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Figure 1: CANVAS Overview. (a) Visual Story Authoring: Authors specify key plot points in the narrative as logical interactions between
participating actors, which are represented as visual storyboards. (b) Automatic Story Completion: CANVAS automatically identifies and
resolves incomplete stories by filling in missing participants and introducing new story elements to generate a sound, consistent, and complete
narrative, while preserving the original intent of the author. (c) Instant Pre-visualization: A 3D animation of the narrative is instantaneously
generated for rapid iteration.

Abstract

Despite the maturity in solutions for animating expressive virtual characters, innovations realizing the creative intent of story
writers have yet to make the same strides. The key challenge is to provide an accessible, yet expressive interface for story
authoring that enables the rapid prototyping, iteration, and deployment of narrative concepts. We present CANVAS, a computer-
assisted visual authoring tool for synthesizing multi-character animations from sparsely-specified narrative events. In a process
akin to storyboarding, authors lay out the key plot points in a story, and our system automatically fills in the missing details
to synthesize a 3D animation that meets author constraints. CANVAS can be used by artists and directors to pre-visualize
storyboards in an iterative fashion, and casual users may provide arbitrarily sparse specifications and harness automation
to rapidly generate diverse narratives. CANVAS provides an accessible interface for rapidly authoring and pre-visualizing
complex narratives. Automation reduces the authoring effort further without undermining creative control or interfering with
the storytelling process.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

“No amount of great animation will save a bad story.”
– John Lasseter

Character animation has made great strides in recent years, pro-
viding mature solutions for animating detailed virtual characters
precisely. Somewhat surprisingly, technologies for telling stories
with these characters have not kept the same pace. Existing story-
authoring systems either burden authors with irrelevant details, or

replace creative vision with automation. Authoring stories with an-
imated characters in 3D virtual worlds is presently only feasible
for trained artists and experts using proprietary tools. The key chal-
lenge is to provide an accessible and expressive interface for nar-
ratives that abstracts out distracting details, just as a professional
screenwriter leaves the specifics of physical and emotional expres-
sion to professional actors.

We present CANVAS, a visual authoring tool that empowers
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artists, content creators, and even casual users to quickly pro-
totype and synthesize multi-character animations that foster cre-
ativity while maintaining formal verifiability. CANVAS uses story-
boarding as a natural visual metaphor to enable accessible proto-
typing and interactive exploration of new narratives. Authors using
CANVAS begin with a formal definition of “smart” semantically-
labelled virtual actors, and a library of multi-actor interactions,
or events. Events are defined as logical context-specific interac-
tions between actors, but end-users interact only with virtual sto-
ryboards that insulate them from the details of representation. With
CANVAS’s simple, intuitive graphical interface, users incrementally
build complex story arcs by selecting key plot events and assigning
actors to them. Using just this sparse input, CANVAS can instantly
synthesize a 3D animation for real-time visual feedback of the nar-
rative.

To further ease the authoring burden, CANVAS automatically
identifies and resolves incomplete stories by efficiently exploring
the space of partial narratives. This algorithm is guaranteed to be
sound and complete. Automation also preserves creative intent;
CANVAS is guaranteed to find a story that satisfies authored con-
straints, if one exists. Existing authoring systems also offer automa-
tion, but at the cost of creative control. In contrast, CANVAS uses
automation to facilitate, not replace, the authoring process. Fig. 1
provides an overview of the workflow in CANVAS.

With the following technical contributions, we overcome limita-
tions of both author-centric and automation-centric authoring tools:
a formal representation of narrative elements, a story specification
that is accessible to diverse authors, and algorithms for completing
stories. Rather than compromising between the relative benefits and
limitations of authors and automation, we use the opportunities in
each to address the limitations of the other in novel ways. With mul-
tiple possibly-contradictory goal constraints, plot points sketched
by authors pose a challenging constraint satisfaction problem for
story completion, because locally-consistent stories between suc-
cessive plot points may not satisfy the plot constraints of the entire
narrative. We formulate this problem as a search in the space of
partial stories, adding new elements only when absolutely neces-
sary. This avoids unnecessary computations and expensive back-
tracking, and the authored plot points help constrain the otherwise
combinatorial search space to provide efficient algorithms for story
completion. The resulting automation then frees authors to focus
on narrative-relevant details, without artificial technical restrictions
that preclude creative expression.

CANVAS introduces, for the first time, the means for untrained
users to create complex narrative-driven animations within min-
utes. This is made possible with two equally important contribu-
tions: (1) A visual storyboarding interface that provides the right
level of abstraction for expressing an authors narrative intent with-
out sacrificing creativity or adding overwhelming complexity, and
(2) provably sound, complete computational tools that can automat-
ically fill in partially specified stories without violating author con-
straints. Our approach does not relax guarantees by using heuris-
tics to accelerate searches. It ensures that a complete story will be
found if one exists, without violating any author constraints. These
requirements are essential for an author-centric tool.

CANVAS can be used in a variety of ways, depending on the au-

thor’s expertise and goals. Artists and directors with a clear vision
can synthesize 3D pre-visualizations of storyboards for interactive
story development. Casual users may explore and modify differ-
ent automatically synthesized narratives for rapid content creation
and dissemination. CANVAS is ideally suited for story writers to
explore narratives for episodic content (e.g., long running TV se-
ries) as well as for consumer applications such as story creation
tools in video games. In both these cases, professionally produced
assets and domain knowledge have already been created and need
only be specified once. CANVAS makes it possible for traditional
content consumers to create their own digital stories. It promises to
propel the field of digital storytelling towards developing new and
accessible metaphors for user-generated animated content.

2. Related Work

The maturity of research in the simulation and animation of vir-
tual characters has expanded the possibilities for authoring com-
plex multi-character animations [KGP02, Lee10]. These methods
represent tradeoffs between user-driven specification and automatic
behavior generation.

The work of Kwon et al. [KLLT08], and Kim et al. [KHKL09,
KSKL14] synthesizes synchronized multi-character motions and
crowd animations by editing and stitching motion capture clips.
“Motion patches” [LCL06] annotate motion semantics in en-
vironments and can be concatenated [KHHL12] or precom-
puted [SKSY08] to synthesize complex multi-character interac-
tions. Recent work [WLH∗14] provides sophisticated tools for gen-
erating and ranking complex interactions (e.g., fighting motions)
between a small number of characters from a text-based specifica-
tion of the scene. The focus of these approaches is to produce rich,
complex, and populated scenes [JPCC14] where the consistency of
the interactions between characters toward an overarching narrative
is less relevant.

In contrast, behavior-centric approaches use logical con-
structs [VCC∗07, SSH∗10] and complex models [YT07] to repre-
sent knowledge and action selection in agents. Parameterized Be-
havior Trees (PBT’s) [SGJ∗11] are hierarchical, modular descrip-
tions of coordinated activities between multiple actors. These con-
structs offer suitable abstractions to serve as the building blocks for
defining story worlds and can be harnessed by future interfaces for
story authoring.

Scripting. Scripted approaches [Loy97, Mat02] describe be-
haviors as pre-defined sequences of actions. However, small
changes in scripting systems often require extensive modifica-
tions of monolithic specifications. Systems such as Improv [PG96],
LIVE [Men01], and “Massive” use rules to define an actor’s re-
sponse to external stimuli. These systems require domain exper-
tise, making them inaccessible to end-users, and are not designed
for authoring complicated multi-actor interactions over the course
of a lengthy narrative.

Visual Authoring. Domain-specific visual languages have been
successfully used in many applications [WB97] and storyboards
are a natural metaphor for specifying narratives [KSS96]. Game-
design systems [KPK07, Ros14] facilitate the authoring of game
logic by providing visual analogies to programming constructs.
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Skorupski and Mateas [SM10] propose a storyboarding tool for
novice users to author interactive comics. LongBoard [JRMY08]
provides a hybrid sketch and scripting interface for rendering an
animated 3D scene. Physics Storyboards [HMLP13] focus on key
events to accelerate the process of tuning interactive, procedural
animations. Visual authoring tools offer accessible interfaces that
don’t require domain expertise, but the challenge is to provide an
accessible metaphor that is intuitive, yet expressive. Hence, current
visual authoring systems are limited to simple applications such as
2D comics.

Automation. Total-order planners [FN71, HNR72] are promis-
ing for automated behavior generation [FTT99,KSRF11,SGKB13,
RB13]. These approaches require the specification of domain
knowledge, and sacrifice some authoring precision, but they per-
mit the automatic generation of a strict sequence of actions to
satisfy a desired narrative outcome. Planning in the action space
of all participating actors scales combinatorially, and these ap-
proaches are restricted to simplified problem domains [JRMY08]
with small numbers of agents. Partial-order planners [Sac75] relax
the strict ordering constraints during planning to potentially han-
dle more complex domains, and have been applied to accommo-
date player agency in interactive narratives [KFZ∗15,CCM02]. The
work in [PTPC11, HPS04] introduces the concept of “landmarks”
to allow authors to specify additional narrative constraints for au-
tomated narrative synthesis.

Comparison to Prior Work. Existing authoring sys-
tems [KSRF11, RB13] offer automation at the cost of creative
control, and allow users to specify only the narrative outcome,
with little or no control over the intermediate plot points. Our
motivations are different; to use automation to facilitate, not re-
place, human intervention in the story authoring process. CANVAS
users author plot points that must be enforced in the story. This
maps to a constraint satisfaction problem with multiple, possibly
contradicting goal constraints, where locally-consistent stories
between successive plot points may not satisfy the plot constraints
of the entire narrative, and cannot be solved by previous methods.

The work in [KFZ∗15] uses a partial-order planner to detect
and resolve local inconsistencies in existing story specifications.
However, this approach cannot resolve global inconsistencies, such
as the simple example highlighted in Figure 4. Our proposed ap-
proach for automatic story completion addresses these limitations
by searching in the space of partial narratives for the whole story
arc, not just between two beats. The formulation of generating a
complete and consistent story arc from an incomplete story speci-
fication, cast as a partial-order planning problem, is a novel contri-
bution of this work. Our work demonstrates the practical utility of
POP-like solvers for solving heavily constrained problems in un-
structured, high-dimensional search spaces, while preserving theo-
retical guarantees. No other approach can provide these theoretical
guarantees while maintaining interactivity.

3. Domain Knowledge

An underlying representation of the story world, referred to as do-
main knowledge, is a prerequisite to computer-assisted authoring.
This includes annotated semantics that characterize the different
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Figure 2: CANVAS Framework Overview.

ways in which objects and characters interact (affordances), and
how these affordances are utilized to create interactions of narrative
significance (events), the atoms of a story. CANVAS is no differ-
ent from other intelligent systems [RB13] in this regard. However,
the cost of specifying domain knowledge is greatly mitigated by
the ability to author a variety of compelling narratives in a fashion
that is accessible to story writers, artists, and casual users, enabling
authors to focus only on key plot points while relying on automa-
tion to facilitate the creative process. Additionally, domain knowl-
edge can be generalized and transferred across story worlds. We
describe our representation of domain knowledge which balances
ease of specification and efficiency of automation, by mitigating
the combinatorial complexity of authoring individual characters in
complex multi-character interactions. The one-time cost of story
world building, is minimized using graphical interfaces [PKS∗15].

Smart Objects and Actors. The virtual worldW consists of smart
objects [KT99] with embedded information about how an actor can
use the object. We define a smart object w ∈W as w = 〈F,s〉 with
a set of advertised affordances F and a state s. Smart actors inherit
all the properties of smart objects and can invoke affordances on
other smart objects or actors in the world.

Affordances. An affordance f (wo,wu) ∈ F is an advertised capa-
bility offered by a smart object that manipulates the states of the
owner of an affordance wo and another smart object user (usually a
smart actor) wu. Reflexive affordances f (wo,wo) can be invoked by
the smart object owner. For example, a chair can advertise a “Sit”
affordance that controls an actor to sit on the chair.

State. The state s = 〈θ,R〉 of a smart object w comprises a set of
attribute mappings θ, and a collection of pairwise relationships R
with all other smart objects in W . An attribute θ(i, j) is a bit that
denotes the value of the jth attribute for wi. Attributes are used
to identify immutable properties of a smart object such as its role
(e.g., a chair or an actor) which never changes, or dynamic proper-
ties (e.g., IsLocked, IsIncapacitated) which may change
during the story. A specific relationship Ra(·, ·) is a sparse matrix
of |W|× |W|, where Ra(i, j) is a bit that denotes the current value
of the ath relationship between wi and w j. For example, an Is-
FriendOf relationship indicates that wi is a friend of w j. Note
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that relationships may not be symmetric, ∃ (i, j) ∈ |W| × |W| :
Ra(i, j) 6= Ra( j, i).

Events. Events are pre-defined context-specific interactions be-
tween any number of participating smart objects whose outcome is
dictated by the current state of its participants. Events serve as the
building blocks for authoring complex narratives. An event is for-
mally defined as e = 〈t,r,Φ,Ω〉 where t is a Parameterized Behav-
ior Tree (PBT) [SGJ∗11] definition, and is an effective model for
representing coordinated behaviors between multiple actors. t takes
any number of participating smart objects as parameters where
r = {ri} define the desired roles for each participant. ri is a logi-
cal formula specifying the desired value of the immutable attributes
θ(·, j) for w j to be considered as a valid candidate for that partic-
ular role in the event. A precondition Φ : sw ← {TRUE,FALSE}
is a logical expression on the compound state sw of a particular
set of smart objects w : {w1,w2, . . .w|r|} that checks the validity
of the states of each smart object. Φ is represented as a conjunc-
tion of clauses φ ∈ Φ where each clause φ is a literal that spec-
ifies the desired attributes of smart objects, relationships, as well
as rules between pairs of participants. A precondition is fulfilled
by w ⊆W if Φe(w) = TRUE. The event postcondition Ω : s → s ′

transforms the current state of all event participants s to s ′ by exe-
cuting the effects of the event. When an event fails, s ′ = s . An event
instance I = 〈e,w〉 is an event e populated with an ordered list of
smart object participants w. Φe(w) = TRUE. The event postcondi-
tion Ω : s → s ′ transforms the current state of all event participants
s to s ′ by executing the effects of the event. When an event fails,
s ′ = s . An event instance I = 〈e,w〉 is an event e populated with an
ordered list of smart object participants w.

Ambient Activity. Individual smart objects can be grouped to-
gether to create smart groups: wg = 〈F,s,w,Eg〉 which contains
a mutable set of smart objects w ⊂W (wg 6∈w). To generate ambi-
ent activity that does not conflict with the overall narrative, a smart
group has an ambient event scheduler that schedules events from a
lexicon Eg for the members of w while satisfying a user-specified
event distribution. We enforce that Ωe(s) = s , ∀ e ∈ Eg, implying
that ambient activity will not change the narrative state of its par-
ticipating actors. This allows for the seamless transition of smart
actors from members of an anonymous crowd to protagonists in a
story.

4. Graphical Authoring of Story Arcs

To make authoring narratives accessible to everyone, we abstract
away the domain knowledge for end users, who experience the au-
thoring of complex narratives as an ordering of key event instances
between participating smart objects using a graphical storyboard-
ing interface.

Story Beats and Story Arcs. A story beat B = {I1, . . . , In} is a col-
lection of event instances occurring simultaneously at a particular
point in the story. The preconditions of a story beat B = {I1 . . . In}
are a conjunction of the preconditions of all its event instances:
ΦB = Φe1 ∧Φe2,∧ . . . ∧Φen . Since all event instances within a
beat execute in parallel, the same smart object is not allowed to
participate in multiple instances of the same beat. A Story Arc
α= (B0,B1, . . . ,Bm) is an ordered sequence of beats representing a
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Figure 3: Representation of a story arc as a story sequence diagram.

story, where events can occur both sequentially and simultaneously
throughout that story’s execution.

Story Sequence Diagrams. Story Arcs are authored as Story Se-
quence Diagrams, which are exposed to users in the form of a
graphical authoring interface. A Story Sequence Diagram is a di-
rected acyclic graph Q = 〈V,E〉. The vertices V = VS ∪ VI consist
of smart objects VS ⊆ W , and event instances VI ⊆ I. The edges
E = Eπ ∪ Eσ ∪ Eϕ indicate three relationship types. Participation
edges Eπ ⊆VS×VI denote a “participates in” relationship between
a smart object and an event instance (to populate a role). Sequence
edges Eσ ⊆ VI ×VI denote a “comes after” relationship between
two event instances and is used to separate events in different story
beats. Termination edges Eϕ ⊆ VI ×VI denote a termination de-
pendency, where an edge between (Ii, I j) indicates that I j is termi-
nated as soon as Ii finishes executing. Note that Ii and I j must be
in the same story beat. Sequence edges can be manually added by
the author to define separate story beats, or are automatically in-
serted when a smart object participating in the instance is already
involved in another event at the same time. Each horizontal row of
event instances delineates a beat, and the ordered sequence of beats
represents the resulting story arc. Fig. 3 illustrates a generic story
arc represented as a story sequence diagram.

4.1. Graphical Authoring Interface

Starting with the default scene layout, the author introduces smart
actors and objects into the scene to populate the worldW , and the
event lexicon E . Authoring a story arc entails the following sim-
ple steps. The author drags and drops event instances I, visualized
as parameterized storyboard elements, into the story arc canvas.
Participation edges between a smart object and an instance can be
added by dragging a particular smart object portrait into the cor-
responding event parameter slot. Smart objects can be filtered by
roles, and events by names to ease the selection process. When
placing a smart object into an event parameter slot, CANVAS au-
tomatically checks for consistency of parameter specification and
invalidates parameters which don’t satisfy the role and precondi-
tion constraints of the event. Sequence edges denoting an order-
ing constraint are added by drawing a line between two instances,
which places the second instance on the next story beat. New beats
are created by simply dragging an event instance onto a new line
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in the story canvas. There is a separate panel for authoring ambi-
ent activity where authors select a collection of smart objects and
specify a distribution of events which have no postconditions and
are guaranteed to not conflict with the main story arc.

Using this simple and intuitive interface, CANVAS users can au-
thor compelling narratives by specifying the events that take place
between the participating actors in the story. However, the user
must author a complete story by specifying all the necessary events
and its participants. In order to enable authors to focus only on
the key events between the protagonists of the story, we introduce
automation tools in Section 5 that complete partial story specifica-
tions. For a partially-authored story, pressing the “Complete” but-
ton automatically generates a complete story arc by filling in miss-
ing event parameters, inserting new events and story beats within
the constraints of the original story definition. Pressing “Play” in-
stantly creates a 3D pre-visualization of the scene with the ani-
mated characters acting out the story. The scene is animated and
visualized using the ADAPT animation platform [SKMB14] in the
Unity 3D engine. If the author is not satisfied with his creation, he
or she can easily edit the original story definition and iteratively
refine it. The instant pre-visualization and short validation and gen-
eration times are invaluable for rapid iteration. The supplementary
video demonstrates the graphical authoring environment.

5. Computer-Assisted Story Authoring

5.1. Problem Formulation

An author may specify a partial story αp = (B0,B1, . . . ,Bm) us-
ing the CANVAS interface where event instances in the story beats
B = {I1 . . . In} may contain open preconditions and unspecified pa-
rameters. The goal of automation is to take as input a partial story
specification αp and automatically generate a complete and con-
sistent story αc, subject to the following constraints: (1) Author
Constraints. The original intent of the author, as specified in αp
must be preserved in αc. In particular, all event instances in αp
must be present in αc and the relative ordering of these instances
must be preserved. The event participants that were specified in
αp must persist for the corresponding events in αc. Also, the last
story beat in both αp and αc must be identical. (2) Story Com-
pleteness. The event participants for all event instances in αc must
be completely specified and satisfy the role constraint. (3) Story
Consistency. The preconditions of all event instances must be sat-
isfied, and none of the ordering constraints between pairs of event
instances in αc may contradict each other. The equation below for-
malizes the resolution of a partial arc αp into a complete arc αc,
subject to the above constraints:

Resolve : αp→ αc

s.t. Bαp

|αp| = Bαc
|αc|,

∃ I ∈ αc, ∀ I ∈ αp,

(Ii ≺ I j) ∈ αc s.t. (Ii ≺ I j) ∈ αp ∀ (Ii, I j) ∈ αp,

∃ w j ∈ w s.t. ri(w j) = TRUE ∀ ri ∈ re,

Φe(w) = TRUE ∀ I = 〈e,w〉 ∈ αc,

Consistent(αc) = TRUE

(1)

Formulated as a discrete search in the space of all possible event

instances, our problem domain has a very high branching factor that
is combinatorial in the cardinality of the event lexicon |E|, and the
number of possible parameter bindings per event instance |P|. The
problem definition does not contain an explicit goal state formula-
tion, where goals are implicitly specified as desired event precon-
ditions that must be satisfied. Also, a partial story definition may
contain many inconsistent or incomplete event instances with open
preconditions that have conflicting solutions.

One approach is to identify all incomplete event instances in
a story definition and generate solutions for each independently.
However, this approach does not ensure completeness because
solving one set of preconditions may invalidate existing solutions.
Also, there may be cases where a coordinated resolution strategy
is needed for multiple event instances across story beats, where the
solution for one event instance may invalidate the possibility of any
resolution for another instance. This problem of multiple contra-
dicting goals is well documented in classical artificial intelligence
and is a variation of the Sussman Anomaly [Sus75].

Consider a simple scenario with a guard and robber. The rob-
ber has a weapon for coercion or incapacitation and the guard has
the key to the room with a button to open the vault. We author
an incomplete story where B1: the robber will unlock the door to
the room (which requires the key) and B2: coerce the guard into
pressing the vault button. By resolving the inconsistencies inde-
pendently, we get a solution to B1 where the robber incapacitates
the guard in order to take his key, thus allowing him to open the
door. However, this prevents any possible solution for B2 since the
guard is incapacitated and can no longer be coerced into pressing
the button.

Partial Order Planning. An alternative approach is to search
through the space of partial plans following the Principle of Least
Commitment [Sac75], where event instances and ordering con-
straints are added to the plan only when strictly needed. This class
of solutions is especially efficient for problems with high branch-
ing factor, no explicit goal formulation, multiple contradicting goal
constraints, and many possible solutions that differ only in their
ordering of execution. Partial-order planners avoid unnecessary
choices early on in the search that may invalidate the solution and
require expensive backtracking. In comparison, total-order plan-
ners [FN71, HNR72] make strict commitments about the plan or-
dering at each step in the search, and require expensive backtrack-
ing due to wasted computations. For more details on a comparative
analysis, please refer to Minton et al. [MDBP92]. Section 5.2 in-
troduces relevant terminology and Section 5.3 describes a provably
sound, complete algorithm for automatically filling in partial story
specifications using a plan-space approach.

5.2. Terminology

Parameter Bindings. The set of parameter bindings P (I) for an
incomplete event instance I = 〈e,w〉 where w is a partially-filled
ordered set of n smart objects: {wi | wi ∈ W ∪{∅}}, comprises
all possible unique permutations of smart object participants inW
that satisfy event roles and preconditions.

Ordering Constraints. An ordering constraint I1 ≺ I2 between
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Figure 4: Execution of Algorithm 1 to complete a partial story specification αp shown in (f). (a) Initial Partial plan πp. Solid arrows are
ordering constraints between event instances and dotted arrows are causal links. Open preconditions are highlighted in red. (b) Planning step
1. (c) Planning step 2. Newly introduced event instance threatens causal link, highlighted in red. (d) Both options to handle threat produce
inconsistent orderings. (e) Complete partial plan πc that satisfies all preconditions and produces a consistent ordering of event instances. (g)
Linearization of πc to produce a complete story arc αc. UD: UnlockDoor, CB: CoerceIntoPressButton, TK: TakeKeyFromIncapacitated, IN:
Incapacitate, CK: CoerceIntoGiveKey, R: Robber, G: Guard, D: Door.

two event instances implies that I2 must execute some time af-
ter I1 in the story α, though not necessarily immediately after.
Formally, I1 ≺ I2 ⇒ I1 ∈ Bi, I2 ∈ B j, ∃ Bi,B j ∈ α s.t. i < j. Or-
dering constraints are transitive in the set of event instances I:
I1 ≺ I2, I2 ≺ I3⇒ I1 ≺ I3 ∀ (I1, I2, I3) ∈ I. Transitive relationships
are henceforth represented as I1 ≺ I2 ≺ I3. The notation I1 ∼ I2
denotes when two events are in the same beat and said to execute
simultaneously.

Causal Links. A causal link 〈I1,φ, I2〉 : I1
φ
−→ I2 between two

event instances I1, I2 indicates that executing the postconditions of
I1 satisfies a clause φ in the precondition of I2. In other words,
φ ∈ΩI1 ∧φ ∈ΦI2 .

Threats. Causal links are used to detect and resolve threats. Threats
are newly-introduced event instances which interfere with current
events in the story by invalidating their preconditions. An event in-

stance It threatens a causal link I1
φ
−→ I2 when the following two

criteria are met: (1) I1 ≺ It ≺ I2. (2) ¬φ ∈ ΩIt . Threats can be re-
solved in two ways: (1) Demotion. Order It before the causal link
by introducing an ordering constraint: It ≺ I1. (2) Promotion. Order
It after the causal link by introducing an ordering constraint: I2≺ It .
All threats must be resolved in order to generate a consistent story
specification.

Partial Order Plan. A partial order plan π is a set of event in-
stances together with a partial ordering between them. Formally,
a partial order plan π = 〈I,O,L〉 where I is the set of event in-
stances in π,O is a set of ordering constraints over I, and L is a set
of causal links. π is consistent if I andO are consistent. I is consis-
tent if the parameter bindings w of all instances I = 〈e,w〉 ∈ I are
completely filled, satisfy the event roles, don’t contain duplicates,
and don’t violate the structure of the story arc. O is consistent if

none of the ordering constraints contradict each other, and if there
exists at least one total ordering of I that satisfies O. π is complete
if every clause φ in the precondition of every event instance in I is
satisfied; there exists an effect of an instance I1 that comes before
I2 and satisfies φ, and no instance It comes between I1 and I2 that
invalidates φ.

Plan Space. The plan space is an implicit directed graph whose
nodes are partial plans and whose edges represent a transformation
from one plan to another, obtained by adding new event instances
and ordering constraints.

Linearization. The process of generating a total ordering of event
instances from a partial order plan π, used to generate a complete,
consistent story arc αc is known as linearization.

5.3. Algorithm

Given an incomplete, inconsistent partial ordering of event in-
stances πp, of a partial story arc αp, Plan (.) progressively com-
pletes partial instance specifications, and adds event instances to
satisfy open preconditions. Causal links which are threatened by
new event instances are protected by introducing additional order-
ing constraints. The resulting plan πc = 〈Ic,Oc,Lc〉 is linearized to
produce a complete, consistent story arc αc by generating a total or-
dering of the event instances Ic that satisfy the ordering constraints
in Oc. Alg. 1 describes a provably sound, complete algorithm for
automatically completing partial story specifications while preserv-
ing author constraints. We provide an overview below.

Parameter Bindings. Consider an incomplete event instance I =
〈e,w〉 ∈ α where w is a partially-filled ordered set of n smart ob-
ject elements. For every unspecified parameter {w j ∈ w|w j = ∅},
we consider the domain of possible values xi = {x | x ∈W,ri(x) =

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

204



M. Kapadia, S. Frey, A. Shoulson, R. W. Sumner, M. Gross / CANVAS: Computer-Assisted Narrative Animation Synthesis

TRUE} such that the corresponding role r j ∈ re is satisfied, filter-
ing smart objects that were already selected as participants by the
author (Lines 17-19). Every permutation of possible participants
for the unspecified parameters is used to create the power set of all
possible parameter bindings P(I), while ensuring that each param-
eter combination has no duplicates (Line 21). P is further filtered
to remove all parameter combinations that don’t satisfy the event
preconditions Φe, and which have duplicate parameters with other
event instances that are in the same beat to preserve the beat struc-
ture (Lines 22-23).

Initialization. An incomplete, inconsistent story arc αp is first
converted into a partial order plan πp by computing the set of event
instances I, ordering constraints O, and causal links L that are
present in αp. A dummy node I0 corresponding to the starting state
of all smart objects in the scene s0 is created and added to I. All
instances in I are ordered after I0. The set of clauses φI in the pre-
conditions of instances which are not yet satisfied are stored in A
(Lines 2-8). Additionally, the set of possible parameter bindings
P(I) is also precomputed for all inconsistent event instances that
have partially-specified event parameters. These computations are
all incrementally performed while the user is authoring the story, to
minimize the computational overhead of automation.

Termination Condition. The plan πp is consistent and complete
if the following conditions are met: (a) All open preconditions are
resolved, (b) both I andO are consistent, and (c) no event instance
I ∈ I threatens any of the causal links in L (Line 32).

Open Precondition Selection. An open precondition clause
〈Ic,φc〉 is selected and removed from A for resolution. The order
in which the precondition clauses in A are resolved have a major
impact on the search, and can greatly reduce the the number of
plan steps required to reach a solution. We use the following lexi-
cographic ordering forA= {〈I,φ〉} : 〈k1,k2〉 ≤ 〈k′1,k′2〉 ⇐⇒ k1 <
k′1 ∨ (k1 = k′1 ∧ k2 ≤ k′2), where k1 is a boolean indicating if φ can
be resolved by an existing event instance in I, and k2 is the number
of ordering constraints in O that involve I (Lines 26-30). This pri-
oritizes the selection of open preconditions which can be resolved
without searching, and event instances which are most constrained
and have the smallest number of candidate solutions to minimize
backtracking. Note that the order in which preconditions are re-
solved does not impact the soundness and completeness guarantees
of the approach.

Parameter Binding Selection. If Ic contains partially-specified
parameters, the clause φc cannot be determined. Hence, we non-
deterministically select a complete and consistent parameter bind-
ing wc from P(Ic) to generate a plausible set of smart object partic-
ipants for the missing parameter slots. If no valid parameter combi-
nation is possible, failure is returned from that recursion level back
to a previous choice of event selection, parameter binding, or con-
straint ordering (Lines 34-36).

Event Instance Selection. An event instance Is is selected
that satisfies φc, either directly from I (Line 37), or by non-
deterministically picking a new instance and adding it to I
(Line 39). A new causal link Is

φc−→ Ic is established to indicate that
Is satisfies φc for Ic (Line 44). A new ordering constraint Is ≺ Ic
is added to ensure that Ic executes after Is (Line 45). If Is is newly

instantiated: (a) Additional constraints are introduced to ensure Is
is ordered after I0, and before all instances in the last story beat
Iend (Line 42). (b) A is updated to include all precondition clauses
φs ∈ Φs that are not satisfied (Line 43). If no event instance exists
that satisfies the precondition clause, we recursively roll back to the
previous choice point (Line 36).

Causal Link Protection. For every causal link I1
φc−→ I2 ∈L that is

threatened by Is, a new consistent ordering is established to guaran-
tee that Is does not interfere with the causal link, either by promot-
ing or demoting Is. If neither ordering is consistent, we recursively
roll back to a previous choice point (Lines 46-52).

Recursive Invocation. This process is recursively repeated until
the termination condition is met, or no solution is found (Line 54).
There are three non-deterministic choice points in our algorithm:
(a) selection of parameter binding, (b) event instance selection, and
(c) promotion or demotion of ordering constraints for threat resolu-
tion. Recursive back-tracking for these choice points is performed
by first checking both ways to resolve a threat, choosing another
valid selection of event parameters, then backtracking to another
candidate event instance.

Linearization. A complete and consistent partial ordering of event
instances πc is totally ordered to generate the resulting story arc αc.
The last beat of the original story definition αp is added to αc, since
the story ending is enforced not to change, and the corresponding
event instances are removed from I. For every remaining event in-
stance I, the latest beat B in αc is found such that I is constrained
to be ordered before an instance in B, and I is added to the previous
beat. If it is the starting beat in the arc, a new beat is constructed
with I and added to the beginning of αc (Lines 55-67).

Let us revisit the example of the robber and guard, discussed
earlier. Fig. 4(a) illustrates the initial partial plan πp for the in-
complete arc (f). The start node S is a dummy node which indi-
cates the starting state of all smart objects. It is ordered before all
other event instances. The door D is initially locked, and the guard
G has the key. Solid arrows indicate ordering constraints between
event instances, and dotted arrows are causal links. For example,
the causal link 〈UD(R,D),¬Locked(D),CB(R,G)〉 indicates that
the door D must first be unlocked before the robber R can coerce
the guard G into pressing the button. A causal link between two
event instances implies an ordering constraint, which is not shown
here for ease of explanation. The set of open preconditions,A con-
tains only one element 〈UD(R,D),HasKey(R)〉 which is selected
for resolution. A candidate event TK(R,G) is introduced into πp
where the robber takes the key from the guard. This introduces an-
other open clause Incapacitated(G) intoA, which is resolved
by introducing an instance IN(R,G) where the robber incapacitates
the guard before taking his key (Fig. 4(c)). This introduces a threat:
IN(R,G) conflicts with the causal link, as indicated by the red ar-
row in Fig. 4(d). Both options for causal link protection (promotion
and demotion of IN(R,G)) produce inconsistent orderings, and no
possible solution can be found. The planner backtracks to the pre-
vious choice point and chooses another event instance CK(R,G)
where the robber first coerces the guard into giving the key, thus
producing a complete plan πc. The linearization of αc produces a
complete, consistent story arc αc (Fig. 4(g)).
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The constraint-satisfaction solver (Alg. 1) efficiently searches
through the space of partial story arcs by building on top of clas-
sical partial-order principles. While staying within the conceptual
framework of POP, each step is uniquely tailored to our particu-
lar problem domain. To handle the combinatorial complexity of
searching through the space of all permutations of event partici-
pants for all possible sequences of events, our solver has 3 non-
deterministic choice points (parameter binding selection, event in-
stance selection, threat resolution) in comparison to 2 choice points
in the classical POP solver. The lexicographic ordering used to pri-
oritize constraint resolution is unique to our problem domain. The
benefits of such an approach are crucial for providing a seamless
authoring experience where the approach will always complete the
story, if a possible solution exists, and will never violate any of the
authors inputs.

6. Application

Given a story world which includes a library of smart objects and
actors, and events which encode interactions between them, the end
user authors digital stories by specifying the scene layout, and the
narrative that ensues in it. The starting configuration of the story
can be easily edited by simply dragging and dropping smart objects
and actors in the scene, and adjusting the starting state of the char-
acters. The scene configuration is completely independent of the
authored domain knowledge. The starting state of the story world
is automatically registered by CANVAS and used to filter the valid
story participants and events that are possible.

The story authoring process involves the selection and ordering
of events that take place between the characters and objects that are
present in the scene, using the CANVAS storyboard interface. We
apply CANVAS to author narratives in two scenarios: a bank and
a marketplace. The domain knowledge (environment, actors, and
events) for a bank robbery is briefly summarized in Section 6.1,
and Section 6.2 describes some authored narratives. Please refer to
the supplementary video for additional details.

6.1. Domain Knowledge for Bank Scenario

Smart Objects and Actors. The bank story world includes a va-
riety of smart actors including robbers, guards, customers, bank
managers and tellers. Additionally, there are a variety of smart ob-
jects for the actors to interact with, including drink dispensers, trash
cans, bank documents, and weapons for firing warning shots and in-
capacitating other actors. Note that all actors have an identical set
of affordances (e.g. unlock doors, use a baton to incapacitate some-
one), and specific roles such as guards and robbers are defined by
simply modifying their visual appearance, and their starting state.
For example, a guard may be equipped with a baton, and keycards,
thus giving him access to locked portions of the bank. The domain
knowledge for the bank scenario took 6 person-hours to author,
which is a reasonable overhead considering the ease with which
complex stories can be authored using different combinations of
these elements.

Story Events. Table 1 outlines the definition of some representa-
tive events in our event lexicon. These include different kinds of
conversations, characters cooperating to distract and incapacitate

Algorithm 1: Automatic resolution of a partial story specifica-
tion αp to generate a complete and consistent story αc.

1 Resolve (αp , s0, E)
2 I0 ← 〈e = 〈Φ = ∅,Ω = s0〉,w =W〉
3 Iend ← {I| ∀ I ∈ B|αp|}
4 I ← I0 ∪{I| ∀ I ∈ αp}
5 O← {(I1 ≺ I2)|I1 ∈ Bi , I2 ∈ B j , ∃ Bi ,B j ∈ αp, i < j}
6 O←O∪{(I0 ≺ I)| ∀ I ∈ I}
7 L← {〈I1 ,φ, I2〉| ∃I1 , I2 ∈ αp ,φ ∈ ΩI1 ,ΦI2}
8 A← {〈I,φI〉| ∀ I ∈ αp , ∃φI ∈ ΦI ,φI = FALSE}
9 foreach I ∈ I | Consistent(I) = FALSE do

10 P(I)← GenerateBindings(I,αp)
11 πc ← Plan(πp = 〈I,O,L〉,A,E)
12 αc ← Linearize(πc)
13 return αc
14
15 GenerateBindings(I = 〈e,w〉,α)
16 P ← {〈wi|wi ∈ w,wi 6= ∅〉}
17 foreach wi ∈ w|wi = ∅ do
18 xi ← {x|x ∈W , ri(e) = TRUE}
19 xi ← xi−{w j| ∀ w j ∈ w|i 6= j}
20 foreach x j ∈ xi do
21 P ←P∪{yi ← x j| ∀ y ∈ P , yk 6= x j ∀k ∈ (1, |y|), k 6= j}
22 P ←P−{y|Φe(y) = FALSE ∃ y ∈ P}
23 P ←P−{y|y⊆ ws s.t I ∼ Is ∃ y ∈ P ∃ Is ∈ α}
24 returnP
25
26 key (〈I,φ〉)
27 k1 ← φ ∈ ΩIs | ∃ Is ∈ I ? 0 : 1
28 OI ← {(Ia , Ib)| ∃ (Ia , Ib) ∈ O, Ia = I∨ Ib = I}
29 return 〈k1 , |OI |〉
30
31 Plan (πp = 〈I,O,L〉,A,E)
32 ifA = ∅ ∧Consistent(O)∧Consistent(I)∧ (∀ 〈I1 ,φ, I2〉 ∈

L 6 ∃ It ∈ I|I1 ≺ It ≺ I2 ∧¬φ ∈ ΩIt ) then return πp
33 〈Ic = 〈ec ,wc〉,φc〉 ← argmax

key(a)
(A)

34 if w = ∅| ∃w ∈ wc then
35 wc ← pop(P(Ic))
36 if wc = ∅ then return fail
37 Is ← I| ∃ I ∈ I∧ φc ∈ ΩI
38 if Is = ∅ then
39 Is ← 〈e,w〉|e ∈ E,w ∈ P(〈e,{wi = ∅| ∀i ∈ (1, |w|)})∧ φc ∈ ΩI
40 if Is = ∅ then return fail
41 I ← I∪ Is
42 O←O∪ (I0 ≺ Is)∪{(Is ≺ I)| ∀ I ∈ Iend}
43 A←A∪〈Is,φs〉 ∃ φs ∈ ΦIs ,φs = FALSE

44 L← L∪〈Is ,φc, Ic〉
45 O←O∪ (Is ≺ Ic)
46 foreach 〈I1,φc , I2〉 ∈ L do
47 if (I1 ≺ Is ≺ I2)∧¬φc ∈ ΩIs then
48 if Consistent (O∪ (I2 ≺ Is)) = TRUE then
49 O←O∪ (I2 ≺ Is)
50 else if Consistent (O∪ (Is ≺ I1)) = TRUE then
51 O←O∪ (Is ≺ I1)
52 else return fail
53 return Plan (πp = 〈I,O,L〉,A,E)
54
55 Linearize (πc = 〈I,O,L〉,αp)
56 αc ← (B|αp|)
57 I ← I−{I| ∀ I ∈ B|αp|}
58 O← T(O)
59 foreach I ∈ I do
60 foreach i ∈ (0, |αc|) do
61 if (I ≺ Ic) ∃ Ic ∈ Bi then
62 if i = 0 then
63 B← {I}
64 αc ← B∪αc
65 else
66 Bi ← Bi ∪ I
67 return αc
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CoerceIntoUnlockDoor(Actor a1 , Actor a2 , Door d). Actor a1 coerces a2 into opening
the door, d. In order for this event to be successful, a1 must have a weapon, a2 must have
the keycard to open d, and must be able to access d.

IncapacitateStealthily(Actor a1 , Actor a2). Actor a1 sneaks up on a2 and incapacitates
him using his weapon. Actor a1 must have a weapon and should be able to reach a2 without
being seen by him.

WarningShot(Actor a, Crowd: c). Actor a fires his weapon to warn the crowd c. The
event precondition is that a must have a weapon.

TakeWeaponFromIncapacitated(Actor a1 , Actor a2). Actor a1 takes the weapon of a2
who has been previously incapacitated. Actor a2 must have a weapon and a1 must be able
to reach a2.

DistractAndIncapacitate(Actor a1 , Actor a2 , Actor a3). Actor a1 distracts a2 while a3
sneaks up from behind to incapacitate a2 using his weapon. For example, two robbers
cooperate to distract and incapacitate a guard.

PressButton(Actor a, Button b). Actor a presses a button b which may have some effect
elsewhere in the scene (e.g., unlocking the vault door). Actor a must have access to b in
order to execute this event.

LockDoor(Actor a, Door d). Actor a locks the door d. In order to do this, he needs to have
the keycard and should be able to access d. This event can be used to lock other characters
in a room.

Flee(Crowd c). The members of c find the nearest exit and leave the bank. This event can
be used to trigger the response of the crowd to the arrival of the robbers.

Table 1: Descriptions of some events for the bank robbery scenario.

other characters, coercion to give up items and to surrender, crowds
of characters fleeing etc. The event lexicon is modular and can be
easily extended or modified by a domain expert, or reused across
different story domains. We used a lexicon of 54 events for the
narratives described in Section 6.2. This domain information (the
event definitions and the state attributes and affordances for each
smart object) was authored by two project volunteers. It took 6 per-
son hours to author. The domain information supporting CANVAS
is very easy to edit and iterate, whether by modifying existing def-
initions or by adding new attributes, affordances, and events.

6.2. Authoring Bank Robberies

Scene Specification. Given the domain knowledge, end users can
easily author complex scenes using a combination of these smart
objects. We author a default scene which contains 65 smart objects.
These include 15 customers, 3 robbers, 2 tellers, a bank manager,
and 3 guards. The vault has a locked door which can be opened by
pressing the two buttons located in the manager’s office and teller
room. Guards are equipped with keycards to the locked doors in
the scene, and may have weapons. Bank tellers serve the customers
while the manager oversees bank operations. The customers can
interact with the manager, tellers, and each other, while wander-
ing the bank, purchasing and consuming beverages from the drink
dispenser, recycling used cans, and filling in forms. Note that, de-
pending on the author’s intent, any character in the scene can be
promoted to play more significant roles in the narrative. The stories
described below used variations of this default scene.

Story Authoring. CANVAS empowers authors to create complex
narratives with minimal effort. Within minutes, authors can pre-
visualize their stories and iterate. Table 2 provides the complete
specification of a few stories, where the highlighted parameters and
events were automatically generated. We refer readers to the sup-
plementary videos for how the stories were authored, and for the
resulting animations.

The first narrative (Table 2a) is an elaborate heist where three

(a)

B1
IncapacitateStealthily(r1, g1);
IncapacitateStealthily(r2, g2)

B2
DistractAndIncapacitate(r1, r3, g3);
WarningShot(r2, cr)

B3
Flee(cr);
TakeKeyFromIncapacitated(g3, r1)

B4
UnlockDoor(r1, dt);
Converse(r2, r3)

B5
PressButton(r1, bt);
Converse(r2, r3)

B6 IncapacitateStealthily(r3, r1)

B7

CoerceIntoUnlockDoor(r2, m, dm);
PressButton(r3, bm);
Escape(t1) Escape(t1)

B8 Escape(m); OpenDoor(r3, dv)
B9 Argue(r2, r3)
B10 IncapacitateStealthily(r2, r3)
B11 TakeMoney(r2)
B12 Escape(r2)

(b)

B1

IncapacitateStealthily(r1, g1);
IncapacitateStealthily(r2, g2);
IncapacitateStealthily(r3, g3)

B2 WarningShot(r3, cr)

B3

CoerceIntoPressButton(r1, t1, bt);
Flee(cr);
Converse(r2, g3)

B4 CoerceIntoUnlockDoor(r1, m, dm);
B5 PressButton(r2, bm)

B6
UnlockDoor(r2, dv); Flee(t1); Flee(t2);
IncapacitateStealthily(r1, m);

B7
TakeMoney(r1); TakeMoney(r2);
TakeMoney(r3)

B8
Escape(r1); Escape(r2);
Escape(r3)

(c)

B1 CoerceIntoGiveKey(r1 , g1)
B2 UnlockDoor(r1 , dt)
B3 CoerceIntoMove(r1 , g1 , ft)
B4 CoerceIntoPressButton(r1 , r1 , bt)
B5 LockDoor(r1 , dt)
B6 UnlockDoor(r1 , dm)
B7 PressButton(r1 , bm)
B8 OpenVault(r1)
B9 TakeMoney(r1)
B10 Escape(r1)

(d)

B1 CoerceIntoDropWeapon(r1 , g1)
B2 CoerceIntoGiveKey(r1 , g1)
B3 WarningShot(r2, cr)
B4 UnlockDoor(r1, dt)
B5 CoerceIntoMove(r1 , g1 , ft)

B6
CoerceIntoPressButton(r1, g1, bt);
PickUp(c, w)

B7 LockDoor(r1, dt); Escape(r2)
B8 CoerceIntoSurrender(c, r1)

Table 2: A selection of narratives authored using CANVAS. The
event parameters and event instances that were automatically in-
serted are highlighted in bold. Event parameter symbols: Robbers
(r1, r2, r3), Guards (g1,g2,g3), Individual customer (c), Group of
customers (cr), Bank tellers (t1, t2), Manager (m), Teller, manager,
and vault doors (dt, dm, dv).

robbers resort to deception and violence to rob a bank. Within the
main story arc, a subplot plays out in which the robbers double-
cross each other until only one is remaining. A narrative of this
length and complexity takes minutes to author, as a story arc of
just 12 story beats and 20 story events. Authors may choose to fo-
cus only on the plot points of the story without specifying the par-
ticipants (Table 2b), and CANVAS automatically selects a suitable
combination of actors and smart objects (highlighted in bold) to
complete the story and ensure its consistency. In Table 2c, the au-
thor simply specifies a desired outcome, one in which the robber es-
capes with the money. The author is then free to iterate on the syn-
thesized narrative. Table 2d illustrates a more complex use case for
automation. The author focuses only on climactic plot points in the
story arc, without specifying the events leading up to them. In our
example, the author specifies that the robber open a locked door,
and that the story end with a bank customer coercing the robber
into surrendering. CANVAS works behind the scenes to ensure that
the robber steals a key and that the customer is equipped with a gun
before enacting the surrender. To satisfy the latter constraint, CAN-
VAS generates a story in which the robber coerces the guard into
dropping his weapon, and the customer later picks up the dropped
weapon while the robber distracted. Note that none of the authored
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: A complex narrative authored using CANVAS. (a) Robbers enter the bank from the back door and begin incapacitating guards. (b)
A robber fires a shot into the air to intimidate the crowd. (c) A second robber coerces the teller to (d) press a button behind his desk to unlock
the vault. (e) The robbers enter the manager’s office and coerce the manager to unlock the door leading to the vault, while also pressing the
second button needed to unlock the vault door. (f) The robbers incapacitate the manager and open the vault door. (g) The three robbers steal
the money from the vault and (h) they escape by running out the back entrance.

events are removed or modified during automation. The original
intent of the author is thus always preserved.

6.3. Computational Performance

With 65 smart objects, 24 affordances per smart actor, and 54
events, the bank scene’s effective branching factor is∼ 1000 by the
standard of previous approaches [KSRF11]. For a single-threaded
C# implementation, the computation times for automating stories
b, c, and d of Table 2 were 0.1s, 0.5s, and 1.3s, respectively, on
an Intel(R) Core(TM) i7 3.2 Ghz CPU with 32 GB RAM. Addi-
tional performance optimizations can be expected using native code
and parallel implementations. The synthesis of the 3D animation
for pre-visualization is instantaneous and the video is a real-time
recording of our system.

7. Conclusions and Future Work

We present CANVAS, a visual authoring tool that allows expert or
novice users to quickly prototype and synthesize story-driven an-
imations. We use a storyboard metaphor for visual authoring in
which authors specify key events in the story as parameterized sto-
ryboard elements that are automatically translated into an animated
3D scene. CANVAS identifies and resolves incomplete story defini-
tions to produce a consistent and complete narrative, while meeting
the author’s original vision. Our work demonstrates the practical
utility of POP-like solvers for solving heavily constrained problems
in unstructured, high-dimensional search spaces, while preserving
theoretical guarantees. It has the potential for improving constraint-
satisfaction problem tasks in other graphics domains.

Limitations and Future Work. Like any intelligent system, our
automation tool is only as good as its domain knowledge, which
is currently specified by experts. Enabling end users to not only
author their own stories, but also build their own unique story
worlds, is an extremely relevant and challenging question. For the
results described in this paper, we use a graphical tool [PKS∗15]

to minimize the one-time cost of domain specification. Addition-
ally, a promising direction for future work is to automatically cre-
ate knowledge bases from existing or crowd-sourced data [LR15]
which can be used for narrative synthesis. The narratives produced
using CANVAS are suitable for pre-visualization or cut scenes but
cannot be used for interactive applications such as games. Extend-
ing our framework to robustly handle free-form user interactions is
an exciting avenue for future exploration.
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