



http://www.eg.org
http://diglib.eg.org

16 Y. Yang, O. Brock, R. N. Moll/ Efficient and Robust Computation of an Approximated Medial Axis

2. The algorithm allows the user to trade off speed of computation
for accuracy: the more accurate the approximation, the more
computation time is required.

3. The algorithm adapts the density of points used to represent the
approximated medial axis based on local properties of the solid.
Few points are necessary in open areas and a denser set of points
is used to represent the approximated medial axis in confined
areas.

As a consequence, the proposed approach is well suited for appli-
cation in which an efficiently computed, approximated medial axis
is of value. This has been validated experimentally in the domain
of sampling-based motion planning in robotics [34].

2. Related Work

Given the geometric description of a solid, there are various algo-
rithms to compute its medial axis. We classify the approaches found
in the literature based on their method of exploring the interior of
the solid.

The algorithms in the first category use a tracing approach
[21, 26, 28] to compute the medial axis. The algorithm starts from
a junction point, which is the point where multiple facets of the
medial axis intersect, and traces the seams from the junction point
until they meet another junction point or an end point. This proce-
dure is repeated recursively until all parts of the medial axis have
been traced. In addition, Culver [9] also uses a spatial subdivision
technique to reduce the running time of the algorithm. Choset [§]
applies this approach to sensor-based motion planning. His algo-
rithm only uses local distance information gained from the sensors
to incrementally build a medial axis representation, as the robot ex-
plores its environment. The tracing steps are small and computation
speed is limited. Holleman [18] uses a similar approach to deter-
mine the medial axis, which is then used as a heuristic for sampling
free configuration space in the probabilistic roadmap approach to
robot motion planning. Computational considerations limit the ap-
plicability of these approaches to polyhedra composed of only a
few thousand faces.

The algorithms in the second category represent the free space
as voxels. Lam [19] gives a survey of thinning algorithms based on
voxel representations and Zhang [35] provides a performance eval-
vation. The thinning algorithms perform erosion in order to com-
pute an approximated medial axis. Siddiqi [29] assigns each voxel
a vector field value corresponding to the vector pointing to the clos-
est point on the surface. A voxel is considered to be on the medial
axis if the mean flux of the vector field entering the neighbor vox-
els is positive. Ragnemalm [25] assigns to each voxel the Euclidean
distance to its nearest voxel on the boundary and computes the lo-
cal directional maxima to determine the approximated medial axis,
while Hoff [16] utilizes hardware to compute these, thus speed-
ing up the computation. Vleugels [33] divides voxels recursively if
they contain a portion of the medial axis until they reach a mini-
mum size. Foskey [11] combines the advantages of [16] and [33],
using hardware to compute distances while adaptively and recur-
sively dividing the voxels. This method computes a simplified me-
dial axis [11], which is a subset of the actual medial axis. This new
data structure is more stable but it does not necessarily maintain the
connectivity of the medial axis, thereby limiting its applicability.

The algorithms in the third category divide the free space into

Voronoi regions based on sample points on the surface of the solid.
The resulting Voronoi regions are tiny because a dense sampling
of the surface is required for an accurate computation of the me-
dial axis. Both [3] and [10] provide good surveys of the literature
of the algorithms in this category. These algorithms are applicable
to complicated models, if an appropriate set of sample points can
easily be determined.

3. Sampling the Approximated Medial Axis

The main idea of our algorithm is to efficiently generate a small
set of partially overlapping maximal spheres to cover almost the
entire free space within the solid. These spheres are constructed
to intersect features of the medial axis. By sampling points on the
surface of the spheres and determining their closest feature in the
environment, a set of points on the surface of the sphere that are
in proximity to the medial axis can be identified. The points serve
as an approximation to the medial axis. The union of these points
comprises the approximated medial axis, abbreviated as aMA in the
remainder of the paper. Because large open areas can be covered by
large spheres, the aMA consists of few points in wide open areas
and is denser in geometrically complex regions of the solid. The
precision with which the aMA approximates the medial axis can
be specified as a parameter of the algorithm. This allows users to
consciously trade accuracy for computational efficiency.

3.1. Description of the Algorithm

Each point inside the solid has at least one closest feature on the
surface of the solid. The direction vector v of a point p in the solid
D is the unit vector pointing from point p to the closest feature on
the surface of D. The distance 8(p) associated with a point p in the
solid D is the distance from point p to the closest feature on the
surface of D. Note that points on the medial axis must have at least
two direction vectors.

The description of the algorithm relies on two primitive opera-
tions. The first identifies an initial point m and associated distance
&(m), such that the resulting sphere of radius (m) around m in-
tersects the medial axis. Given a solid D, a set of points P in the
interior of D and their direction vectors, the second primitive iden-
tifies, for each point p € P, that point on the medial axis of D which
is closest to p. These primitives will be described after we have de-
tailed the algorithm for computing the aMA.

Assume point m lies on the medial axis and is distance d(m)
away from the closest obstacle. This point is determined using the
first primitive. A priority queue Q is initialized to contain the sphere
described by point m and radius 8(m). The set S of spheres describ-
ing the free space inside the solid D is initialized to be the empty
set.

The largest sphere s is extracted from Q and a set U of uniformly
distributed samples that have been generated on its surface. Points
in U that are contained in one of the spheres in S are discarded. The
second aforementioned primitive is used to determine those points
in U that lie closest to the medial axis. These points p; are added
into the aMA and, along with their distances &(p;), into the priority
queue Q. The sphere s is added to S. To bound the exploration of
free space we introduce an additional requirement for insertion into
Q: only those spheres with radii larger than the expansion threshold
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K. can be added. We can control computation time and the number
of aMA points by changing K.. These steps are repeated until Q is
empty (see also Figure 1).

1. Find point m inside D such that §(m) > K. and the medial axis
intersects the sphere of radius 8(m) around m (see Section 3.2).

2. Sphere set S := ()
3. Medial axis point set M := ()
4. Priority queue Q := {(m,8(m))}
5. While Q is not empty
a. Extract sphere s = (p,d(p)) from Q
b. Generate n uniformly distributed samples U = {uy,---,un}
on the surface of s. Discard all u; € U for which 3s; € S such
that u; € 5.
c. Using U and the direction vectors associated with the u; € U,
determine approximated medial axis points A = {ay,---,a;}

(see Section 3.3).
d. Q:=0QU{(a;,8(a;)) |a; € A and &(a;) > K¢}
e. M:=MUA
f. §:=S5U{(p,8(p))}

6. Connect points in M to generate the aMA (see Section 5)

Figure 1: The pseudo code of the algorithm. S is the set of spheres
describing the interior of the solid D. M is the set of points de-
scribing the approximated medial axis. Q is the priority queue of
spheres, ordered by radius.

Figure 2 illustrates our method in a two-dimensional case. As-
sume o7 is the first element in Q. A maximal circle centered at 0 is
generated and n samples p, p2, ..., pn are generated on its circum-
ference (not all samples are shown in the figure). The point pairs
(p1,p2), (p3,p4) and (ps, pg) have different direction vectors and
the midpoints of these pairs, g1, g2 and g3, are considered to be on
the medial axis; they are added to the aMA and to the queue. Since
g3 has the largest radius it is expanded next and the procedure re-
peats.

Figure 2: An illustration of the algorithm. The dashed lines repre-
sent the medial axis of the rectangle.

We now discuss the two primitives used in the description of the
algorithm.

3.2. Identifying the Initial Approximated Medial Axis Point

In the description of the algorithm it was assumed that the queue
Q is initialized with a point m on the medial axis of the solid D.
We use a similar expansion algorithm as the one described above
to find m. Starting from a random point p inside D, we generate
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the maximal sphere with the center at p. If we cannot find a medial
axis point of the surface of the sphere (how medial axis points are
identified is described in Section 3.3), we take the point p’ with
the biggest radius as the center of the next sphere. This process is
repeated until the sphere of radius 8(p’) around p’ intersects the
medial axis. Since this procedure converges towards a sphere of
locally maximum radius, its center converges towards a point p’ on
the medial axis and the surrounding sphere thus must intersect the
medial axis.

3.3. Identifying Approximated Medial Axis Points

Given a set of uniformly distributed sample points U on the surface
of a sphere, we apply the separation angle criteria [3,4, 6, 11] to
determine the set containing points of the aMA. If the direction
vectors of two adjacent sample points span an angle larger than a
threshold 6;, we take the samples’ midpoint as the aMA points. In
Section 4 we will bound the error of this approximation.

The separation angle criteria can erroneously place a point on the
medial axis (see Figure 3 for an example) [11]. If a reflex vertex on
the boundary is the nearest neighbor to both sample points, both
direction vectors will point toward that vertex. To identify these
cases, we apply the divergence criteria: the direction vectors must
point away from each other.

i< )

Vl v2

Figure 3: False positives for the separation angle criteria

If a sphere only intersects one facet of the aMA, there will be
two sets of sample points, each set with a different direction vector,
based on classification by the angle criteria. In this case we simply
insert the center of the sphere into the aMA. The samples on the
surface are superfluous. If a sphere intersects multiple facets of the
medial axis, however, we identify adjacent samples with three or
more distinct direction vectors and add their midpoint to the aMA.
These points are called critical points; they designate an edge or a
vertex between multiple facets of the aMA. Critical points can be
used to approximate the hierarchical generalized Voronoi graph[8].

3.4. Increasing the Accuracy of the Approximation

Our basic algorithm does not sample the interior of the spheres. By
restricting sampling to the surface of the sphere, important features
of the aMA might be missed. We provide an optional refinement
algorithm which can locate aMA points with a maximal number of
adjacent aMA facets on the inside of a sphere. Starting from one
aMA point, we use a tracing algorithm similar to the one proposed
in [18] to look for a point where several aMA facets touch. Our
method differs from [18] in that it performs the tracing in 3D, rather
than in a plane. The method uniformly samples n points nearby and
selects the point with equal or more adjacent aMA facets as the
next tracing point. The refinement algorithm stops if the tracing
point is outside of the sphere or all points nearby have less MA
facets crossing. If the refinement point is close to another critical
point, we discard it and stop the algorithm. The aMA points found
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in this manner more accurately describe the characteristics of the
solid. This refinement considerably increases the computation time
of the overall algorithm.

3.5. Discussion

In Section 2, we differentiated three categories of approaches to
medial axis computation. These methods were classified according
to their methods of free space exploration. All of them generate
the (approximated) medial axis either during or after the explo-
ration process. The algorithm proposed here can also be regarded
as a tracing approach: it traces the medial axis by sampling on the
spheres during expansion. However, the algorithm differs impor-
tantly from previous approaches: during the tracing progress, the
step size is adjusted based on the local geometrical properties of
the free space. By construction, the centers of the spheres lie close
to the medial axis and thus free space is explored with near-optimal
step sizes. To ensure this property all possible tracing directions
are explored at every step. The near-optimal step size is the main
reason for the computational efficiency of the proposed approach.

4. Approximation Error

In this section we bound the error made by the proposed method
of approximating the medial axis of a solid. We differentiate quan-
titative errors that result from the finite sampling density of our
algorithm, and qualitative errors. The latter are a consequence of
the sphere expansion algorithm to explore the free space inside the
solid.

When considering the quantitative error, two cases have to be
distinguished. If the sampling density on the surface is kept con-
stant, larger spheres will be covered by a larger number of samples
than smaller spheres. In this case we compute the absolute error
as the distance of a point on the aMA to the closest point on the
true medial axis. If the number of samples is kept constant, on the
other hand, the sampling density is lower on large spheres, which
means that fewer samples are computed in wide open areas. In other
words, the computational expense is proportional to the difficulty
of the region — a desirable property for an approximation algorithm.
For this case we will consider a relative error, which relates the ab-
solute error to the amount of local free space.

4.1. Sample Point Accuracy

Let M be the set of approximated medial axis points for a given
solid D attained by our algorithm. For each point p; in M, there
exists a medial axis point #; which is closest to p;. The absolute and
relative errors for the sample points M of the approximated medial
axis, relative to the true medial axis 7" are

o Absolute error £,: maxp,ep{|pi —ti|}

e Relative error €, 8??)

Given a set of uniform samples on a unit sphere (circle), we de-
fine two points as neighbors of each other if the distance between
them is smaller than the neighbor threshold dj. If the closest fea-
tures of two neighboring points p| and p; are different, there is a
point between them which is closest to both of those features and
thus lies on the medial axis. We will consider the midpoint m of
the line segment between p; and p, as a point on the approximated

medial axis. Consequently, the maximum distance between points
of the approximated medial axis and the real medial axis is given
by &4 = % This equation holds in both 2D for circles and 3D for
spheres. The resolution of the algorithm is then defined by rmin%",
where rmin is the radius of the smallest sphere generated by the al-
gorithm described in Section 3.

It is obvious that there is a relation between the number of the
samples placed on a sphere and the quality of the approximated me-
dial axis. In the following sections we establish how many samples
are needed in order to achieve a desired absolute or relative error in
2D or 3D.

4.1.1. 2D

It is relatively easy to compute the number N of samples needed
for a given absolute error €,. During the exploration of free space,
the algorithm uniformly samples N points on a circle (refer to Fig-
ure 2). The angle A8 between two neighbor sample points (for ex-
ample, / q1pi qip3) is %\,—“ and the distance between them is given
by

b

N . A® .
|p1p3| = 2rs1n7 = 2rs1nﬁ,

Let dy, equal |p1p3|. The absolute error is then given by:

€4 = @ = rsin E.
2 N
Consequently, given an absolute error €, the number of samples
needed is given as a function of the radius r of the sphere:

N=—T )
arcsin ~*

To determine the relative error €, we have to estimate the radius
of a nearby point m on the true medial axis. In Figure 2, assume
the closest MA point to ¢ is m. The r in equation 1 is the distance
8(g1) and not 8(m). Although m and 3(m) are unknown, according
to the definition of the medial axis and the triangle inequality, we
can estimate 8(g;) < 8(m) < 8(q;) + €4 under the condition that m

Ea < &

1 1 €y €q
has the same direction vectors as ¢. Thus e < ) < R

If r < 8(q1), 5(8;;1) < 8(8(;‘1) < %, we can select N based on %:

_m
" arcsing,
Should r > &(g1 ), we determine N based on the following equation:
i

H €1
arcsin s~ ~
5(q1)

Given the number N of desired sample points p; and the origin o
of a sphere with radius r, it is easy to determine their position:

g 21
cos %

pi:o+r< sin% ) fori=1,---,N.

4.1.2. 3D

Before we discuss the accuracy of the algorithm applied to a
three-dimensional solid, we introduce the sphere covering prob-
lem [15, 30]: How can n points be placed on a unit sphere so as
to minimize the maximum distance of any point on the sphere to
the other n — 1 points? Alternatively, the problem can be defined in
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terms of covering the unit sphere with spherical caps [2, 32]. We
rely on approaches presented in the literature to determine a uni-
formly spaced sampling pattern on spheres during the free space
exploration phase of the algorithm.

Determining the approximated medial axis point based on two
adjacent sample points on a sphere with radius r, the absolute error
is given by g, = r%. If more than two samples with different di-
rection vectors are used to determine a point the aMA, the triangle
inequality is used to bound the error by €, < r dy,. Given a desired
maximum absolute error, it is easy to determine the maximum al-
lowed distance d between samples. Using the methods for uniform
sampling on the unit sphere referenced above, we determine the
number of samples N and their locations on the sphere.

The relative error for the three-dimensional case is determined
in a similar fashion as in the two-dimensional case.

4.2. Missing Features of the Medial Axis

The aMA points we obtain only represent a subset of the simplified
medial axis [11]. The proposed algorithm misses part of the simpli-
fied medial axis because it does not expand spheres into the entire
free space and because it only considers a small set of points on the
surfaces of spheres.

Given an absolute error €4, the algorithm will stop if the maxi-
mum J(p) of all sample points p is smaller than €,. For a relative
error €, the algorithm will terminate if the radius of all spheres
is smaller than the threshold K.. Obviously, the algorithm can not
reach a space with a ’gate’ smaller than €, or the threshold K.
The spheres stop spreading when they meet that ’gate’ and the free
space behind the gate will be missed, including the associated fea-
tures of the medial axis.

In the case of relative error, the sample points on large spheres
are sparser and thus have larger distance d. Consequently, using
relative error, the size of the largest gate which is missed depends
on the amount of local free space. This is illustrated in Figure 4:
p1 and p; are adjacent sample points on the bigger circle and 0,
is the angle between the direction vectors of p; and p»; ¢g; and
q» are the adjacent sample points on the smaller circle and 65 is
the angle between the direction vectors of ¢; and g;. It is obvious
that | p1 p2| > |q192| and 8}, < 65. According to the separation angle
criteria, the algorithm can find the aMA point on the smaller circle
but not on the bigger circle, if 6, < 6; < 6;.

@ Neighboring sample points on the smaller circle
@ Neighboring sample points on the bigger circle

Figure 4: The algorithm might miss more features when it uses the
relative error criterion.
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5. Generating the Approximated Medial Axis

So far we have obtained a set of aM A points by sampling on spheres
during the exploration process. For some applications it might suf-
fice to have sampled points on the aMA; other applications might
rely on knowing the actual facets of the aMA. We now describe
how the adjacency relationship between the sampled aMA points
discovered during the free space exploration is exploited to com-
pute facets of the medial axis.

For a two-dimensional solid the medial axis is composed of one-
dimensional curves. We connect the aMA points by straight lines
based on the parent-child relationship obtained during exploration:
if an aMA point is on the surface of a sphere centered at another
aMA point, we connect these two aMA points. We know from the
algorithm that all aMA points, except for the first one, are the cen-
ters of the maximal spheres and on the surfaces of other spheres.
So the segments connecting them are completely inside the spheres
and far away from the boundary of the model. If the end points of
the aMA segments have different direction vectors, we can explore
the bisectors of the aMA segments to locate more aMA points in
order to refine the approximated medial axis. We can then connect
adjacent children to form facets.

For a three-dimensional solid the medial axis consists of facets
of dimension two and below. We use the algorithm presented in
[18] to determine the faces of the aMA. In relatively simple mod-
els, big MA facets may exist that are covered by more than one
sphere. We collect aMA points on the same MA facets based on
their direction vectors and positions. In order to achieve better ap-
proximation and to improve the visual effect, we use the refinement
algorithm described in Section 3.4 to find additional aMA points
inside the spheres. The refinement algorithm uses a basic tracing
method. Performing this optimization will increase the computa-
tion significantly.

6. Computational Complexity

There are two factors determining the computational complexity
of the proposed algorithm. The most costly operation performed is
the distance computation (see also Section 7). The complexity of
the model critically impacts the computational complexity of this
operation, which generally is assumed to be O(logn) in practice,
where n is the number of faces of the model. In other words, the
computational cost of performing a distance computation is deter-
mined by the size of the input.

To the extent that the presented algorithm has to input the de-
scription of the environment and performs distance computations
on this description, its computational cost is dependent on the input
size. If we ignore this for a moment, however, and regard distance
computation as a constant time operation, we note that the algo-
rithm is output-sensitive, i.e., its computational cost only depends
on the size of the output. For every sample point generated on the
aMA we can bound the required computation time by a constant.
This is a very desirable property, in particular for an algorithm that
trades accuracy for efficiency. This property shows that the com-
putational cost is related to the geometric complexity of the solid
itself and not its model. In other words, assuming a cube as the
solid and still regarding the cost of distance computation as con-
stant, the proposed algorithm would produce the same aMA with
the identical number of distance computations and thus with the
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same computational cost, irrespective of whether the cube is rep-
resented by 12 triangles or by 12 million triangles. To achieve this
result we do not have to take the model into account by specify-
ing a desired step size or resolution, we simply specify the desired
relative error.

While output sensitivity is a very desirable property for an al-
gorithm of this kind, the dependency on the geometric complexity,
rather than on some combinatorial property based on the number
of vertices, makes it impossible to classify the proposed method
according to well-known complexity classes.

7. Experimental Results

The experiments reported here were performed on a dual-
PentiumIII PC with 1024 MB SRAM and a 32MB DDR NVIDIA
GeForce2 GTS graphics card. The algorithm was implemented in
C++, with Open Inventor as the graphics API. Distance computa-
tion was performed using the PQP package [12, 20]. Several mod-
els were used, ranging in complexity from 12 to 1,087,718 trian-
gles. Table 1 summarizes the experimental results.

Figure 5 and 6 are the medial axis of the simple models which
have relative big facets. In the image different colors represent dif-
ferent aMA facets. Where more than two aMA facets intersect in a
line segment, inaccuracies as a result of fixed-resolution sampling
can be observed. The facets of the approximated medial axis also
do not reach into ’corners’ of the space. This is due to the fact that
free space exploration only continues as long as spheres have a cer-
tain minimum size.

Figure 5: The medial axis of a box (Box 1, 12 triangles). It takes
3.94 seconds to compute the medial axis. Different colors represent
different aMA facets.

Figure 7 to Figure 10 show more complex models and their ap-
proximated medial axes. Our algorithm uses relatively few spheres
N; to cover the free space inside the models and attains a small
set of aMA points (|M| = Np). While our method only computes
an approximated medial axis, it is significantly faster than previous
methods with the same input. For example, at a low resolution the
aMA points of the Stanford Bunny, the horse model, and the Happy
Buddha can be computed in only 5.61, 12.3 and 13.4 seconds, re-
spectively. Even at higher resolution (see Table 1) the computa-
tional cost is significantly lower than previous methods, as known
to the authors.

As we described in Section 4, the algorithm may miss some parts

Figure 6: The medial axis of a simple model (Box 2, 20 triangles).
It takes 4.53 seconds to compute the medial axis. Different colors
represent different aMA facets.

of the medial axis when computing its approximation. In order to
demonstrate this effect visually, we used spheres with small fixed
radius to compute the medial axis of the models; this corresponds
to an implementation of a tracing approach. Figure 8 and Figure
9 compare the resulting medial axis with the approximated me-
dial axis computed by the proposed method. It can be seen that
most features of the medial axis are preserved. For volumes that are
nearly spherical, such as the body of the Stanford Bunny, and are
thus captured by a large sphere, some parts of the medial axis are
lost. As demonstrated by the aMA in the legs of the horse model,
geometrically tight or complex spaces are approximated very well.
This comparison visually confirms that the proposed method com-
putes the aMA accurately in tight and complex environments, and
determines a coarser approximation in areas that are wide open.

Figure 7: The approximated medial axis of a flange mount (1,684
triangles) was computed in 3.45 seconds. The approximated medial
axis is shown in gray. The surface of the flange mount is shown as
a wire frame model.

The results shown in Table 1 as well as the results shown in Ta-
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Model As Nsp  Resolution Ns Np Np T (seconds)

Box1 12 132 0.005646 134 147 7,575 1.56
0.002824 350 363 18,598 3.94

Box2 20 132 0.005646 146 169 8,300 1.84
0.002824 382 405 20,335 4.53

Flange 1,684 132 0.012 92 172 7,212 3.45
Mount 0.006 642 902 63,863 45.5
Stanford 69,451 132 0.00668 91 143 6,564 5.61
Bunny 0.0033 357 685 20,248 17.64
Horse 96,966 132 0.0028 306 400 21,738 13.3
0.006 124 223 3,960 134

Buddha 1,087,718 72 0.0031 889 1187 29,328 48.8
0.00156 3116 3627 101,918 174.4

Table 1: This table shows experimental results for a variety of models. The aMA was computed for a separation angle of % As is the number
of the triangles of the model; Nyp is the number of samples on each sphere. Resolution refers to the maximum distance between neighboring

points on the smallest sphere generated during the computation of the aMA ( % ), assuming the model is scaled to fit into a unit cube. The
variable Ny designates the number of spheres generated during free space exploration, Ny refers to the number of points used to represent
the aMA, Np indicates the number of distance computations performed during the expansion, and T represents the computation time of the

aMA.

Error criterion Ny,  Resolution T (seconds)
Relative 132 0.0033 17.64
Relative 72 0.0046 3.343
Absolute N/A 0.0089 5.156
Absolute N/A 0.0093 3.531

Table 2: Computation time for different absolute and relative er-
rors for the Stanford Bunny. During free space exploration, Nyp
samples were generated on each sphere, determining the resolu-
tion of the algorithm; the overall computation time T for the aMA
computation is given in seconds.

ble 2 illustrate how the algorithm allows to trade efficiency for ac-
curacy.

8. Conclusion

A novel approach to computing an approximated medial axis of
a solid was presented. It differs from previous approaches in the
following respects:

1. It computes an approximated medial axis using adaptive step
sizes, resulting in unprecedented computational efficiency.

2. It permits the user to make an explicit trade-off between speed of
computation and accuracy by specifying an acceptable relative
or absolute error.

3. The algorithm is output sensitive. In other words, the compu-
tational cost is not determined by the complexity of the model
(considering distance computation a constant time operation for

(© The Eurographics Association 2004.

a given model), but rather by the geometric complexity of the
solid.

4. The computational effort expended by the algorithm in a partic-
ular local region of the solid is proportional to its local geomet-
ric complexity.

The algorithm is motivated by the fact that the medial axis of a solid
DI5, 28] is the locus of points inside D, which lie at the centers of
all closed discs or balls which are maximal in D and have at least
two contact points with D. It proceeds by computing these maximal
spheres inside D and using their radii as step sizes. Experimental re-
sults demonstrate that the proposed method allows for the efficient
computation of an approximated medial axis, which (based on vi-
sual inspection) preserves the most important features of the true
medial axis, while being computationally much more efficient. The
algorithm has successfully been applied to a number of benchmark
models, consisting of up to one million triangles.
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A

Figure 9: The horse model (top, 96,966 triangles), its approxi-

Figure 8: The Stanford Bunny (top, 69,451 triangles), its approx- mated medial axis (middle, computed in 13.3 seconds) and the me-
imated medial axis (middle, computed in 17.64 seconds) and the dial axis computed by expansion of spheres with fixed radii (bottom,
medial axis computed by expansion of spheres with fixed radii (bot- computed in 221.3 seconds).

tom, computed in 888.6 seconds).

(© The Eurographics Association 2004.
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Figure 10: The Happy Buddha model (top, 1,087,718 triangles)
and its approximated medial axis (bottom, computed in 174.4 sec-
onds).

(© The Eurographics Association 2004.
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