Our Method

Input
- Time-series 3D polygonal mesh sequences with different number of vertices and faces.

Output
- Best viewpoint p_{best}
- Worst viewpoint p_{worst}

Ease of Perception

Occlusion
- Less occluded objects

Spatial Feature
- Visible geometric features (e.g. wave tip, splash)

Temporal Feature
- Viewing the movement of objects from the side

Occlusion Term
\[\text{Oc}(p) = \sum_{i}^{\text{frame}} |C_i| \]

C_i: A set of visible vertices in ith frame

Spatial Feature Term
\[\text{Sf}(p) = \sum_{i}^{\text{frame}} \sum_{v_j \in C_i} \gamma(v_j) \]
\[\gamma(v_j) = \begin{cases} 1 & \text{if threshold} \leq q_1(v_j) \\ 0 & \text{else} \end{cases} \]

$q_1(v_j)$: Maximum view-dependent curvature [1]

Temporal Feature Term
\[\text{Tf}(p) = \sum_{i}^{\text{frame}} \sum_{v_j \in C_i} \tau(v_j) \]
\[\tau(v_j) = \text{proj}_V (\text{vel}_{v_j}) \]
The magnitude of projected velocity of a vertex to the screen

Viewpoint Evaluation Function
\[F(p) = \text{Oc}(p) \cdot \text{Sf}(p) \cdot \text{Tf}(p) \]

Experiment: Candidate Viewpoints
- All viewpoints are directed to the center of a sphere
- Center: the center of entire scene
- Radius: twice the length of BB of entire scene

Sample 108 viewpoints uniformly on its hemisphere

Results

Scene 1
- Best view
- Worst view

Scene 2
- Best view
- Worst view

Scene 3
- Best view
- Worst view

Scene 4
- Best view
- Worst view

References