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Abstract  
This paper reports some of the results of the WOXBOT / ARENA project on artificial life. This project to build 
virtual worlds was set initially aimed at the graphic simulation of an arena where WoxBots, small mobile robots, 
can perform requested tasks while behaving according to their own motivation and reasoning. Each robot is an 
intelligent agent that perceives the virtual environment via a simulated vision system and reacts moving away 
from or approaching to the object it sees. The conception and specification of the robots and the environment are 
being done very carefully to create an open distributed object architecture that can serve as a test bed freely 
available and ready to use for testing theories in some computational areas such as evolutionary computation, 
artificial life, pattern recognition, artificial intelligence, cognitive neurosciences and distributed objects 
architectures. Furthermore, it is a first step towards building a cognitive animated character. 
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1. INTRODUCTION 

Artificial life is a term originally intended to mean the 
simulation of macroscopic behavioral aspects of living 
beings using microscopically simple components 
[Bonabeau95].  However, the term spanned to designate a 
wide variety of simulated living creatures, including 
virtual characters whose behavior emerges from 
hierarchically and functionally specialized complex 
structures like an animal’s body [Terzopoulos98]. Both 
kinds of simulations are very interesting from the 
computational point of view: they offer very attractive 
means to computationally model complex behavior, a 
subject that has gained a special relevance under both the 
theoretical and the applied standpoints. 

Artificial life worlds are computational simulations such 
as virtual spaces where animated characters interact with 
the environment and with other virtual beings of the same 
or of distinct categories. Different levels of sophistication 
can be found in these virtual creatures, from unicellular 

life with minimalist models to complex animals with 
detailed biomechanical models. However, all of them 
display behavior that emerges from the dynamics of a 
complex system (for instance, systems with learning, 
reasoning, ontologies, cognitive processes, etc).  

New tendencies point to behavioral animation, where 
characters have some degree of autonomy to decide their 
actions. What we are aiming at is one of the most recent 
approaches to animation, cognitive animation [Funge99]. 
In this approach, artificial intelligence techniques are 
mixed with computer graphics to generate a comp uter 
animated character capable of acting in response to a 
storyboard or screenplay and displaying naturalism when 
doing other tasks not specified explicitly. Following this 
track to cognitive animation, we propose to exploit the 
capability of several methodologies and techniques that 
employ adaptive algorithms, evolutionary programming 
and artificial intelligence techniques. 
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Results obtained in a project set to build an artificial 
environment for animated virtual creatures (ARENA) are 
reported in this paper. Although it was conceived to 
allow more than one robot or virtual creature to be easily 
introduced to co-exist in the same environment, its first 
version presented here is a single-robot virtual world. 

Our goal is to obtain virtual creatures capable of 
performing specified tasks in their environment by 
exploring certain strategies and adapting those whenever 
necessary. This scenario can be useful for many 
purposes: for behavior modeling, as a laboratory of 
learning algorithms, for research on societies of virtual 
characters, in the study of collective dynamics of 
populations, etc. The ARENA robot – WoxBot (Wide 
Open Extensible Robot) – has a vision system consisting 
of a simulated camera and a neural network that classify 
the visual patterns to provide input to a motor system 
controlled by a deterministic finite state machine (FSM). 
This FSM is an automaton obtained from an optimization 
procedure implemented with a genetic algorithm. 

As an example of application, a given research project 
can be targeting visual recognition methods, so it will be 
using WoxBot as a subject employing the methods under 
test, and will take ARENA as a laboratory for evaluation 
experiments. Another research project instead, can target 
autonomous robot traveling strategies. In this  case, the 
ARENA floor can be the field of traveling, and WoxBots 
will be simulating the autonomous vehicles. Yet the 
WoxBot could be re-shaped to have the aspect of a given 
car or truck model and the ARENA could be configured 
to resemble a street, in a project intended to analyze 
vehicle traffic conditions. 

The ARENA is implemented as a distributed object 
environment and can run on single processor platform as 
well as can take advantage of parallelism or 
multithreading in high performance computer 
architectures. In this later case it could be used to handle 
highly sophisticated and complex applications, such as 
the simulation of a street with many cars. It could also be 
used to evaluate multi-agent distributed computational 
models using the WoxBots as the prototypical agents.  

The organization of this paper is as follows: the next 
section gives an overview of the ARENA project, its 
requirements and choices for solutions. Sections 3 to 6 
review several conceptual aspects involved in the various 
project components and give guidelines to be used in the 
implementation.  Section 7 discusses particular 
implementation issues, such as the choice of Java and 
Java3D as programming language and 3D application 
programming interface. Section 8 addresses the modeling 
of the character and the environment and presents the 
results obtained. Section 9 foresees the further steps to be 
taken. 

2. PROJECT OVERVIEW 

Our long-term research line in artificial life is aimed at 
the development of complex virtual worlds with realistic 
creatures able to exhibit sophisticated behaviors with 

reasoning, learning and cognition. To achieve it, one is 
required to attend to the following aspects: 

o Account to the wide variety of mathematical and 
computational models usually required to represent 
the complex aspects of living behavior; 

o Provide an efficient environment and platform with 
enough computational power to represent in detail 
the behavior of the simulated creatures in real time, 
including the ability to support live interactivity with 
persons; 

o Specify and build a system that embodies constant 
evolution and improvement in its constructs at the 
same time that enables or, moreover, promotes the 
reuse of well-succeeded results and implementations. 

Our choice was to fulfill these requirements building an 
application development environment on top of an 
architecture of distributed communicating objects 
mapped on a microcomputer cluster [Bernal99]. 
Additionally, the ARENA implementation also exploits 
parallelism via multithreading, so the program can run 
both on multi and single processor platforms. 
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The virtual space of the ARENA  (figure 1) has a floor 
and walls encompassing the limits of the virtual world. 
Inside this scenario one can place objects of several kinds 
and functionalities such as obstacles, barriers, traps, 
shelters, energy or food sources etc. One or many 
characters can be introduced in this environment. In the 
first stage of the project the sole character will be the 
WoxBot (figure 2), whose task is to keep itself alive as 
long as it can.  

Figure 1:  ARENA  (Artificial 
Environment for Animats) – a virtual world for 
the development of artificial life projects. The 
character at the center is a robot that avoids the 
cubes and seeks the pyramids. A contact with a 
cube reduces the robot life, while the pyramids 
extends it.  The robot goal is to prolong life as 
long as it can. An evolutionary computing 
scheme selects robots that perform better. The 
environment can support several robots.  

WoxBot Green floor 

Red cubes  
(punishment) 

Yellow pyramids  
(reward) 

Blue walls  
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Certain conceptual ingredients play specific roles on 
composing the artificial life scenario and thus should be 
present in the implementation: sensing and perception, 
knowledge use and evolution. In the following sections 
we examine these aspects. 

3. ARTIFICIAL LIFE 

Artificial life has been associated to computer science in 
different ways, from cellular automata theory [Adami98], 
[Bentley99] to computer graphics animation 
[Terzopoulos98], [Phillips88], [Badler92]. Some 
researchers have been involved with this field looking for 
models that would describe how real life began and 
evolved. In fact, they were looking for a universal life 
concept, which should be independent of the medium on 
which it existed [Adami98]. Other scientists were looking 
for physical models to give natural appearance to their 
characters. Very interesting results have been achieved 
through this approach [Terzopoulos98]. Although very 
different in purpose, these work have been related to 
evolution and natural selection concepts. In many of 
them, evolutionary computing schemes such as genetic 
algorithms have been an important tool to assist the 
conduction of transformations in the genotype of virtual 
creatures, allowing them to change from one generation 
to another. Mutation and combination (by reproduction) 
provide efficient ways to modify characteristics of a 
creature, as in real life.  Selection plays a role choosing 
those that, by some criteria, are the best suited, and 
therefore are allowed to survive and reproduce 
themselves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genetic algorithms are computational procedures capable 
of finding the optimal solution in particularly hard 
problems [Fogel95], [Holland92], [Koza92], 
[Mirchell97], [Beer90]. Each point of the optimization 

domain is represented by a binary string that is seen as 
“genetic information”, in the sense that this string can be 
mutated, by flipping bits, as well as two such strings can 
be mixed by a crossover operation, in a way comparable 
to the actual biological reproduction. These strategies 
provide an efficient way to obtain global optimization in 
cases where it is very difficult, or not practical, to 
formalize the optimization problem on an analytical 
framework. 

In this work the evolutionary computation is employed to 
generate the computer animated character control. Each 
WoxBot (Figure 2) is controlled by a finite state 
automaton, which evolves through generations, based on 
genetic mutations and crossover. Descendant robots can 
arise with some innovative features that may be better or 
worse than those from previous generations. A character 
being better or worse is a relative concept. In this project 
it is defined in a way correspondent to how well suited a 
character is to the environment. Those that by some 
criteria achieve higher grades (for instance keeping 
greater energy, living more time and performing their 
tasks faster) have higher chances to be selected for 
reproduction, and therefore to transfer the genotypes and, 
consequently, their features. 

The use of knowledge in the artificial life environment 
can be done under two aspects: (i) it can be present in the 
environment and in the conception of the creatures and; 
(ii) it can be used by the creatures themselves when 
performing their actions. In both cases, the effective and 
rational use of the knowledge (about the world, the 
actions, the tasks) leads to what is called intelligent 
behavior. Intelligence can also be considered a property 
emergent from evolutionary systems [Fogel95]. Thus, the 
evolving characters can be modeled as intelligent agents 
performing tasks in the virtual environment. 

4. INTELLIGENT AGENTS 

Intelligent agents may be understood as computational 
entities that behave with autonomy in order to manipulate 
the information associated to its knowledge. This 
autonomy must regard the agent design, the environment, 
the goals and motivations [Russel95], [Beer90]. They 
have the capability of reasoning about what is going on in 
the environment where they are running, or of responding 
to some query conducted by external agents or persons.  

In addition to artificial life features, our robots also 
exhibit features that allow their classification as 
intelligent agents. In this first implementation, while 
there is only one WoxBot in the Arena, they do not have 
communication, just sensing and mobility skills. And 
they have to decide which action they should take at 
every moment. A finite state machine has been evolved 
from random ones for this purpose. The robot should 
look for energy sources, while avoiding traps that make it 
weake r.  

Based on visual information, as explained further, the 
robot plans its way to get closer to the energy sources. A 
finite state machine that can be a result of evolution 
through generations determines the actions of the plans. 

Figure 2: WoxBot  (Wide Open Extensible 
Robot) – a virtual character that gets input from 
vision and reacts moving according to the 
decision taken by the finite state automaton. 

Perception: 
Neural 
Nets 

  Action: 
Finite 

Automaton 

   Motion: 

- Forward 

- Backward 

- Turn Left 

- Turn Right 
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Next versions of our robot will be able to communicate in 
an environment with other robots and they will 
implement also sociability skills, which are important 
features to promote a better adaptability from a creature 
to its environment, as in real life.  

 

 

5. PATTERN RECOGNITION 

One of the tasks that WoxBot has to perform in this first 
project is to be aware of nutrients (yellow pyramids) and 
hurting entities (red cubes) that are present in ARENA 
(figure 1). The ARENA scenario and robot vision are 
simulated by means of JAVA3D. The vis ual information 
is gathered from the 3D surrounding scene by projecting 
it to a view port with 3 color channels, namely R (red), G 
(green) and B (blue). Figure 3 depicts a typical input, 
which at the present state is taken in low resolution 
without any loss of accuracy, since no textures are yet 
used in our 3D virtual world simulation. To differentiate 
and spatially locate these entities, two specialized neural 
networks interpret the visual information received by the 
robot, one of them targeting nutrients and the other 
targeting hurting entities. These networks are named here 
ANN-I and ANN-II.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The network ANN-I is trained for the identification of 
yellow pyramids as well as for a general evaluation 
(classification) of the position occupied by the principal 
yellow pyramid in the robot's visual field. To help in this 
task, a simple filter for the yellow color is implemented 
as a pre-processing stage. This is done by combining the 
primary sensory channels RGB so to obtain a gray scale 
where yellow is mapped into high values of gray and the 
remaining colors are mapped into low values of gray. 

The monochromatic image obtained in this way is then 
used as the input to the ANN-I, the one that targets 
nutrients. After training, this network is able to activate 
one of 4 outputs (see Table I): output 1, indicating that no 
yellow pyramid is present in the visual field, output 2, 
indicating that the principal yellow prism is on the 
robot’s left, output 3, when the principal yellow prism is 
on the center of the visual field, and output 4, when the 
principal yellow prism is on the right. In this way, ANN-I 
makes the robot aware of the presence and location of 
nutrients. 

  

Code scene situation 

0 no object ahead 

1 target object at left  

2 target object at center 

3 target object at right 

Table 1: ANNI & II observers  

 

 

In the same lines as ANN-I, the second neural network, 
ANN-II, performs a similar function for the identification 
and position evaluation of the red cubes representing the 
hurting entities. For this second network, however, the 
gray images that are sensed by the neural network inputs 
are obtained by using a different filter, which combines 
the channels RGB so to favor the red color. 

The architecture chosen for ANN-I and ANN-II is the 
standard multi layer perceptron with one single hidden 
layer of moderate size and learning through the error 
back propagation algorithm.  

Among the observations that we did during the training 
of the neural networks we want to mention that the 
detection and position classification of visual targets was 
facilitated by the use of samples (pyramids and cubes) of 
similar sizes. In other words, ANN-I and ANN-II don’t 
have good abilities to implement scale invariance. That 
was in fact expected, since the complexity of the network 
is relatively limited, and its architecture does not have 
any specialized organization to implement scale 
invariance. This indicates that some kind of size 
invariance mechanism could be added in the pre-
processing stage. Another possibility is to use a larger 
and more complex neural architecture so to make 
possible the interpretation of targets positioned at a 
broader range of distances.  

An important issue to consider in the context of the 
neural networks of WoxBot is adaptability. In these 
initia l experiments with the robot, the training of ANN-I 
and ANN-II was done in an isolated phase, which was 
performed previously to the exploration of ARENA. In 
other words, only after WoxBot was able to do the 
differentiation between nutrients and hurting entities, he 
started his exploration in ARENA, and then, no further 
adaptation of the visual recognition system was allowed. 

blue wall green floor 

yellow pyramid black background 

red cube 

Figure 3: A typical image of the 
ARENA environment as seen by the 
WoxBot vision. The actual image has the 
depicted colors with shading resulting of 
the illumination. This image is the input 
of the neural nets that perform 
perception. It is also possible to add 
textures to the 3D scene and take yet 
more complex images. 
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In future phases of this project, we want the recognition 
system to be able to deal with unpredicted changing 
conditions such as change of illumination, and we will 
include the change of the features of the nutrients 
targeted by WoxBot (shape and color for example).  Of 
course, this depends strongly on the ability of the visual 
recognition system to adapt, since the target recognition 
prototypes change with new experiences and new needs 
of the robot, as its life and exploration of ARENA 
evolves. At that point of the project, the intrinsic adaptive 
nature of neural networks will be crucial, and it will be 
fully explored. 

 

6. ACTION, BEHAVIOR AND EVOLUTION 

The WoxBot character is an intelligent agent with a 
simulated visual sensor to pick images of the 
environment from its point of observation. The two 
neural networks inside the agent analyze these images 
classifying the visual patterns. These networks outputs 
are tokens fed into the agent control system, which is a 
finite state machine  (FSM). The inputs to the FSM 
generated by the combination of the ANN-I and ANN-II 
outputs are shown in Table 2. 

 

input code  

to FSM 
Semantics 

0000 no YP and no RC 

0001 no YP but RC at left  

0010 no YP but RC at center 

0011 no YP but RC at right 

0100 YP at left but no RC 

0101 YP at left and RC at left 

0110 YP at left and RC at center 

0111 YP at left and RC at right 

1000 YP at center but no RC 

1001 YP at center and RC at left 

1010 YP at center and RC at center 

1011 YP at center and RC at right 

1100 YP at right but no RC 

1101 YP at right and RC at left  

1110 YP at right and RC at center 

1111 YP at right and RC at right 

Table 2: Input codes to the FSM and their meanings.  
              YP = Yellow Pyramid and RC = Red Cube 

 

Based on the above codes, the FSM chooses one action in 
its repertory: going ahead, turning right, turning left or 
going backwards. Table 3 shows the action encoding 
used to build the FSM representation as a genetic code. 

code Action 

00 turn left 

01 go straight ahead 

10 turn right 

11 go backwards 

Table 3: Movement encoding 

 

The motion control is performed by the FSM automaton, 
which is designed without specifying in advance what 
interstate transitions should occur. It is initially set with a 
random structure that is improved based on evolutionary 
computation concepts. Only the maximum number of 
allowed FSM states is specified. The FSM is represented 
by a string of bits coding its states, inputs and actions. 
This string is named the WoxBot chromosome. For each 
FSM state there is a chromosome section. All these 
sections have the same structure: for each of the 16 
possible inputs shown on Table 2, there is an entry on the 
chromosome state section, composed by two fields:  the 
first one is the number of the next state after the transition 
caused by the corresponding input; the second field is the 
code of the action, following Table 3, taken upon the 
given input. Figure 4 gives an example of a FSM and 
Figure 5 is the corresponding chromosome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A sample Finite State Machine (FSM) used by 
WoxBot to control its reactions to the visual stimuli 

 

At the start of the evolutionary process, a population of 
WoxBots is generated by sampling chromosomes at 
random from a uniform distribution. This population 
constitutes the first generation. Each member of the 
current generation is put into the ARENA, and it is 
assigned a performance value proportional to the duration 
of its life. A contact with red cubes shortens the life of 
WoxBots, while contact with yellow pyramids extends it. 

00/01 

00/01 

00 01 

10 
11 

01/00 

01/10 
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*0/11 

*1/10 
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10,11/00 
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135

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001



 

State In 00 In 01 In 10 In 11 

00 00 00 01 00 00 00 00 00 

01 00 01 10 10 01 00 01 00 

10 00 01 10 00 11 11 10 00 

11 00 11 11 10 00 11 11 10 

Figure 5:   Chromosome for the FSM of figure 4. There 
are 4 states. Each state has 4 inputs. Each Input has 2 
fields, the first is the next state after the transition and the 
second is the action code. 

 

After each generation of robots in the ARENA, the fittest 
ones are selected to be the parents of the next generation 
and their chromosomes are grouped in pairs. These 
chromosomes then undergo a mutation followed by 
crossover of each pair. This constitutes part of the next 
generation; the remnants are completed, in a heuristic 
method of adding variability, by drawing them from a 
uniform probability distribution, in the same fashion as it 
was done for the first generation. This procedure follows, 
giving thus more generations, until there is a stabilization 
of the fitness value of the population. Figure 6 shows 
schematically the whole evolutionary process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. IMPLEMENTATION ISSUES 

Before building an application intended for virtual world 
simulation, one key decision to be made is whether it will 
be a real time application or not. Many 3D animation 
packages today, like Maya™ or Softimage™, have an 
integrated Application Programming Interface (API), 
allowing algorithmic animation of characters. This 
approach, yet useful for some kinds of simulations, has 
the drawback of few or none capabilities for user 
interaction. These packages are also expensive, 
narrowing the scope of people that could later experiment 
with our work. 

Having decided for real-time capability, the next issue is 
the choice of the API. Some requirements we decided to 
fulfill with ARENA included: portability through many 
platforms, share ability and open architecture, and easy of 
use for others. Given these issues, our choice was made 
for the Java Programming Language for development and 
Java3D as 3D graphics package. Java is a worldwide 
spread and freely available language strongly object-
oriented. Its three-dimensional extension, Java3D, is 
available on a variety of platforms (Windows, Linux, Irix 
and others), is also freely available, and can be run 
through web browsers with the proper plug-in.  The most 
powerful feature of Java3D is its scene-graph oriented 
approach that shifts the focus of 3D programming from 
vertexes to hierarchies of scene objects and events, 
shortening development time. 

Additional advantages include the possibility of 
importing content authored in 3D modeling and 
animation packages, use of underlying OpenGL or 
DirectX accelerated hardware, automatic use of threads 
for executions, taking advantage of parallel hardware, 
and the availability of free Java Integrated Development 
Environments (IDEs), like Java Forté, from Sun 
Microsystems and JBuilder, from Inprise. 

 

7.1 Application structure 
Java3D organizes the objects represented in its scenes in 
a special kind of tree called scene graph [Sowizral98]. 
Such representation has the advantage of hierarchically 
organizing elements, what eases the programmer burden 
of implementing kinematically linked objects, such as a 
forearm linked to an arm, where a movement of the 
second implies a movement of the first.  Another 
advantage relates to parallelism (branches of the tree 
potentially can be processed in parallel), and 
optimizations related to execution culling (whole 
branches of the hierarchy that aren’t changed in certain 
ways can be optimized and made faster to process). 

Some main objects where used at the ARENA, and are 
seen at figure 7. The objects VirtualUniverse and Locale 
operate as gateways to the 3D rendering engine. 
BranchGroup objects grant others access to the Locale 
and act as a grouping tool. TransformGroups represent 
grouped objects subject to transformations (translation, 
scaling and rotations). 

11001001 

11010111 

11110110 

10000010 

CROSSOVER 

FITNESS 

SELECTION 

CURRENT 
GENERATION 

MUTATION 

10000101 

00010011 

11110101 

10010000 

First generation 

New generation

Figure 6: The evolutionary process. 
The first generation (top) undergoes 
simulation that results in fitness 
values. A crossover of the 
chromosomes of best individuals 
(WoxBots) yields a new generation, 
subject to mutation before 
simulation takes place again. 
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Woxbot's Geometry and
Appearance
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Animated
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View
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Woxbot's ViewPlatform

View
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Canvas3D

Woxbot's Canvas3D
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Control
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Control

Cubes
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Transform
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Transform
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Transform
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3D
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Figure 7:  Java3D Scene Graph of ARENA with WoxBot. All objects linked to a 
VirtualUniverse through a Locale are taken into account by the rendering engine. 
BranchGroup (BG) objects serve as objects for grouping others. TransformGroups (TG) 
represents spatial transformations such as scaling, rotation and translation. 
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Figure 8: Sequence diagram of ARENA and WoxBot 
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The Java3D scene graph structure [Sowizral98] of the 
ARENA application is  seen in figure 7. This application 
is composed of one Locale, with three BranchGroups 
directly attached to it. There is one BranchGroup for the 
user view of the scene (View BranchGroup), one 
BranchGroup holding the 3D objects in the scene that 
cannot move (floor and walls) and one BranchGroup 
holding the animated scene objects. The reason for this 
division is that Java3D performs a series of optimizations 
based on what a given BranchGroup can or cannot do, by 
holding all the 3D objects that cannot move in one 
BranchGroup, we can increase the efficiency of the 
optimizations. The Animated BranchGroup is where 
there is most to be observed in this application.  The non-
robot 3D objects (boxes and pyramids) have their own 
TransformGroup, the robot has one TransformGroup for 
rotation and another for translation.  The WoxBot 
Rotation TransformGroup is the lastTransformGroup 
before the robot 3D mesh data, below it is also the 
ViewPlatform of the camera that renders the robot view 
(the WoxBot’s View). The Animated BranchGroup also 
holds two control objects that are responsible for the 
dynamic aspect of the application: WoxBotControl and 
ArenaControl. WoxBotControl models the behavior of 
the robot, keeping track of visual data (accessing the 
WoxBot’s Canvas3D), presents the data to the neural 
networks for pattern recognition and feeds the patterns 
into the state machine that decides robot’s actions. Once 
robot’s actions are defined, they’re told the 
ArenaControl, that only lets valid actions take place (the 
robot cannot cross through walls or red cubes, for 
instance. 

 

The diagram in figure 8 depicts in a simplified way the 
dynamic behavior of this program. An arrow from one 
bar to another means the first bar’s object is requesting 
the second object to perform an operation. Return values 
are not represented. At extreme left, WoxBotControl can 
be seen. This object is responsible for most of the 
intricacies of the simulation. From time to time, this 
object polls the WoxBot Canvas3D for visual data. Then 
it processes the visual data and feeds the two neural 
networks, collecting pattern classification from them. 
Pattern data is then fed into state machine, which returns 
the action the robot should take. This desire of action is 
communicated to the Arena Control, that applies the 
results of this action to the scene. ArenaControl detects 
collision between the robot and other scene objects, 
decrementing robot’s time of life when a collision is 
against a harmful object or incrementing it when collision  
is against yellow pyramids. In the latter case, the 
pyramids should disappear for a given amount  of time, 
this behavior also is triggered by the ArenaControl. 

 

 

 

8. SIMULATION AND RESULTS 

The genetic algorithm was used to evolve a population of 
16 individuals along 30 generations. The first generation 
was randomly created, every subsequent generation had 
the genotype of half of its members randomly generated 
and the other half created by a crossover of genotypes of 
the two most fit individuals of the previous generation, 
followed by a mutation. The crossover happened at a 
random point between the beginning and the end of the 
parents’ chromosomes, exchanging complementary 
segments, so that resulting and original chromosomes 
have the same length. Mutation rate used in this 
simulation was 0.06, and it was a bit mutation rate, each 
bit copied from parents had a chance of 0.06 of being 
mutated. 

A state machine with 4 states was used, which 
corresponds to a genotype of 258 bits (4 times 64 bits, the 
length of the description of each state transition / output 
relations, plus additional 2 bits to indicate the initial state 
of the machine). 

The members of the generations are tested at the 
simulation environment one after another. In the 
simulation discussed in this paper each individual was 
given a time of 60 seconds, that could be extended or 
decreased on basis of the individual’s behavior. Each 
time an individual collided against an yellow pyramid it 
received extra 4 seconds, that pyramid was then 
considered “eaten”, and a new pyramid would appear at 
its place only after 4.5 seconds, this distribution of values 
was made to avoid seen behaviors where individuals has 
the tendency to stay at the same place indefinitely just 
waiting for the energy, this way they will end up dying 
once waiting for energy spends more energy that is 
gained when the waited energy arrives. The collision 
against a red cube caused the individual to loose 5 
seconds, cubes also are considered “eaten” after the 
individual passes over it, and at the simulation discussed 
here those cubes took 3 seconds to reappear. By varying 
parameters such as values of the rewards and 
punishments related to passing over to the objects, and 
the time it takes the objects to reappear, we expect to see 
a range of strategies evolving from daring to 
conservative. 

Figure 9 depicts the fitness plot along the generations. 
Some oscillation of the tendency is due to the low 
number of members in the populations, but the overall 
tendency to increasing and stabilization can be 
appreciated. After a long term running with bigger 
populations, the fitness will probably stabilize.  
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Figure 9:  Fitness of the WoxBots along the evolutionary 
process of a population of 16 individuals. 

 

At the present stage, the WoxBot still does not memorize 
the previous actions, so it actually cannot take advantage 
of learning. The number of states of the FSM is also low 
– a maximum of only 4 states is allowed. These 
limitations were adopted just to provide a reasonable 
chance for understanding the behavior of the machine by 
examining its structure. 

Figure 10 presents a snapshot of the environment built in 
Java 3D to develop the ARENA / WoxBot project. Figure 
11 shows the chromosome of the best-fitted individual in 
the above experimental run. 

 

9. CONCLUSION AND FUTURE WORK 
The first stage of the project was to build the ARENA 
with a single WoxBot to test the main idea and to orient 
the specification of the further steps. There are two main 
directions to follow simultaneously from now. One is to 
proceed with the ARENA development introducing more 
complexity in the environment, in the tasks and using two 
or more WoxBots simultaneously.  The other is to 
improve the WoxBot to build new and more sophisticated 
characters. 
The Jack [Adami98] project can be an inspirational 
experience for us, where different levels of research 
development and application and incremental 
development were successfully explored. 

Concerning the actual stage of the simulations, WoxBot 
will have some improvements, namely to allow much 
more states in the FSM and to provide a memory for a 
finite number of previous actions. Also the ARENA will 
undergo some improvements concerning   its size, the 
distribution of objects, the presence of textures and to 
allowance of simultaneous WoxBots. Also, concerning 
the WoxBots, given the use of textures and objects other 
than pyramids and cubes, improvements on its visual 
system will also have to be provided. 
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Figure 10: The Development desktop environment built with Java/Java3D. It allows the visualization of the evolutionary 
process live action, data logging for the population parameters, chromosomes, etc. It enables one to load a previously 
evolved individual and watch its performance again. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Chromosome of the best fitted individual of the experiments run with the specifications provided in the text. 

Initial state:3 
 
 3/2 3/0 0/3 1/0 0/3 3/3 2/1 3/3 2/3 3/0 3/2 3/1 2/0 3/1 3/1 0/2 
 2/2 0/3 2/3 3/0 0/3 0/1 3/0 0/3 1/0 2/2 1/0 1/1 0/2 3/2 1/0 1/3 
 1/0 2/3 2/2 0/3 3/1 1/0 2/0 1/0 1/3 1/0 0/0 1/1 3/2 0/0 3/2 0/0 
 0/1 2/0 2/3 3/3 3/2 3/1 3/3 2/1 0/0 1/0 1/0 0/0 0/2 1/3 1/1 3/2 
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