
ARENA and WOXBOT: Some Steps Towards the
Animation of Cognitive Characters Acting in a Virtual World

Abstract
This paper reports some of the results of the WOXBOT / ARENA project on artificial life. This project to build
virtual worlds was set initially aimed at the graphic simulation of an arena where WoxBots, small mobile robots,
can perform requested tasks while behaving according to their own motivation and reasoning. Each robot is an
intelligent agent that perceives the virtual environment via a simulated vision system and reacts moving away
from or approaching to the object it sees. The conception and specification of the robots and the environment are
being done very carefully to create an open distributed object architecture that can serve as a test bed freely
available and ready to use for testing theories in some computational areas such as evolutionary computation,
artificial life, pattern recognition, artificial intelligence, cognitive neurosciences and distributed objects
architectures. Furthermore, it is a first step towards building a cognitive animated character.

Keywords
Artificial Life, Computer Cognitive Animation, Evolutionary Computation, Genetic Algorithms, Neural Networks.

1. INTRODUCTION

Artificial life is a term originally intended to mean the
simulation of macroscopic behavioral aspects of living
beings using microscopically simple components
[Bonabeau95]. However, the term spanned to designate a
wide variety of simulated living creatures, including
virtual characters whose behavior emerges from
hierarchically and functionally specialized complex
structures like an animal’s body [Terzopoulos98]. Both
kinds of simulations are very interesting from the
computational point of view: they offer very attractive
means to computationally model complex behavior, a
subject that has gained a special relevance under both the
theoretical and the applied standpoints.

Artificial life worlds are computational simulations such
as virtual spaces where animated characters interact with
the environment and with other virtual beings of the same
or of distinct categories. Different levels of sophistication
can be found in these virtual creatures, from unicellular

life with minimalist models to complex animals with
detailed biomechanical models. However, all of them
display behavior that emerges from the dynamics of a
complex system (for instance, systems with learning,
reasoning, ontologies, cognitive processes, etc).

New tendencies point to behavioral animation, where
characters have some degree of autonomy to decide their
actions. What we are aiming at is one of the most recent
approaches to animation, cognitive animation [Funge99].
In this approach, artificial intelligence techniques are
mixed with computer graphics to generate a comp uter
animated character capable of acting in response to a
storyboard or screenplay and displaying naturalism when
doing other tasks not specified explicitly. Following this
track to cognitive animation, we propose to exploit the
capability of several methodologies and techniques that
employ adaptive algorithms, evolutionary programming
and artificial intelligence techniques.

 Fábio Roberto Miranda João Eduardo Kögler Junior
SENAC College of Computer Science & Technology

Rua Galvão Bueno, 430 São Paulo SP Brasil

{fabio.rmiranda,kogler}@cei.sp.senac.br

 Márcio Lobo Netto Emílio Del Moral Hernandez
Polytechnic School – University of São Paulo

Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo SP Brasil

{lobonett,emilio}@lsi.usp.br

131

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

Results obtained in a project set to build an artificial
environment for animated virtual creatures (ARENA) are
reported in this paper. Although it was conceived to
allow more than one robot or virtual creature to be easily
introduced to co-exist in the same environment, its first
version presented here is a single-robot virtual world.

Our goal is to obtain virtual creatures capable of
performing specified tasks in their environment by
exploring certain strategies and adapting those whenever
necessary. This scenario can be useful for many
purposes: for behavior modeling, as a laboratory of
learning algorithms, for research on societies of virtual
characters, in the study of collective dynamics of
populations, etc. The ARENA robot – WoxBot (Wide
Open Extensible Robot) – has a vision system consisting
of a simulated camera and a neural network that classify
the visual patterns to provide input to a motor system
controlled by a deterministic finite state machine (FSM).
This FSM is an automaton obtained from an optimization
procedure implemented with a genetic algorithm.

As an example of application, a given research project
can be targeting visual recognition methods, so it will be
using WoxBot as a subject employing the methods under
test, and will take ARENA as a laboratory for evaluation
experiments. Another research project instead, can target
autonomous robot traveling strategies. In this case, the
ARENA floor can be the field of traveling, and WoxBots
will be simulating the autonomous vehicles. Yet the
WoxBot could be re-shaped to have the aspect of a given
car or truck model and the ARENA could be configured
to resemble a street, in a project intended to analyze
vehicle traffic conditions.

The ARENA is implemented as a distributed object
environment and can run on single processor platform as
well as can take advantage of parallelism or
multithreading in high performance computer
architectures. In this later case it could be used to handle
highly sophisticated and complex applications, such as
the simulation of a street with many cars. It could also be
used to evaluate multi-agent distributed computational
models using the WoxBots as the prototypical agents.

The organization of this paper is as follows: the next
section gives an overview of the ARENA project, its
requirements and choices for solutions. Sections 3 to 6
review several conceptual aspects involved in the various
project components and give guidelines to be used in the
implementation. Section 7 discusses particular
implementation issues, such as the choice of Java and
Java3D as programming language and 3D application
programming interface. Section 8 addresses the modeling
of the character and the environment and presents the
results obtained. Section 9 foresees the further steps to be
taken.

2. PROJECT OVERVIEW

Our long-term research line in artificial life is aimed at
the development of complex virtual worlds with realistic
creatures able to exhibit sophisticated behaviors with

reasoning, learning and cognition. To achieve it, one is
required to attend to the following aspects:

o Account to the wide variety of mathematical and
computational models usually required to represent
the complex aspects of living behavior;

o Provide an efficient environment and platform with
enough computational power to represent in detail
the behavior of the simulated creatures in real time,
including the ability to support live interactivity with
persons;

o Specify and build a system that embodies constant
evolution and improvement in its constructs at the
same time that enables or, moreover, promotes the
reuse of well-succeeded results and implementations.

Our choice was to fulfill these requirements building an
application development environment on top of an
architecture of distributed communicating objects
mapped on a microcomputer cluster [Bernal99].
Additionally, the ARENA implementation also exploits
parallelism via multithreading, so the program can run
both on multi and single processor platforms.

1

The virtual space of the ARENA (figure 1) has a floor
and walls encompassing the limits of the virtual world.
Inside this scenario one can place objects of several kinds
and functionalities such as obstacles, barriers, traps,
shelters, energy or food sources etc. One or many
characters can be introduced in this environment. In the
first stage of the project the sole character will be the
WoxBot (figure 2), whose task is to keep itself alive as
long as it can.

Figure 1: ARENA (Artificial
Environment for Animats) – a virtual world for
the development of artificial life projects. The
character at the center is a robot that avoids the
cubes and seeks the pyramids. A contact with a
cube reduces the robot life, while the pyramids
extends it. The robot goal is to prolong life as
long as it can. An evolutionary computing
scheme selects robots that perform better. The
environment can support several robots.

WoxBot Green floor

Red cubes
(punishment)

Yellow pyramids
(reward)

Blue walls

132

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

Certain conceptual ingredients play specific roles on
composing the artificial life scenario and thus should be
present in the implementation: sensing and perception,
knowledge use and evolution. In the following sections
we examine these aspects.

3. ARTIFICIAL LIFE

Artificial life has been associated to computer science in
different ways, from cellular automata theory [Adami98],
[Bentley99] to computer graphics animation
[Terzopoulos98], [Phillips88], [Badler92]. Some
researchers have been involved with this field looking for
models that would describe how real life began and
evolved. In fact, they were looking for a universal life
concept, which should be independent of the medium on
which it existed [Adami98]. Other scientists were looking
for physical models to give natural appearance to their
characters. Very interesting results have been achieved
through this approach [Terzopoulos98]. Although very
different in purpose, these work have been related to
evolution and natural selection concepts. In many of
them, evolutionary computing schemes such as genetic
algorithms have been an important tool to assist the
conduction of transformations in the genotype of virtual
creatures, allowing them to change from one generation
to another. Mutation and combination (by reproduction)
provide efficient ways to modify characteristics of a
creature, as in real life. Selection plays a role choosing
those that, by some criteria, are the best suited, and
therefore are allowed to survive and reproduce
themselves.

Genetic algorithms are computational procedures capable
of finding the optimal solution in particularly hard
problems [Fogel95], [Holland92], [Koza92],
[Mirchell97], [Beer90]. Each point of the optimization

domain is represented by a binary string that is seen as
“genetic information”, in the sense that this string can be
mutated, by flipping bits, as well as two such strings can
be mixed by a crossover operation, in a way comparable
to the actual biological reproduction. These strategies
provide an efficient way to obtain global optimization in
cases where it is very difficult, or not practical, to
formalize the optimization problem on an analytical
framework.

In this work the evolutionary computation is employed to
generate the computer animated character control. Each
WoxBot (Figure 2) is controlled by a finite state
automaton, which evolves through generations, based on
genetic mutations and crossover. Descendant robots can
arise with some innovative features that may be better or
worse than those from previous generations. A character
being better or worse is a relative concept. In this project
it is defined in a way correspondent to how well suited a
character is to the environment. Those that by some
criteria achieve higher grades (for instance keeping
greater energy, living more time and performing their
tasks faster) have higher chances to be selected for
reproduction, and therefore to transfer the genotypes and,
consequently, their features.

The use of knowledge in the artificial life environment
can be done under two aspects: (i) it can be present in the
environment and in the conception of the creatures and;
(ii) it can be used by the creatures themselves when
performing their actions. In both cases, the effective and
rational use of the knowledge (about the world, the
actions, the tasks) leads to what is called intelligent
behavior. Intelligence can also be considered a property
emergent from evolutionary systems [Fogel95]. Thus, the
evolving characters can be modeled as intelligent agents
performing tasks in the virtual environment.

4. INTELLIGENT AGENTS

Intelligent agents may be understood as computational
entities that behave with autonomy in order to manipulate
the information associated to its knowledge. This
autonomy must regard the agent design, the environment,
the goals and motivations [Russel95], [Beer90]. They
have the capability of reasoning about what is going on in
the environment where they are running, or of responding
to some query conducted by external agents or persons.

In addition to artificial life features, our robots also
exhibit features that allow their classification as
intelligent agents. In this first implementation, while
there is only one WoxBot in the Arena, they do not have
communication, just sensing and mobility skills. And
they have to decide which action they should take at
every moment. A finite state machine has been evolved
from random ones for this purpose. The robot should
look for energy sources, while avoiding traps that make it
weake r.

Based on visual information, as explained further, the
robot plans its way to get closer to the energy sources. A
finite state machine that can be a result of evolution
through generations determines the actions of the plans.

Figure 2: WoxBot (Wide Open Extensible
Robot) – a virtual character that gets input from
vision and reacts moving according to the
decision taken by the finite state automaton.

Perception:
Neural
Nets

 Action:
Finite

Automaton

 Motion:

- Forward

- Backward

- Turn Left

- Turn Right

133

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

Next versions of our robot will be able to communicate in
an environment with other robots and they will
implement also sociability skills, which are important
features to promote a better adaptability from a creature
to its environment, as in real life.

5. PATTERN RECOGNITION

One of the tasks that WoxBot has to perform in this first
project is to be aware of nutrients (yellow pyramids) and
hurting entities (red cubes) that are present in ARENA
(figure 1). The ARENA scenario and robot vision are
simulated by means of JAVA3D. The vis ual information
is gathered from the 3D surrounding scene by projecting
it to a view port with 3 color channels, namely R (red), G
(green) and B (blue). Figure 3 depicts a typical input,
which at the present state is taken in low resolution
without any loss of accuracy, since no textures are yet
used in our 3D virtual world simulation. To differentiate
and spatially locate these entities, two specialized neural
networks interpret the visual information received by the
robot, one of them targeting nutrients and the other
targeting hurting entities. These networks are named here
ANN-I and ANN-II.

The network ANN-I is trained for the identification of
yellow pyramids as well as for a general evaluation
(classification) of the position occupied by the principal
yellow pyramid in the robot's visual field. To help in this
task, a simple filter for the yellow color is implemented
as a pre-processing stage. This is done by combining the
primary sensory channels RGB so to obtain a gray scale
where yellow is mapped into high values of gray and the
remaining colors are mapped into low values of gray.

The monochromatic image obtained in this way is then
used as the input to the ANN-I, the one that targets
nutrients. After training, this network is able to activate
one of 4 outputs (see Table I): output 1, indicating that no
yellow pyramid is present in the visual field, output 2,
indicating that the principal yellow prism is on the
robot’s left, output 3, when the principal yellow prism is
on the center of the visual field, and output 4, when the
principal yellow prism is on the right. In this way, ANN-I
makes the robot aware of the presence and location of
nutrients.

Code scene situation

0 no object ahead

1 target object at left

2 target object at center

3 target object at right

Table 1: ANNI & II observers

In the same lines as ANN-I, the second neural network,
ANN-II, performs a similar function for the identification
and position evaluation of the red cubes representing the
hurting entities. For this second network, however, the
gray images that are sensed by the neural network inputs
are obtained by using a different filter, which combines
the channels RGB so to favor the red color.

The architecture chosen for ANN-I and ANN-II is the
standard multi layer perceptron with one single hidden
layer of moderate size and learning through the error
back propagation algorithm.

Among the observations that we did during the training
of the neural networks we want to mention that the
detection and position classification of visual targets was
facilitated by the use of samples (pyramids and cubes) of
similar sizes. In other words, ANN-I and ANN-II don’t
have good abilities to implement scale invariance. That
was in fact expected, since the complexity of the network
is relatively limited, and its architecture does not have
any specialized organization to implement scale
invariance. This indicates that some kind of size
invariance mechanism could be added in the pre-
processing stage. Another possibility is to use a larger
and more complex neural architecture so to make
possible the interpretation of targets positioned at a
broader range of distances.

An important issue to consider in the context of the
neural networks of WoxBot is adaptability. In these
initia l experiments with the robot, the training of ANN-I
and ANN-II was done in an isolated phase, which was
performed previously to the exploration of ARENA. In
other words, only after WoxBot was able to do the
differentiation between nutrients and hurting entities, he
started his exploration in ARENA, and then, no further
adaptation of the visual recognition system was allowed.

blue wall green floor

yellow pyramid black background

red cube

Figure 3: A typical image of the
ARENA environment as seen by the
WoxBot vision. The actual image has the
depicted colors with shading resulting of
the illumination. This image is the input
of the neural nets that perform
perception. It is also possible to add
textures to the 3D scene and take yet
more complex images.

134

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

In future phases of this project, we want the recognition
system to be able to deal with unpredicted changing
conditions such as change of illumination, and we will
include the change of the features of the nutrients
targeted by WoxBot (shape and color for example). Of
course, this depends strongly on the ability of the visual
recognition system to adapt, since the target recognition
prototypes change with new experiences and new needs
of the robot, as its life and exploration of ARENA
evolves. At that point of the project, the intrinsic adaptive
nature of neural networks will be crucial, and it will be
fully explored.

6. ACTION, BEHAVIOR AND EVOLUTION

The WoxBot character is an intelligent agent with a
simulated visual sensor to pick images of the
environment from its point of observation. The two
neural networks inside the agent analyze these images
classifying the visual patterns. These networks outputs
are tokens fed into the agent control system, which is a
finite state machine (FSM). The inputs to the FSM
generated by the combination of the ANN-I and ANN-II
outputs are shown in Table 2.

input code

to FSM
Semantics

0000 no YP and no RC

0001 no YP but RC at left

0010 no YP but RC at center

0011 no YP but RC at right

0100 YP at left but no RC

0101 YP at left and RC at left

0110 YP at left and RC at center

0111 YP at left and RC at right

1000 YP at center but no RC

1001 YP at center and RC at left

1010 YP at center and RC at center

1011 YP at center and RC at right

1100 YP at right but no RC

1101 YP at right and RC at left

1110 YP at right and RC at center

1111 YP at right and RC at right

Table 2: Input codes to the FSM and their meanings.
 YP = Yellow Pyramid and RC = Red Cube

Based on the above codes, the FSM chooses one action in
its repertory: going ahead, turning right, turning left or
going backwards. Table 3 shows the action encoding
used to build the FSM representation as a genetic code.

code Action

00 turn left

01 go straight ahead

10 turn right

11 go backwards

Table 3: Movement encoding

The motion control is performed by the FSM automaton,
which is designed without specifying in advance what
interstate transitions should occur. It is initially set with a
random structure that is improved based on evolutionary
computation concepts. Only the maximum number of
allowed FSM states is specified. The FSM is represented
by a string of bits coding its states, inputs and actions.
This string is named the WoxBot chromosome. For each
FSM state there is a chromosome section. All these
sections have the same structure: for each of the 16
possible inputs shown on Table 2, there is an entry on the
chromosome state section, composed by two fields: the
first one is the number of the next state after the transition
caused by the corresponding input; the second field is the
code of the action, following Table 3, taken upon the
given input. Figure 4 gives an example of a FSM and
Figure 5 is the corresponding chromosome.

Figure 4: A sample Finite State Machine (FSM) used by
WoxBot to control its reactions to the visual stimuli

At the start of the evolutionary process, a population of
WoxBots is generated by sampling chromosomes at
random from a uniform distribution. This population
constitutes the first generation. Each member of the
current generation is put into the ARENA, and it is
assigned a performance value proportional to the duration
of its life. A contact with red cubes shortens the life of
WoxBots, while contact with yellow pyramids extends it.

00/01

00/01

00 01

10
11

01/00

01/10

10/11

*0/11

*1/10

00,10,11/00
10,11/00

01,11/00

135

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

State In 00 In 01 In 10 In 11

00 00 00 01 00 00 00 00 00

01 00 01 10 10 01 00 01 00

10 00 01 10 00 11 11 10 00

11 00 11 11 10 00 11 11 10

Figure 5: Chromosome for the FSM of figure 4. There
are 4 states. Each state has 4 inputs. Each Input has 2
fields, the first is the next state after the transition and the
second is the action code.

After each generation of robots in the ARENA, the fittest
ones are selected to be the parents of the next generation
and their chromosomes are grouped in pairs. These
chromosomes then undergo a mutation followed by
crossover of each pair. This constitutes part of the next
generation; the remnants are completed, in a heuristic
method of adding variability, by drawing them from a
uniform probability distribution, in the same fashion as it
was done for the first generation. This procedure follows,
giving thus more generations, until there is a stabilization
of the fitness value of the population. Figure 6 shows
schematically the whole evolutionary process.

7. IMPLEMENTATION ISSUES

Before building an application intended for virtual world
simulation, one key decision to be made is whether it will
be a real time application or not. Many 3D animation
packages today, like Maya™ or Softimage™, have an
integrated Application Programming Interface (API),
allowing algorithmic animation of characters. This
approach, yet useful for some kinds of simulations, has
the drawback of few or none capabilities for user
interaction. These packages are also expensive,
narrowing the scope of people that could later experiment
with our work.

Having decided for real-time capability, the next issue is
the choice of the API. Some requirements we decided to
fulfill with ARENA included: portability through many
platforms, share ability and open architecture, and easy of
use for others. Given these issues, our choice was made
for the Java Programming Language for development and
Java3D as 3D graphics package. Java is a worldwide
spread and freely available language strongly object-
oriented. Its three-dimensional extension, Java3D, is
available on a variety of platforms (Windows, Linux, Irix
and others), is also freely available, and can be run
through web browsers with the proper plug-in. The most
powerful feature of Java3D is its scene-graph oriented
approach that shifts the focus of 3D programming from
vertexes to hierarchies of scene objects and events,
shortening development time.

Additional advantages include the possibility of
importing content authored in 3D modeling and
animation packages, use of underlying OpenGL or
DirectX accelerated hardware, automatic use of threads
for executions, taking advantage of parallel hardware,
and the availability of free Java Integrated Development
Environments (IDEs), like Java Forté, from Sun
Microsystems and JBuilder, from Inprise.

7.1 Application structure
Java3D organizes the objects represented in its scenes in
a special kind of tree called scene graph [Sowizral98].
Such representation has the advantage of hierarchically
organizing elements, what eases the programmer burden
of implementing kinematically linked objects, such as a
forearm linked to an arm, where a movement of the
second implies a movement of the first. Another
advantage relates to parallelism (branches of the tree
potentially can be processed in parallel), and
optimizations related to execution culling (whole
branches of the hierarchy that aren’t changed in certain
ways can be optimized and made faster to process).

Some main objects where used at the ARENA, and are
seen at figure 7. The objects VirtualUniverse and Locale
operate as gateways to the 3D rendering engine.
BranchGroup objects grant others access to the Locale
and act as a grouping tool. TransformGroups represent
grouped objects subject to transformations (translation,
scaling and rotations).

11001001

11010111

11110110

10000010

CROSSOVER

FITNESS

SELECTION

CURRENT
GENERATION

MUTATION

10000101

00010011

11110101

10010000

First generation

New generation

Figure 6: The evolutionary process.
The first generation (top) undergoes
simulation that results in fitness
values. A crossover of the
chromosomes of best individuals
(WoxBots) yields a new generation,
subject to mutation before
simulation takes place again.

136

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

Virtual Universe

BG BG

TG TG

TG

Woxbot's Geometry and
Appearance

TG

3D
Shape

Pyramid

B

B

Locale

Animated
 Branch
Group

Static
Branch
Group

View
 Branch
Group

floor and walls

VP

Woxbot's ViewPlatform

View

Woxbot's View

Saver
Canvas3D

Woxbot's Canvas3D

Woxbot
Control

Arena
Control

Cubes
& Pyramids
Transform

Groups

Woxbot
Translation
Transform

Group

Woxbot
Rotation

Transform
Group

3D
Shape
Cube

BG

Figure 7: Java3D Scene Graph of ARENA with WoxBot. All objects linked to a
VirtualUniverse through a Locale are taken into account by the rendering engine.
BranchGroup (BG) objects serve as objects for grouping others. TransformGroups (TG)
represents spatial transformations such as scaling, rotation and translation.

State
Machine

Neural
Net1

Neural
Net2

WoxBot
Control

Woxbot
Canvas3

Transformation Groups
(Woxbot, cubes,

pyramids)
Arena
Control

getBuffer()

getPattern()

getPattern()

getAction()

setMovement()

setTransforms()

Figure 8: Sequence diagram of ARENA and WoxBot

WoxBotControl

137

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

The Java3D scene graph structure [Sowizral98] of the
ARENA application is seen in figure 7. This application
is composed of one Locale, with three BranchGroups
directly attached to it. There is one BranchGroup for the
user view of the scene (View BranchGroup), one
BranchGroup holding the 3D objects in the scene that
cannot move (floor and walls) and one BranchGroup
holding the animated scene objects. The reason for this
division is that Java3D performs a series of optimizations
based on what a given BranchGroup can or cannot do, by
holding all the 3D objects that cannot move in one
BranchGroup, we can increase the efficiency of the
optimizations. The Animated BranchGroup is where
there is most to be observed in this application. The non-
robot 3D objects (boxes and pyramids) have their own
TransformGroup, the robot has one TransformGroup for
rotation and another for translation. The WoxBot
Rotation TransformGroup is the lastTransformGroup
before the robot 3D mesh data, below it is also the
ViewPlatform of the camera that renders the robot view
(the WoxBot’s View). The Animated BranchGroup also
holds two control objects that are responsible for the
dynamic aspect of the application: WoxBotControl and
ArenaControl. WoxBotControl models the behavior of
the robot, keeping track of visual data (accessing the
WoxBot’s Canvas3D), presents the data to the neural
networks for pattern recognition and feeds the patterns
into the state machine that decides robot’s actions. Once
robot’s actions are defined, they’re told the
ArenaControl, that only lets valid actions take place (the
robot cannot cross through walls or red cubes, for
instance.

The diagram in figure 8 depicts in a simplified way the
dynamic behavior of this program. An arrow from one
bar to another means the first bar’s object is requesting
the second object to perform an operation. Return values
are not represented. At extreme left, WoxBotControl can
be seen. This object is responsible for most of the
intricacies of the simulation. From time to time, this
object polls the WoxBot Canvas3D for visual data. Then
it processes the visual data and feeds the two neural
networks, collecting pattern classification from them.
Pattern data is then fed into state machine, which returns
the action the robot should take. This desire of action is
communicated to the Arena Control, that applies the
results of this action to the scene. ArenaControl detects
collision between the robot and other scene objects,
decrementing robot’s time of life when a collision is
against a harmful object or incrementing it when collision
is against yellow pyramids. In the latter case, the
pyramids should disappear for a given amount of time,
this behavior also is triggered by the ArenaControl.

8. SIMULATION AND RESULTS

The genetic algorithm was used to evolve a population of
16 individuals along 30 generations. The first generation
was randomly created, every subsequent generation had
the genotype of half of its members randomly generated
and the other half created by a crossover of genotypes of
the two most fit individuals of the previous generation,
followed by a mutation. The crossover happened at a
random point between the beginning and the end of the
parents’ chromosomes, exchanging complementary
segments, so that resulting and original chromosomes
have the same length. Mutation rate used in this
simulation was 0.06, and it was a bit mutation rate, each
bit copied from parents had a chance of 0.06 of being
mutated.

A state machine with 4 states was used, which
corresponds to a genotype of 258 bits (4 times 64 bits, the
length of the description of each state transition / output
relations, plus additional 2 bits to indicate the initial state
of the machine).

The members of the generations are tested at the
simulation environment one after another. In the
simulation discussed in this paper each individual was
given a time of 60 seconds, that could be extended or
decreased on basis of the individual’s behavior. Each
time an individual collided against an yellow pyramid it
received extra 4 seconds, that pyramid was then
considered “eaten”, and a new pyramid would appear at
its place only after 4.5 seconds, this distribution of values
was made to avoid seen behaviors where individuals has
the tendency to stay at the same place indefinitely just
waiting for the energy, this way they will end up dying
once waiting for energy spends more energy that is
gained when the waited energy arrives. The collision
against a red cube caused the individual to loose 5
seconds, cubes also are considered “eaten” after the
individual passes over it, and at the simulation discussed
here those cubes took 3 seconds to reappear. By varying
parameters such as values of the rewards and
punishments related to passing over to the objects, and
the time it takes the objects to reappear, we expect to see
a range of strategies evolving from daring to
conservative.

Figure 9 depicts the fitness plot along the generations.
Some oscillation of the tendency is due to the low
number of members in the populations, but the overall
tendency to increasing and stabilization can be
appreciated. After a long term running with bigger
populations, the fitness will probably stabilize.

138

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

Figure 9: Fitness of the WoxBots along the evolutionary
process of a population of 16 individuals.

At the present stage, the WoxBot still does not memorize
the previous actions, so it actually cannot take advantage
of learning. The number of states of the FSM is also low
– a maximum of only 4 states is allowed. These
limitations were adopted just to provide a reasonable
chance for understanding the behavior of the machine by
examining its structure.

Figure 10 presents a snapshot of the environment built in
Java 3D to develop the ARENA / WoxBot project. Figure
11 shows the chromosome of the best-fitted individual in
the above experimental run.

9. CONCLUSION AND FUTURE WORK
The first stage of the project was to build the ARENA
with a single WoxBot to test the main idea and to orient
the specification of the further steps. There are two main
directions to follow simultaneously from now. One is to
proceed with the ARENA development introducing more
complexity in the environment, in the tasks and using two
or more WoxBots simultaneously. The other is to
improve the WoxBot to build new and more sophisticated
characters.
The Jack [Adami98] project can be an inspirational
experience for us, where different levels of research
development and application and incremental
development were successfully explored.

Concerning the actual stage of the simulations, WoxBot
will have some improvements, namely to allow much
more states in the FSM and to provide a memory for a
finite number of previous actions. Also the ARENA will
undergo some improvements concerning its size, the
distribution of objects, the presence of textures and to
allowance of simultaneous WoxBots. Also, concerning
the WoxBots, given the use of textures and objects other
than pyramids and cubes, improvements on its visual
system will also have to be provided.

8. REFERENCES
[Bonabeau95] E.W. Bonabeau and G. Therulaz, Why do

we need artificial life?. Artificial Life an Overview,
edited by C.G. Langton, MIT Press, 1995.

[Terzopoulos98] D.Terzopoulos (org.), Artificial Life for
Graphics, Animation, Multimedia and Virtual Reality.
SIGGRAPH 98 Course Notes 22, 1998.

[Bernal99] Volnys Bernal et al, PAD Cluster: An Open
Modular, and Low Cost High Performance
Computing System. Proceedings of 11th Symposium
on Computer Architecture and High Performance
Computing Natal, RN.Brazil, Sep 29th-Oct 2nd , 1999,
215--222.

[Adami98] Adami, Introduction to Artificial Life ,
Springer Verlag, 1998.

[Phillips88] C.Phillips and N.I. Badler, Jack: A toolkit for
manipulating articulated figures, in ACM/SIGGRAPH
Symposium on User Interface Software, Banff,
Canada, Oct. 1988.

[Badler92] N.I. Badler, C.B. Philips and B.L. Webber,
Simulating Humans: Computer Graphics, Animation
and Control, Oxford University Press, 1992.

[Bentley99] P. J. Bentley (ed.), Evolutionary Design by
Computers, Morgan Kaufmann, 1999.

[Fogel95] D.B. Fogel, Evolutionary Computation -
Toward a new philosophy of machine intelligence,
IEEE Press, 1995.

[Holland92] J.H. Holland, Adaptation in Natural and
Artificial Systems, MIT Press, 1992.

[Koza92] J. Koza, Genetic Programming, MIT Press,
1992.

[Russel95] S. Russell and P. Norvig, Artificial
Intelligence – A Modern Approach, Prentice-Hall,
1995.

[Mirchell97] M. Mitchell, An Introduction to Genetic
Algorithms, MIT Press, 1997.

[Beer90] R.D.Beer, H.J.Chiel and L.S.Sterling, A
biological perspective on autonomous agent design, in
Designing Autonomous Agents, P. Maes (ed.), MIT
Press, 1990.

[Sowizral98] Henry Sowizral (org), “Inroduction to
Programming in Java3D”, SIGGRAPH 98, Course
Notes 37,1998.

[Funge99] J. Funge, X.Tu, D. Terzopoulos. Cognitive
Modeling: Knowledge, Reasoning and Planning for
Intelligent Characters. SIGGRAPH 99 Proceedings,
1999.

139

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

Figure 10: The Development desktop environment built with Java/Java3D. It allows the visualization of the evolutionary
process live action, data logging for the population parameters, chromosomes, etc. It enables one to load a previously
evolved individual and watch its performance again.

Figure 11: Chromosome of the best fitted individual of the experiments run with the specifications provided in the text.

Initial state:3

 3/2 3/0 0/3 1/0 0/3 3/3 2/1 3/3 2/3 3/0 3/2 3/1 2/0 3/1 3/1 0/2
 2/2 0/3 2/3 3/0 0/3 0/1 3/0 0/3 1/0 2/2 1/0 1/1 0/2 3/2 1/0 1/3
 1/0 2/3 2/2 0/3 3/1 1/0 2/0 1/0 1/3 1/0 0/0 1/1 3/2 0/0 3/2 0/0
 0/1 2/0 2/3 3/3 3/2 3/1 3/3 2/1 0/0 1/0 1/0 0/0 0/2 1/3 1/1 3/2

140

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

