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Abstract
Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations
on curved spaces. We present an extended version of DEC on surface meshes formed by general polygons that bypasses the
construction of any dual mesh and the need for combinatorial subdivisions. At its core, our approach introduces a polygonal
wedge product that is compatible with the discrete exterior derivative in the sense that it obeys the Leibniz rule. Based on this
wedge product, we derive a novel primal–primal Hodge star operator, which then leads to a discrete version of the contraction
operator. We show preliminary results indicating the numerical convergence of our discretization to each one of these operators.

CCS Concepts
•Computing methodologies → Mesh geometry models;

1. Introduction

The discretization of differential operators on surfaces is funda-
mental for geometry processing tasks. DEC is arguably one of the
prevalent numerical frameworks to derive such discrete differen-
tial operators. However, the vast majority of work on DEC is re-
stricted to simplicial meshes, and far less attention has been given
to meshes formed by arbitrary polygons. We propose a new dis-
cretization for several operators commonly associated to DEC that
operate directly on polygons without involving any subdivision.
Our approach offers three main practical benefits. First, by work-
ing directly with polygonal meshes, we overcome the ambiguities
of subdividing a discrete surface into a triangle mesh. Second, our
construction operates solely on primal elements, thus removing any
dependency on dual meshes. Finally, our method includes the dis-
cretization of new differential operators such as the contraction op-
erator. We examined the accuracy of our numerical scheme by a
series of convergence tests on flat and curved surface meshes.

2. Contributions

In the following sections, we discuss our main contributions. Since
we provide rather tools and not specific applications, we focus on
the main concepts and properties of our operators. Concretely, we
define a discrete wedge product on polygonal meshes and show ex-
perimental convergence of the product of two discrete forms to the
continuous wedge product of respective differential forms (Section
2.1). We then provide a primal–primal discretization of the Hodge
star operator (Section 2.2) that is compatible with our wedge prod-
uct. And using these two operators we derive a discrete inner prod-
uct and a discrete contraction operator in Section 2.3.

Figure 1: The wedge product on a quadrilateral: The product of
two 0–forms is a 0–form located on vertices (L). The product of a 0–
form with a 1–form is a 1–form located on edges (C). The product
of a 0–form with a 2–form is a 2–form located on faces (R).

2.1. The Discrete Wedge Product

Just like the wedge product of differential forms, our discrete
wedge product is a product of two discrete forms of arbitrary de-
gree k and l that returns a form of degree k+ l located on primal
(k+ l)–dimensional cells (see Figure 1). Inspired by cup products
on simplicial and cubical complexes [Arn12], we derive the fol-
lowing formulas for a discrete wedge product on general polygons
such that it satisfies the Leibniz rule with discrete exterior deriva-
tive (coboundary operator), for details see [Pta17, Section 3.2].

Definition 2.1 Let K be a surface mesh whose 2–cells (faces)
are polygons, possibly non–convex and non–planar. Let f =
(v0, . . . ,vp−1) be a p–polygonal face, e = (vi,v j) an edge, and v
a vertex of K. The polygonal wedge product of two discrete forms
α

k,βl is a (k+ l)–form α
k∧β

l defined on each (k+ l)–cell of K as:

(α0∧β
0)(v) = α(v)β(v), (α0∧β

1)(e) =
1
2
(α(vi)+α(v j))β(e),

(α0∧β
2)( f ) =

1
p

( p−1

∑
i=0

α(vi)

)
β( f ),
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(α1∧β
1)( f ) =

b p−1
2 c

∑
a=1

(
1
2
−

a
p

) p−1

∑
i=0

α(i)(β(i+a)−β(i−a)),

where α(i) := α(ei), β( j) := β(e j) and all indices are modulo p.

The polygonal wedge product is an anticommutative bilinear op-
eration, but it is not associative in general (see [Pta17, Proposition
3.2.3]). Numerical tests on several forms and surfaces suggest at
least linear convergence of our approximation to analytical solu-
tions. Figure 2 left shows experimental convergence on a torus, L2

errors were computed using inner product matrices of [AW11].

2.2. The Hodge Star Operator

We define a discrete Hodge star as a homomorphism (linear op-
erator) from the group of k–forms to (2− k)–forms, 0 ≤ k ≤ 2,
both located on primal elements. Since there is no isomorphism be-
tween the groups of k– and (2− k)–dimensional cells, our Hodge
star is not an isomorphism (invertible operator), unlike its contin-
uous counterpart and diagonal approximations. On the other hand,
as the dual forms are located on elements of our "primal" mesh, we
can compute discrete wedge products of primal and dual forms and
thus define discrete inner product and contraction operator later on.

In order to maintain the discrete Hodge star operator exact on
constant forms, we define it on 0– and 2–forms as

?0 =WF fv, ?2 =W−1
V fv>,

where WF ∈R|F|×|F|, WV ∈R|V |×|V |, fv∈R|F|×|V | are such that

WF [i, i] = | fi|, WV [i, i] = ∑
fk�vi

| fk|
pk

, fv[i, j] =

{
1
pi

if v j ≺ fi,

0 otherwise.

On 1–forms it is first defined per a p–polygonal face f as:

?1 =W1 R
>, W1[i, j] =

〈ei,e j〉
| f |

, R =

b p−1
2 c

∑
a=1

(
1
2
−

a
p

)
Ra,

Ra[k, j] =


1 if e j is the (k+a)–th halfedge of f ,
−1 if e j is the (k−a)–th halfedge of f ,
0 else.

If e is not a boundary edge, it has two adjacent faces, we com-
pute the values of a given 1–form ?β on corresponding halfedges,
sum their values with appropriate orientation sign and divide the
result by 2. E. g. in the inset, e = (v0,v1) has halfedges e0,e4,
thus ?β(e) = ?β(e0)−?β(e4)

2 , where ?β(e0) is a linear combination of
values of β on blue edges and ?β(e4) is a
linear combination of values of β on yellow
edges. Although our discrete Hodge stars
are not diagonal matrices, they are highly
sparse. Numerically, our approximation of
the Hodge star exhibit at least linear conver-
gence rate on all tested cases, an example is
shown in Figure 2 center.

2.3. The Inner Product and the Contraction Operator

Similarly to the L2 inner product on Riemannian manifolds, we
define a discrete L2–Hodge inner product of two l–forms α,β by
(α,β) := ∑ f

(
α∧?β

)
( f ). The discrete inner product thus read:

M0 = fv>WF fv, M1 | f = RW1 R
>, M2 = fvW−1

V fv>,

Figure 2: L2 errors of approximation of the wedge product (L),
Hodge star (C), and contraction (R) on a set of irregular polygonal
meshes on torus. Here α = x2+y2, β =−ydx+xdy, γ =−2xzdx−
2yzdy+2(x2 + y2−

√
x2 + y2)dz, ω = β∧γ

x2+y2 , and X = (−y,x,0).

where M1 | f is the matrix of product of two 1–forms restricted to a
face f . It can be shown that our inner product of 1–forms is iden-
tical to the one of [AW11, Lemma 3], i. e., RW1R

> = 1
| f |B f B>f ,

where B f is a matrix with edge midpoint vectors as rows.

We define a discrete contraction operator using the following
property that holds on Riemannian surfaces [Hir03, Lemma8.2.1]:

iX α = (−1)k(2−k) ? (?α∧X [), α is a k–form,X [(e) = ∫
e
〈X(x),e′(x)〉d(x).

Just like its continuous version, our iX is a linear map sending k–
forms to (k−1)–forms s. t. iX iX = 0. An example of experimental
convergence of our approximation is shown in Figure 2 right.

3. Ongoing Work

Currently, we are numerically evaluating a discrete Lie derivative
given by the Cartan’s magic formula £X α = iX d+d iX . We are also
starting to study discrete Hodge decomposition using a discrete
codifferential δ(αk) = (−1)k ?d?α

k, where ? is our discrete Hodge
star, and a discrete Laplacian given by ∆ := δd +dδ.

4. Conclusion

Geometry processing with polygonal meshes is a new developing
area, maybe one of the first steps and also the most influential ones
has been the definition of discrete Laplacians on general polygonal
meshes by [AW11]. Our objective was to continue in this venue
by presenting a novel discretization of several operators and opera-
tions that act directly on general polygonal meshes, are compatible
with each other and easy to implement. We believe that the gener-
ality of our framework will make it a useful tool in many geometry
processing tasks and will inspire further research in the area.
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