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Figure 1: Our method allows users to create tensegrity characters from a library of building blocks. From left to right: snapshot
from the design session, finished character, and two views of the fabricated prototype of the Puppy character.

Abstract
We present a computational design tool for creating physical characters using tensegrities — networks of rigid
and elastic elements that are in static equilibrium. Whereas the task of designing general tensegrities is very
difficult to automate, we show that a modular design paradigm allows users of our system to intuitively build
intricate structures that approximate the shape of complex characters. The underlying concept exploited by our
method is that simple tensegrities can be used as building blocks to create increasingly complex figures. To this
end, we propose a dedicated optimization scheme in order to compute the lengths of elastic cables such that, when
fabricated, the structure assumes the desired shape under gravity while remaining compliant and responsive to
user interaction. We demonstrate the flexibility of our system by designing several types of tensegrity characters,
one of which we also fabricate.

1. Introduction

Tensegrities are assemblies of strut elements carrying com-
pressive loads and cable elements that exert tensile forces.
The name tensegrity is a contraction of the words tension
and integrity, implying that the structure is stable due to the
interplay of tensile and compressive forces. In their strictest
definition, all struts must be disjoint, leading to a system
of floating compression elements immersed in a network of
tensioned cables. Although the discussion about the origins
of tensegrities remains controversial, their discovery is at-
tributed to artist Kenneth Snellson and inventor Buckminster
Fuller [SAP∗01].

Thanks to their lightweight nature, high stability, and aes-
thetic appeal, tensegrities find application in the arts, ar-
chitecture, robotics, furniture design, and many other areas.
Moreover, by choosing elastic materials for the cables, one

can create compliant structures that move in response to
external stimuli. Our work is motivated by the idea of us-
ing tensegrities to create tangible representations of digital
characters—an emerging subfield of computer graphics that
is receiving an increasing amount of attention. In particu-
lar, we are interested in designing figures that assume a de-
sired shape under self-weight, but remain overall flexible and
compliant to user interaction.

Despite their desirable properties, the use of tensegrities re-
mains limited, arguably because their design is very dif-
ficult. Indeed, finding a tensegrity structure that approxi-
mates a given input geometry proves to be a formidable task:
the strict topological constraints, high-dimensional parame-
ter spaces and nonlinear nature of the structural forces lead
to mixed continuous-discrete optimization problems which
are notoriously difficult to solve.
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Overview & Contributions In this work, we approach the
problem of designing tensegrities in a way that side-steps
the difficulties arising from the general topology problem.
Using our interactive design system, the user selects build-
ing blocks from a library of template structures in order to
incrementally build up tensegrity figures. Our interface pro-
vides simple tools to shape and connect individual building
blocks in an intuitive way. Once the design of a tensegrity
figure is complete, our optimization method computes the
rest lengths for all the elastic cables, such that the struc-
ture assumes its initial shape under gravity. We evaluate our
method by designing a number of complex tensegrity fig-
ures, one of which we also fabricated as a proof of concept.

The two main contributions of this paper are 1) a modular
approach for designing tensegrity figures using a library of
building blocks and 2) an optimization method for comput-
ing feasible tensegrity structures. The output of our method,
the geometry of the struts and the rest length of the elas-
tic cables, can be used to create physical prototypes of the
tensegrity characters we design.

2. Related Work

Computational Design in Graphics Fabrication-oriented
design is an emerging subfield in graphics. As one particu-
lar trend in this field, many researchers have recently started
to investigate the translation of digital characters into tan-
gible, physical representations. Bächer et al. [BBJP12] and
similarly Cali et al. [CCA∗12] described methods to au-
tomatically infer the geometry of mechanical joints from
skinned character meshes. Skouras et al. [STC∗13] pre-
sented a method that optimizes for an inhomogeneous dis-
tribution of material parameters, as well as for a sparse set
of actuation points and external forces, in order to obtain
physical characters with desired deformation behavior.

Another line of works in graphics has recently begun to
investigate the problem of designing mechanisms that can
reproduced desired motions. Zhu et al. [ZXS∗12], for in-
stance, described a motion-guided approach for synthesizing
animated mechanical toys. The method of Coros and col-
leagues [CTN∗13] allows users to create animated mechan-
ical characters by sketching motion curves. With a similar
goal, Ceylan et al. [CLM∗13] use motion capture data to au-
tomatically infer the parameters of specialized mechanisms
that drive the motions of mechanical automata. The method
proposed by Thomaszewski et al. [TCG∗14] allows for in-
teractive creation of complex linkage structures that mimic
the motions of virtual characters.

In the context of architectural design, many computa-
tional tools have addressed the problem of designing
structurally-sound surfaces, made for instance, out of ma-
sonry [WSW∗12, VHWP12] or rod frameworks [SFG∗13].
Strut networks can also be designed specifically to minimize
the cost of 3D printing material while ensuring structural sta-

bility [WWY∗13]. Tensegrities are a related class of struc-
tures, where rigid struts are connected to each other only
through pre-tensioned elastic elements.

Tensegrities An introduction to tensegrities can be found in
the textbook by Motro [Mot03]. Many different approaches
to form finding for tensegrity structures have been reported
in the literature. A slightly outdated summary can be found
in the review article by Tibert and Pellegrino [TP03]. Exist-
ing approaches can be grouped into analytical and numerical
categories, the latter consisting of methods based on evolu-
tionary algorithms or mixed-integer programming. Analyti-
cal methods are typically based on symmetry properties and
group theory [CB98].

Generally speaking, tensegrity structures are defined by their
topology (connectivity of the elements and their types), their
geometry and the stresses in the elements. If the topology
of the structure is known, the parameters that define its ge-
ometry and the stresses can be computed numerically as
described by Estrada and his colleagues [EBM06]. Their
method is similar in spirit to the optimization approach we
present here. However, we employ a gradient-based method,
and we iterate between computing the geometry of the
tensegrities and the stresses acting along the elastic ele-
ments.

If the topology of a tensegrity is not known in advance,
the problem of designing a structure that approximates
an input target shape is difficult. Evolutionary algorithms
for discovering irregular tensegrity structures can be em-
ployed [PLC05, RVCL09], but there are no guarantees that
the quality of the results is satisfactory. The method de-
scribed by Ehara and Kanno [EK10] employs a sequence
of mixed-integer programs to compute a tensegrity’s topol-
ogy, geometry, and stresses, following the ground structure
method that is widely used in optimization of discrete struc-
tures. We take a different approach to creating the topology
of the tensegrity characters. Our system allows users to inter-
actively design the figures by instantiating different types of
elementary tensegrities, which are then automatically linked
to each other through new rigid struts and elastic elements.

The method by Tachi [Tac12] converts an arbitrary polyg-
onal mesh into a stable tensegrity structure approximating
this shape. While this work shows impressive results in sim-
ulation, fabricating such complex irregular tensegrities is a
formidable task, requiring careful planning of the assem-
bly order as stability is only obtained once the last strut is
inserted. Our modular design approach makes fabrication
much easier, allowing building blocks to be assembled in
isolation.

Shape Optimization The problem of computing the rest
configuration of elastic structures to control their deforma-
tion behavior has been investigated both in the context of an-
imation and fabrication-oriented design. Twigg and Kacic-
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Alesic [TKA11] compute the rest lengths of springs for
clothing simulation in order to obtain a desired drape un-
der gravity. With a similar goal but in the context of hair
simulation, Derouet-Jourdan and colleagues described meth-
ods to compute rest shapes for elastic rods subject to grav-
ity [DJBDT10] and frictional contact [DJBDDT13]. The
example-based method by Martin et al. [MTGG11] mod-
ulates rest shapes of volumetric objects in order to guide
them towards a desirable space of deformations. In the con-
text of fabrication-oriented design, Skouras et al. [STBG12]
describe a method to compute the rest shape of rubber bal-
loons that, when inflated to a target pressure, assume a de-
sired shape. Similar in spirit to these works, our method opti-
mizes for the rest lengths of the elastic elements such that the
tensegrity figures designed in our system can support their
own weight. Together with the geometry of the rigid struts,
this provides sufficient information to fabricate the charac-
ters.

3. Computational Modeling of Tensegrity Structures

A tensegrity character is defined through a set of nodesN , a
set of elements E connecting the nodes as well as a vector σ

holding the stresses (or force magnitudes) carried by the el-
ements. The position of the n nodes are denoted by xi, with
x referring to the vector holding all nodal positions. Each
structural element ei j ∈ E connects two nodes, xi and x j,
and we distinguish between strut and cable elements. In any
given configuration of the tensegrity, each non-redundant
element ei j will exhibit a non-zero scalar stress σi j 6= 0.
Struts are required to exhibit compressive stresses (σi j < 0)
whereas cables can only support tensile stress (σi j > 0).

The elastic energy in a given cable element ei j can be mod-
eled as

Ei j =
1
2

k(εi j)ε
2
i jLi j with εi j =

li j−Li j

Li j
, (1)

where εi j is the deformation of the cable, k(εi j) is a
deformation-dependent stiffness coefficient, li j = ||xi− x j||
is the current length, and Li j the undeformed lengths of the
cable, respectively. As usual, nodal forces are obtained as
the negative gradient of this energy with respect to xi and x j.
This generic formulation allows for incorporating measured
material data and will be used for dynamic simulation. For
the purpose of tensegrity design, however, we will resort to
a simpler force expression in terms of force magnitudes σi j,

fi j = σi j
xi−x j

||xi−x j||
. (2)

For notational convenience, we use the convention fi j =−f ji
and σi j = σ ji. The net force acting on a given node i of the
tensegrity structure is obtained by summing up all force con-
tributions of incident elements as well as gravitational forces

fg and possibly contact forces fc as

fi = ∑
j

fi j + fg + fc . (3)

In order for a tensegrity structure to be in equilibrium, the
net forces have to sum to zero at every node, i.e., fi = 0 ∀i.
In addition, the sign of the stresses has to match the ele-
ment type, i.e., positive for cables and negative for struts.
These conditions also apply for nodes that are in contact
with the ground, but for simplicity, we assume that contact
nodes are known in advance, that they remain fixed, and they
are treated as bilateral constraints. We can thus assume that
the contact forces fc cancel out all other forces such that we
do not need to consider contact nodes. For all non-contact
nodes, we combine the above conditions into a Quadratic
Program (QP) as

argmin
σ
||f(x,σ)||2 s.t. σi j

{
> 0 ei j is cable,
< 0 ei j is strut.

(4)

Feasibility While this approach is viable for many shapes,
not all geometries can be realized as tensegrities. For a given
node, let es be the edge vector corresponding to the single
incident strut element and let ec

j denote edge vectors corre-
sponding to the cable elements. If there is no set of non-
negative weights λ j such that es = ∑λ jec

j, then there is no
combination of admissible stresses that lead to force equi-
librium. For such geometries, the solution of (4) will have
a non-zero objective, implying force imbalance. A natural
way of dealing with such cases is to seek the smallest change
in geometry that leads to a feasible configuration. This can
again be formulated as a constraint optimization problem,

argmin
x,σ
||x− x̃||2 s.t. fi(x,σ) = 0 ∀i , (5)

where the sign constraints on the stresses are omitted from
the equation for simplicity. The nature of the force con-
straints leads to a nonlinear and nonconvex optimization
problem, which is significantly more challenging to solve
than the QP (4). In order to render this problem tractable, we
take an alternating optimization approach and optimize (4)
for position and stress variables separately.

Alternating Optimization Instead of directly solving the
nonlinear program (5), we take an iterative approach in order
to minimize the objective of (4) for both position and stress
variables while satisfying the sign constraints on the stresses.

Algorithm 1 describes our alternating optimization method.
In each iteration, we first solve the QP (4) for the stress vari-
ables while holding the current positions fixed. Since this
step is not guaranteed to lead to a feasible tensegrity with
zero forces at each node, we subsequently reduce the norm
of the residual forces with a few steps of gradient descent
on the position variables. We note that it is also possible to
use Newton’s method in this second step in order to directly
jump to a local minimum of the objective function. However,
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Figure 2: An overview of some building blocks provided by our system (from left to right): quadruplex, icosahedron, diamond,
and double icosahedron.

Algorithm 1 Form Finding with Alternating Optimization
1: while ||∆x||> εcvg do
2: σ = solveQP(x,σ); //Eq. (4)
3: γacc = γ, i = 0;
4: while γacc > 0 and i < imax do
5: ∆x = computeDescentDirection(x); //Eq. (6)
6: α = lineSearch(x,∆x,γacc);
7: x+= α∆x;
8: γacc−= α, i++;
9: end while

10: end while

this local minimum can be quite far away from the current
configuration. Moreover, our experiments showed that even
small changes in geometry are often sufficient to transform
an infeasible configuration into a feasible tensegrity. In or-
der to find a feasible configuration that is close to the current
configuration, we proceed along the current gradient of the
objective function and impose a threshold γ on the maxi-
mum distance traveled. The corresponding displacement is
computed as

∆x = γ
(∇xf)t f
||(∇xf)t f|| . (6)

With ∆x determined, we then perform line search in order
to ensure that the objective is decreased. The process ter-
minates once the norm of ∆x falls below a given threshold
εcvg. Since both optimization steps monotonically decrease
the objective function of (4), this alternating optimization
scheme is guaranteed to converge to a local minimum. While
there is no guarantee that the objective function vanishes at
this minimum, we did not encounter such a case in practice.

Stiffness Scaling Using the alternating optimization
method described above, we can compute the geometry and
a corresponding set of forces that lead to a stable tensegrity
character. Without further assumptions, however, the force
magnitudes are not unique. This can be easily observed by
temporarily omitting gravity: if (3) holds for every node,
then it will also hold when scaling all forces by a constant
factor. We can exploit this null-space in order to determine
the overall stiffness of the tensegrity structure. In practice,

we add a weak quadratic regularizer to (4) that asks for
small force magnitudes. After a solution has been found,
we allow the user to specify a desired deformation that
the elastic cables should exhibit at equilibrium. We use
these deformations to compute corresponding target stresses
for each cable. We then formulate another QP, where the
quadratic objective asks that the stress in each cable is
as close as possible to its target value, subject to hard
constraints on force equilibrium and the sign of the stresses
in struts and cables. Since we solve this QP once a stable
tensegrity structure is found, we are sure that the force
equilibrium constraint can be satisfied as a hard constraint.

Simulation Once the design of a tensegrity character is
complete, the user can evaluate its deformation behavior in
an interactive simulation session. For this purpose, we ex-
tend the force model described in (3) to inertia forces, using
a simple mass lumping scheme that distributes mass for each
strut and cable evenly to their nodes. User interaction is in-
corporated through spring-like forces applied to the nodes of
the structure. We solve the resulting equations of motion in
time using the implicit Euler scheme,

xn+1 = xn +hvn +h2M−1f(xn+1) , (7)

where M denotes the mass matrix, h is the step size, and
the subscripts indicate the time step to which the quantities
pertain. We solve this system of nonlinear equations using
Newton’s method.

4. Modular Tensegrity Design

Building Blocks Our modular approach to tensegrity de-
sign greatly simplifies the form finding problem. The user
builds up characters incrementally by selecting building
blocks from a predefined library. A few example of such
building blocks are shown in Fig. 2. Our interface allows
the user to transform the building blocks as desired, either
through global scaling or by displacing nodes individually.
The template library we use provides several well-known
types of tensegrities, and can be easily extended using avail-
able data sources such as the catalogue published by Con-
nelly and Black [CB98].
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Figure 3: Different ways of connection two building blocks:
a single face connection (left) and a double face connection
(right). Connecting struts are shown in blue.

Connections Pairs of building blocks are linked to each
other through connections of predefined topologies. We cur-
rently support two types of connections, face links and edge
links (see Fig. 3). For a face link, 12 cables and a single strut
are inserted such as to connect a triangular face on one build-
ing block to one on the other module. The ends of the struts
are attached to the corresponding triangles through three ca-
bles on each side, whereas the remaining six cables provide
the required tension between the building blocks. It should
be noted that in order for this connection to be stable, the
strut has to pass through the connecting faces on each build-
ing block. The optimization method we describe automati-
cally computes the geometry of the connections in order to
lead to stable structures.

An edge link removes a cable on both building blocks,
adding four struts and 38 cables. As illustrated in Fig. 4, this
connection can be interpreted as inserting an icosahedron in
between the two building blocks, first merging (Fig. 4, left)
and subsequently removing the two overlapping struts and
cables (Fig. 4, right).

Figure 4: Adding an edge link can be interpreted as in-
serting an icosahedron. The red/blue arrows indicate ten-
sile/compressive forces before (left) and after the operation
(right).

With two connection types available, the question is when
to use which type. One important factor is the relative orien-
tation of the building blocks that should be connected. An-
other one is the desired range of motion at the connection.
The face link exhibits a more or less isotropic resistance to
deformation, making it best suited for spherical joints. The
edge link exhibits lower resistance for rotations around the
vertical strut direction, which is similar to hinge joints. In

Figure 5: Two views of our Duck model, which was con-
structed from 5 building blocks, 4 face links and a total of 41
struts and 253 cables.

our interface, we let the user decide which type of link is
best suited for a given connection.

5. Experiments and Results

We used our design system to create a number of tenseg-
rity characters, three of which we briefly describe. The Duck
character (Fig. 5) was constructed from 5 building blocks,
resulting in a network of 41 struts and 253 cables. The Scor-
pion figure (Fig. 6) is our most complex result: 12 building
blocks and 11 face links led to a tensegrity structure with 83
struts and 523 cables. The supplementary video shows the
full process of creating the Puppy character (Fig. 1), includ-
ing the physical prototype we built.

Stiffness Design Our system takes a single shape as input
and the cable stresses are computed such that the desired
shape is assumed under gravity. If elastic cables are used for
fabrication, the shape of the figure will likely not be pre-
served as the tensegrity is rotated and gravity acts along a
different axis than during the design process. The stability
of the shape can be improved by using stiffer cables but, un-
surprisingly, this will also have an effect on how compliant
the character is to user interaction. With our interface, the
user can experiment with different cable materials and inves-
tigate the resulting deformation behavior in a dynamic simu-
lation. The accompanying video includes an editing session
in which we tested this stiffness design mode on the Scor-
pion and on the Duck characters. We currently only provide
visual feedback of the interactions to the user, but the ex-
perience could be further improved by using a haptic input
device.

Performance For all the examples presented in this paper,
our system runs at interactive rates for both the design and
simulation stages. The rest length optimization takes only a
few seconds to complete, and the characters we describe in
this paper took between 5 and 10 minutes to design.

Optimization All of the examples that we designed, includ-
ing those discussed in this section, exhibit significant varia-
tions in the deformation of the cables. For the puppy charac-
ter, for instance, the deformations computed by our method
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Figure 6: Two views of the Scorpion character, consisting of
12 building blocks and 11 face links with a total of 83 struts
and 523 cables.

Figure 7: Force-deformation plots for different cable diam-
eters. The blue crosses indicate measurements and the red
curves are corresponding 5th-order polynomial fits.

range between 7% and 98%. For comparison, we also ex-
perimented with a simple approach that merely sets the rest
lengths of the cables to a constant fraction of their deformed
length. However, we were not able to find such a scaling fac-
tor that would allow the characters to maintain their shape
under gravity.

5.1. Fabrication

Cable Lenghts In order to manufacture the tensegrity fig-
ures designed with our method, we first have to determine
the rest lengths for the structural elements. Since the struts
are much stiffer than the cables, their deformations are neg-
ligible and their rest lengths can be obtained directly from
the geometry. However, unlike most other applications of
tensegrities, we use elastic cables in order to build compli-
ant characters that are responsive to user interaction. Conse-
quently, the cables can exhibit significant deformations and
we have to compute their rest lengths such that the desired
internal forces are exerted. For this purpose, we first have to
determine the force-deformation behavior of the cables that
are to be used for fabrication. We experimented with a par-
ticular type of cable that features an elastic core and nylon
coating. As seen from Fig. 7, the force-deformation relation
is highly non-linear, but it can be well-approximated by a
5th order polynomial curve. With this material model estab-
lished, and given the deformed length and the force exerted

by each cable, we can compute the rest lengths of the elastic
elements in a straightforward manner.

Materials We experimented with different ways of fabricat-
ing the tensegrity structures designed with our system. We
first attempted to 3D print the rigid struts, whose geometry
was procedurally generated and included cable pathways at
the endpoints. When using Vero-type materials, the struts un-
derwent significant plastic deformations under the tension of
the cables, as seen in Fig 8. In addition, the relatively brittle
materials currently used for 3D printing required bulky de-
signs for the cable connections. We therefore chose to use
hollow aluminum tubes to create the rigid struts, as illus-
trated in Figs 9 and 10.

Assembly One important advantage of our modular design
system is that the fabrication process is greatly simplified. In
a general setting, a tensegrity structure is stable only when
all the cables and struts are connected to each other. As the
structure of a tensegrity becomes more complex, assembling
it therefore becomes increasingly more challenging. With
our approach, intermediate structures (i.e. individual build-
ing blocks or connections of building blocks) are stable and
can be manufactured independently using the same sequence
of steps that were used to design the digital models.

Figure 8: After two weeks, the 3D printed struts have de-
formed significantly under the tension of the cables.

Figure 9: The 51 struts used for manufacturing the Puppy
character.
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Figure 10: The order of assembly used for manufacturing the icosahedron building block.

6. Conclusion, Limitations and Future Work

This paper describes a computational design system that al-
lows casual users to interactively create characters repre-
sented as compliant tensegrity structures. We employ a mod-
ular system, where elementary types of tensegrities are used
as building blocks in designing complex figures that approxi-
mate the shape of digital characters. We describe two strate-
gies that users can choose from to connect the individual
building blocks instantiated by our framework. These two
connection types exhibit different mechanical properties and
anisotropic resistance to deformation. While we currently let
the user decide which connections to use, it would be inter-
esting to automatically suggest the connection type that best
fits a desired deformation behavior or range of motion. Auto-
matically determining other types of connections represents
another avenue for future work.

While our method produces tensegrity structures that are in
static equilibrium, there is no guarantee that the equilibrium
configurations will always be stable, i.e., robust against per-
turbations. While unstable solutions are easy to detect and
report to the user, avoiding them altogether is challenging
[ZO07]. Nevertheless, we did not encounter such configura-
tions during our experiments, which is likely due to the fact
that all of our building blocks are stable tensegrities.

Our method allows users to design tensegrity shapes, but
their network structure also provides a natural means for
motion control: by varying the lengths of struts or cables,
different deformed shapes can be obtained. This observation
is already being explored to create an interesting class of
robots [PVCL06, BCI∗14], and in the future, we would like
to investigate the problem of computing minimal sets of ac-
tuation elements that are able to generate a desired range of
motions for our tensegrity characters.
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