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Abstract 
This paper presents a novel approach to the real-time rendering of complex scenes problem. Up to the present 
date, a huge number of acceleration techniques have been proposed, although most are geared towards a 
specific kind of scene. Instead of using a single, or a fixed set of rendering acceleration techniques, we propose 
the use of several, and to select the best one based on the current viewpoint. Thus, dynamically adapting the 
rendering process to the contents of the scene, it is possible to take advantage of all these techniques when they 
are better suited, rendering scenes that would otherwise be too complex to display at interactive frame rates. 
We describe a framework capable of achieving this purpose, consisting on a pre-processor and an interactive 
rendering engine. The framework is geared towards interactive applications were a complex and large scene 
has to be rendered at interactive frame rates. Finally, results and performance measures taken from our test 
implementation are given. 

Keywords 
Real-Time Rendering, Scene Management, Visibility Culling, Levels-of-Detail, Image-Based Acceleration 
Techniques. 

 
1. INTRODUCTION 
Real-time rendering of complex scenes is an old problem 
in computer graphics. Applications such as computer 
aided design (CAD), architectural visualization, flight 
simulators, virtual environments and computer games 
need to display scenes comprising many thousands, if not 
millions of polygons. Even today’s hardware accelerated 
rendering pipelines cannot handle all the polygons that 
compose such scenes. Due to our everlasting quest for 
visual realism, the gap between processor power and 
scene complexity, is expected to maintain itself in the 
future. Thus, it is necessary to employ rendering 
acceleration techniques, i.e., techniques that reduce the 
number of polygons sent to the graphics pipeline, at each 
frame. 
Over the years, several techniques that address this 
problem where proposed. They can be categorized into 
the following areas: (1) visibility determination 
techniques, and (2) geometric complexity reduction 
techniques. Area (1) encompasses topics such as view-
frustum culling techniques and occlusion culling 
techniques, where as area (2) includes geometric detail 
reduction techniques and image-based acceleration 
techniques. 
Most of these techniques have one thing in common: they 
are special purpose, i.e., they are built to explore 
characteristics of certain types of scenes. As an example, 

consider a city model: if the camera were located inside a 
building, in a room, it would be wise to use techniques 
that take advantage of the room’s specific geometric 
arrangement – walls, which occlude other areas, and 
doors through which one can see – namely: portal based 
techniques [Airey90,Teller91,Teller92,Leubke95]. If the 
user were walking along a street, it would no longer be 
possible to use portal techniques, instead, more generic 
occlusion culling techniques should be used, such as 
shadow frusta [Coorg97,Hudson97] or hierarchical 
occlusion maps [Zhang97, Zhang98]. If the user where 
flying high above the city, it would be useless to use 
occlusion culling techniques, instead detail reduction 
techniques should be used, for most of the city would be 
visible. 
As shown by this example, the best techniques to use 
depend on where the user is, and where he is looking at. 
In this paper we propose a new approach to the real-time 
rendering of complex scenes problem: we propose to 
select the set of rendering acceleration techniques based 
on the current viewpoint and view-direction and we 
present a framework capable of achieving this purpose. 
This paper is organized as follows: in section 2, we 
review the state of the art in rendering acceleration 
techniques, specifically: on visibility culling, scene 
simplification and image-based acceleration techniques; 
in section 3 we present our general framework; on 
section 4 we provide an overview of our test 
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implementation; on section 5 the results are introduced; 
on section 6 we present our conclusions; and on section 7 
we outline future research directions. 

2. PREVIOUS WORK 
Rendering scenes as complex and as fast as possible has 
always been a major goal in computer graphics. Over the 
time, many different techniques and rendering algorithms 
where proposed. Today, rendering pipelines are 
implemented in hardware, and are standardized around 
the z-buffer algorithm. Thus research focus has shifted 
towards techniques that try to reduce the number of 
polygons passed to the graphics pipeline. Here, apart 
from a small exception, we will concentrate on such 
techniques only, and not in rendering techniques that can 
no longer be used. 
Specifically, we will cover visibility determination 
techniques, including view-frustum culling and occlusion 
culling techniques, and geometric complexity reduction 
techniques, including geometric detail reduction 
techniques, and image-based acceleration techniques. 

2.1 Visibility Determination 
2.1.1 View-Frustum Culling 
View-frustum culling techniques try to quickly determine 
which objects are inside the current view-frustum and 
pass only those to the graphics pipeline. Either a 
bounding volume hierarchy, or a spatial partitioning 
hierarchy, is used, and each volume is hierarchically 
tested for containment within the frustum planes 
[Moller96]. 
This is a simple and effective test, which is performed by 
most applications, and implemented in any retained mode 
API. 

2.1.2 Occlusion Culling 
Occlusion culling techniques try to eliminate objects 
(occludees) that are hidden behind other objects 
(occluders). 
Greene et. al. proposed the use of a hierarchical z-buffer 
[Greene93]. A scene in augmented with a hierarchical 
spatial partitioning tree and it is rendered in front-to-back 
order. Polygons will be tested against pyramid of z-
buffers, and for densely occluded scenes. The last, and 
thus the furthest, will be quickly rejected. Until recently 
this technique was limited to software rendering, but the 
latest graphic accelerators already implement hierarchical 
z-buffers in hardware. 
Zhang et. al. proposed another object space occlusion 
culling technique – Hierarchical Occlusion Maps 
(HOMs) [Zhang97, Zhang98]. For a given viewpoint, 
several occluders are rendered into an image, using 
hardware acceleration. Several lower resolutions of this 
image are created, also using the standard hardware, in 
order to form an image pyramid. The bounding box of 
the remaining objects are projected onto the screen and 
checked against the image pyramid. Any object whose 
bounding box is covered by the projection of the 
occluders is hidden behind them. 

Object space occlusion techniques were also proposed 
[Coorg97,Hudson97]. The basic idea is that if the 
viewpoint is considered to be a light source, any object in 
the shadow of an occluder is invisible from the same 
viewpoint. A shadow frusta, i.e., a set of planes bounding 
this area can be built and each object’s bounding box is 
tested against these planes. 
Another set of techniques, instead of trying to determine 
what is invisible from a point in space, try to determine 
what is visible from a given volume in space – its 
Potentially Visible Set (PVS). 
For static interior scenes, portals and cells are the 
preferred solution. The terms portals and cells where first 
coined by Jones [Jones71] in the context of hidden line 
removal, back in 1971. In his algorithm, models were 
manually subdivided into convex cells and convex 
portals. Rendering begins with the walls and portals of 
the cell containing the user. As each portal is drawn, the 
cell on the opposite side is recursively rendered and its 
contents clipped against its portal. Later, Airey [Airey90] 
focused on the problem of determining cell-to-cell 
visibility, proposing several solutions, including point 
sampling and shadow volumes. Teller [Teller91,Teller92] 
took the concept further and found an analytic solution to 
the portal-to-portal visibility problem based on linear 
programming techniques. Luebke and Georges 
[Leubke95] suggested dynamically calculating the PVSs 
at run-time. 
For static exterior scenes techniques were proposed that 
calculate the PVS for a volume in space. They are 
conservative volume techniques since they calculate a as 
tight as possible superset of the objects which can be 
seen from any point inside a given volume in space 
[Cohen-Or98,Durand00,Durand99,Schaufler00]. 

2.2 Geometric Complexity Reduction 
2.2.1 Geometry-Based Techniques 
Geometry based techniques aim to reduce the number of 
polygons used to represent an object, based on certain 
criteria: typically, its distance to the viewpoint. The 
reason behind this is that objects further away from the 
viewpoint occupy a smaller screen space area, and thus 
can be represented with less detail. 
Static levels of detail, first introduced by Clark 
[Clark74], use several representations of the same object 
at different resolutions and switch between them based 
on the distance to the user. Funkhouser and Séquin 
studied the problem of selecting the set of object 
representations that maximizes the visual benefit while 
maintaining a target frame rate [Funkhouser93]. 
Progressive meshes, introduced by Hoppe 
[Hoppe96,Hoppe98] represent an object as a coarse base 
mesh, plus a record of each operations required to 
transform it into the full resolution mesh. These 
operations are invertible, and each adds a new vertex. 
Thus, it is possible to progressively increase or decrease 
detail, depending on the distance to the viewpoint. The 
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addition and removal of vertexes can be smoothly 
animated. 
Techniques capable of selectively refining the models, 
where also proposed [Xia96,Xia97,Hoppe97,Luebke97]. 
For large models, it is desirable to increase details in the 
parts that are closer to the viewpoint, and not the object 
as a whole.  
Special purpose algorithms, capable of reducing the 
detail in a view dependent way were also proposed for 
height field (terrain) data 
[Lindstrom96,Duchaineau97,Hoppe98b]. 
Another possibility is the use of parametric surfaces to 
represent scene content [Kumar96,Kumar97]. They can 
be tessellated on the fly, with more or less detail, 
depending on their distance to the user. 

2.2.2 Image-Based Acceleration Techniques 
Image-based acceleration techniques, try to replace 
portions of a scene with images. An image can represent 
as many objects as necessary, and its rendering time 
depends only on its resolution. On the other hand, it can 
only represent static content and it is only valid when 
seen from the point where it was created. 
Marciel and Shirley where the first to use images in this 
context. They replaced objects with pre-rendered images 
(a single polygon texture mapped with an image), and 
coined the name impostors for this new primitive 
[Maciel95]. 
Shade et.al. [Shade96] and Schaufler and Stürzlinger 
[Schaufler96] introduced the idea of image caches. 
Impostors are generated on the fly to replace parts of the 
scene, and remain valid for a couple of frames. As the 
viewpoint moves, and the error exceeds a user specified 
number of pixels, the impostor(s) will be invalidated and 
regenerated. 
Techniques to extend the life of impostors were proposed 
by Scilion et. al.[Scillion97] and Decoret et. al. 
[Decoret99].  
Images have also been used in portal environments. 
Aliaga and Lastra introduced the concept of portal 
textures [Aliaga97]. They replaced portals with pre-
rendered images of the cells behind it and showed how to 
smoothly transition from images to geometric based 
representations of a portal, when the user approaches it. 
They also introduced a method to automatically place 
images in order to guarantee a minimum frame rate 
[Aliaga99]. 

2.3 Discussion 
Most of the above-mentioned techniques are special 
purpose ones, i.e., they are best suited for specific kinds 
of scenes. Some can only handle static scenes; others are 
suited for both static and dynamic ones. Some require 
that the scene be represented as a set of disjoint objects; 
others do not impose any particular structure. Some are 
only usable for interior scenes; others are geared towards 
exterior ones. Some offer advantages when used with 
geometry located close to the viewpoint, others are 

preferred for objects located far away. Given these 
criteria, Table 1 (located at the end of this document) 
summarizes the requirements/appropriateness of each 
above-mentioned technique, and groups them into 
categories. 

 

Table 1 – Categorization of existing Rendering Accel-
eration Techniques and situations where they should 
be used. DYN stands for dynamic scenes, STA for 
static scenes, IN for interior scenes, OUT for exterior 
scenes, UNSTR for unstructured scenes (poly soup), 
STR for structured scenes (objects/meshes), NEAR 
for scene content close to the viewpoint and FAR for 
scene content far from the viewpoint. 

Point visibility occlusion techniques are suitable for both 
interior/exterior and static/dynamic scene content. 
Among these, Shadow Frusta and Hierarchical Occlusion 
Maps (HOMs) handle static occluders better, but 
occludees can still be dynamic. They also require that the 
scene be organized as a set of objects that have bounding 
volumes assigned. Hierarchical Z-buffer imposes no 
organization on the scene. 
Conservative volume visibility evaluation techniques are 
done off-line, thus are only applicable to static scene 
content. Portals and BSP trees are special purpose and 
suitable only to interior scenes. While Portals require the 
scene to be subdivided into cells and portals, BSP trees 
impose no such structure, since they are able to create it 
from polygon soup models. Octree-based conservative 
visibility evaluation techniques are suited for exterior 
scene content. 
The distinction between complexity reduction techniques 
is cleaner. With the exception of portal textures, which 
are more special purpose, they are all suited to both 
interior and exterior scenes. Geometric detail techniques 
require the scene to be organized as a set of objects some 
with special purpose representations, while image-based 
techniques do not impose any special structure on object 
representation. Geometric detail techniques are suited for 
both static and dynamic objects, while image-based 
techniques still have difficulty to cope with dynamic 
scenes, be it moving objects or changing illumination 
conditions. Images are also better suited to represent 
scene content that is far from the viewer, given that the 
error induced as the viewpoint moves away from the 
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viewpoint from where it was originally created is smaller, 
if the image is placed far away from the user. Geometric 
detail techniques are usually better to represent scene 
content closer to the user, since that after some point in 
the distance an object will contribute very little to the 
user perception of the scene and its lowest detail can be 
used, without having to change it further. 
 Moreover, it is useless to apply occlusion-culling 
techniques if a substantial part of the scene is not 
occluded from a given viewpoint. Similarly, it is useless 
to employ complexity reduction techniques, if there are 
not enough polygons visible. 
As a conclusion, it is safe to say that: the best 
acceleration techniques are dependent on the chosen 
viewpoint and view-direction. 

3. SELECTING THE BEST RENDERING 
ACCELERATION ALGORITHM 
In order to select the best rendering acceleration 
techniques, it is necessary to analyze the scene and 
determine which of the available techniques are best 
suited for the current viewpoint. This process takes its 
time, which should be minimized. Specifically, the time 
to select an algorithm iα , amortized by the number of 
frames it remains valid, plus the time to render the scene 
using it, should be inferior to the time to render the scene 
with a single algorithm β . 

)()(
_

)(
βα

α
renderirender

iselect tt
framesvalid

t
<+  

Another important criterion is that it is undesirable to 
switch between algorithms every frame. In other words, 
spatial coherency hints that the best techniques for a 
given viewpoint remain the same over a given 
neighborhood thereof.  
To keep the selection time low, we propose to analyze 
the scene off-line, and store information that can be used 
at runtime to select the appropriate algorithm, once the 
viewpoint is known. 
To explore spatial coherency, we suggest augmenting the 
scene with a spatial subdivision hierarchy, and marking 
each node with the techniques to use, when the viewpoint 
is located within the volume it represents. This tree 
should be kept separate from the usual view-frustum 
culling hierarchy, since it fits a different purpose: the 
former groups objects based on their spatial location, and 
the later categorizes zones of space. Even if the same 
type of data structure is used, each will benefit from 
different subdivision criteria. Possible choices for such a 
tree are an octree, a k-dtree, a bsp-tree or a similar data 
structure. The advantages and disadvantages of each are 
well documented elsewhere. 
Since the best techniques are liable to change with the 
view-direction, it is necessary to consider several view-
directions per node. Ignoring the camera tilt, its 
orientation can be expressed by two angles: θ  (azimuth) 

and ϕ  (elevation). Dividing the space of all possible 
orientations into  discrete intervals of the form n
[ [ [ [1+1+ ,, × iii i ϕϕθθ , it is possible to determine the best 
techniques when the view-direction is inside each 
interval. This information can be stored at each node 
using a bi-dimensional table, indexed using the current 
view direction ( )ϕθ , . 

Such representation takes advantage of space coherency 
since that the contents of a scene, as seen from two points 
close by in space, using more or less the same view-
direction, are likely to be very similar. Thus the best 
techniques are also likely to be the same in both 
situations. 
Summarizing: During the preprocessing step the scene is 
divided into a set of volumes, using a spatial subdivision 
hierarchy. Each volume is analyzed in order to determine 
the best techniques to use when the viewpoint is therein, 
and looking in a given direction. This information is 
written in the corresponding tree node. Additional 
preprocessing required for each particular algorithm is 
done and stored at this time. At run time, once the 
viewpoint is known, the spatial subdivision hierarchy is 
used to rapidly access the pre-computed information and 
to determine the techniques to use. 

 

Figure 1 - Dividing the space of all possible view-
directions into discrete intervals 
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Figure 2 – The scene is portioned using a Hierarchical 
Space Partition Tree (an octree in this example) and 
each node stores a table with the techniques to use for 
each view-direction. At runtime the viewpoint (x,y,z) 
is used to determine the current tree node and the 
view-direction (θ,φ) is used to index the 
corresponding table, obtaining the acceleration 
techniques and associated data. 

In the next two sections both these steps will be 
addressed. 

3.1 Scene Preprocessing 
The preprocessor’s goal is to build the hierarchical 
spatial partition tree, analyze the scene as seen from each 
node and view-direction, determine the techniques that 
are better suited in each case, store this information at 
each node and write the hole data structure to disk. 
In order to determine if acceleration techniques are 
required, it is necessary to measure how complex is a 
scene, as seen from a given viewpoint. Then there are 
two characteristics that have to be analyzed for each 
viewpoint and view-direction: first, in order to justify the 
use of occlusion techniques, it is necessary to determine 
the set of objects that can be seen, and the occlusion 
relationships between these objects. Second, to determine 
if detail reduction techniques are required, it is necessary 
to determine how complex is this set of objects.  

3.1.1 Measuring Geometric Complexity 
How complex a scene is, is a relative concept. A scene 
can be too complex for one machine, and fairly easy to 
render using another. The simplest way to determine the 
time it takes to render a given object is to simply render it 
and measure.  Since this is done as a preprocessing step, 
it means that the scene has to be preprocessed in the same 
type of workstation that will be used for the visualization. 
This may not always be desirable. Thus, it is necessary to 

find an abstract and adjustable model of each machine’s 
graphics pipeline. Back in 1993, Funkhouser and Séquin 
[Funkhouser93] proposed one such model. Surprisingly it 
is still valid today. 
The cost of rendering an object or a set of polygons, i.e., 
the time it takes to do it, increases with the number of 
per-vertex and per-fragment operations, the hardware 
has to perform. Per-vertex operations include moving the 
vertexes to the GPU, through the system’s bus, vertex 
transform, lighting and clipping, or whatever vertex 
program is specified in today’s programmable graphic 
pipelines. Per-fragment operations include rasterization, 
texture mapping, depth compares, stencil operations, 
pixel-shader operations, and so on. 
Funkhouser and Séquin argued, and showed 
experimentally, that the per-vertex cost and the per-pixel 
cost change linearly, with machine dependent 
proportionality constants vα and pα , with the number 

of triangles and the number of pixels drawn, respectively. 
Both these proportional factors can be taken from 
manufacturer’s data sheets or evaluated experimentally 
on each platform. The cost of rendering an object, or a 
set of triangles is the higher of these costs, since these 
operations run in parallel, in a pipeline, whose weakest 
link determines the overall cost. 

}_,_max{ pixelsnumvertexesnum pv ×× αα  

Calculating the number of pixels occupied by each 
triangle, is time consuming and unnecessary. Instead the 
number of pixels occupied by an object can be 
approximated by the number of pixels occupied by the 
projection of its bounding box on the screen. To make 
calculations even simpler, it can be approximated by the 
number of pixels occupied by the 2D bounding box of 
the screen projection of the object’s 3D bounding box. 

3.1.2 Selecting Visibility Techniques 
Since interior areas are usually modeled separately, we 
assume that they are marked as such in the scene model. 
Thus, it is not necessary to determine which areas are 
interiors and which are exteriors automatically. Interior 
areas are represented as cells with portals which link to 
other cells, or to the tree structure (for example, an 
octree) used to represent the outside areas (windows or 
doors can lead outside or to other rooms). Portals leading 
into inside areas will be represented in the nodes of this 
tree structure, corresponding to the volume where they 
are located. 
Thus, if an implementation wishes to use portal based 
techniques, its hierarchical structure will be a 
combination of a cell graph, and an octree. The only 
requirement is that given a point in space, it must be 
possible to determine in which cell it is or in which 
octree node it is located. 
A cell will assume the same role as an octree node. It will 
also have a table, which is indexed using the current view 
direction. If justifiable, a cell can be further divided (for 
instance, complex factory models are known to exhibit 
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large, and highly intricate interior rooms, with pipes and 
machinery occluding each other). For all purposes, a 
portal is treated as any other object, except that when it is 
rendered, the cell behind it will be displayed instead. 
During the preprocessing step this hierarchy is built, 
using the usual techniques. If memory constraints permit 
it, the PVS for the interior cells can be computed and 
stored at this time [Airey90,Teller91,Teller92]. 
Alternatively visibility can be evaluated at run-time using 
Leubke and Georges’ technique [Leubke95]. 
The first thing to do at each viewpoint is to cull all the 
objects outside the view-frustum, and determine if the 
remaining ones can be rendered under the allotted frame 
time. If they can, it is not necessary to use any special 
techniques. If they cannot, it is necessary to determine if 
there are objects that can be used as occluders. Object 
space occlusion culling techniques require a reduced 
number of large close by occluders. On the other hand, 
Zhang’s hierarchical occlusion maps can handle several 
smaller occluders. More specific measures on how to 
select ocluders for each technique are given in 
[Coorg97,Hudson97] and [Zhang97, Zhang98] 
respectively. Using our technique, the accelerations 
techniques are chosen based on the number and type of 
possible occluders, and not the other way around. 
Whatever technique gets chosen, the set of occluders to 
use for this viewpoint and direction are stored at the 
corresponding node. 

3.1.3 Selecting Complexity Reduction Techniques 
Given a viewpoint, a view-direction and the set of visible 
objects, the preprocessor determines if they can be 
rendered in the allotted frame time, without complexity 
reduction techniques. If they cannot, it tries to use 
different techniques for different parts of the scene. 
The relevant criterion here is proximity: Image-based 
techniques are better suited for representing far away 
portions of the scene, since they can group lots of small 
objects into a single image, and the further away the 
image is, the further one can move away from the point 
where it was created without noticing errors. On the other 
hand, after some point in the distance, the object will be 
too small and it can be rendered using the lowest detail 
possible. Thus geometric detail techniques are better 
suited for objects that are closer to the viewpoint. 
Furthermore, since most image-based techniques can 
induce visual artifacts, we have chosen to try geometric 
detail techniques first and image-based ones only if 
necessary. 
The visible objects are placed in a list sorted by distance 
to the viewpoint. Two passes are made through this list, 
starting from the further object to the closest one. In the 
first, each object is selected to be rendered using a 
geometric detail reduction approach. In the second each 
object is selected to be rendered using an image-based 
approach. Note that in the later case, all selected objects 
can be represented using the same image-based primitive, 
since images can effectively combine several objects. 

After each selection, the time to render the scene is 
evaluated, and this process stops as soon as this time is 
under the required maximum frame time. 
Note that a portal is treated as any other object. It can be 
displayed rendering the geometry of the cell behind it, or 
using a portal texture [Aliaga97,Aliaga99]. 
The required images will be stored at the corresponding 
tree node table, and cannot be reused at other nodes since 
they are view-dependent. 
Data required for the geometric detail reduction 
techniques, will be stored in a common pool and a 
pointer to the relevant information will be kept at the 
node, since this data can usually be shared by other nodes 
(for instance, if it is decided to use a progressive mesh to 
render an object, the same mesh will probably be used 
for many other positions and orientations. 

3.2 Interactive Rendering 
Once the preprocessing is done, rendering the scene is a 
simple matter. The user’s position in space is used to 
index the spatial structure and the node corresponding to 
the volume where the user is. The view-direction is used 
to index the scene and determine the techniques to use.  
Once again, if a portal is visible it will be treated as any 
other object, and will be rendered with the technique 
assigned during the preprocessing step. 

4. TEST IMPLEMENTATION 
In order to validate our ideas, we have developed a proto-
type preprocessor and a rendering engine. Since it would 
be impossible to implement all the techniques proposed 
in the literature in any reasonable amount of time, we 
decided to focus on a subset of thereof. In addition we 
chose the techniques that would be faster to implement. 
We chose to use a quadtree to index exterior scene con-
tent and portals to represent interiors. For simplicity we 
do not calculate the PVS for each cell, instead we use 
Leubke and Georges’ technique [Leubke95]. The tech-
niques to use are kept in a separate structure, a 3D grid, 
since an octree would use more memory. 
We use hierarchical view-frustum culling to eliminate 
objects exterior to the view volume and shadow frusta to 
handle occlusions. As a geometric complexity reduction 
technique, we used a static level of detail approach. 
At this time, we have not experimented with image-based 
acceleration techniques. We plan to use simple impostors 
for the further objects when necessary. As we are not 
considering warping techniques, [McMillan95] there will 
surely be artifacts when switching between impostors, 
but that is a characteristic of the chosen acceleration 
technique, and it does not invalidate the ideas presented 
at this paper, namely the possibility of preprocessing a 
scene in order to extract enough information to permit a 
fast real-time selection of the best algorithm for any 
viewpoint and view-direction. 
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5. RESULTS 
We tested our approach using a model of our university’s 
campus and surrounding area. It contains about 75k 
polygons spread by 3500 objects. In order to increase its 
complexity, it was instanced 49 times (in a 7x7 square), 
adding up to 3,6M polygons. 
To reduce the number of possible viewpoints, the user 
was only allowed to fly within the campus up to a height 
of 70m above the ground, at which time he can view the 
whole model. 

 

Figure 3 - Two snapshots from the test model: one 
showing the campus and the other showing the sur-
rounding area as seen from inside the campus. The 
model was provided by SAE/IST1 and is a part of the 
Virtual Lisbon project. 

The system was implemented entirely in C++ and 
OpenGL. The testes were run on a Pentium III 450MHz 
with a GeForce256 graphics accelerator and the frame 
rate was locked to the monitor refresh rate, 75Hz, yield-
ing a maximum of 75fps. Without any acceleration tech-
niques, the model could only be rendered at 0,6fps in this 
system. From within the campus, using only view frus-
tum culling, the worst-case views were rendered at 2fps. 
                                                           
1 Environment and Energy Group at Instituto Superior Técnico. 

Depending on the user position and orientation, frame 
rate varied significantly. In interior areas 30fps to 75fps 
where easily achieved. In exterior areas, close to ground 
level, the results depended on how well the preprocessor 
selected the occluders. In the presence of large objects 
close to the camera, the Shadow Frusta algorithm was 
activated and we achieved frame rates between 10fps and 
30fps (depending on the number of occluders and how 
much of the scene they occluded). In open areas, with 
many small occluders close to the horizon and when fly-
ing above the campus, these were not the most appropri-
ate algorithms, thus frame rate plummeted to 2fps. It is 
our belief that if we use Hierarchical Occlusion Maps 
and/or image based techniques, speedups will be possible 
in these areas, although we need to implement them, and 
perform further tests in order to make that claim. 

6. CONCLUSIONS 
We have presented a novel approach to the real-time 
rendering of complex scenes problem. We proposed to 
select the best rendering techniques for each viewpoint 
and view-direction. In order to minimize the time to 
select new algorithms, we analyze the scene offline and 
store information to permit a rapid selection at run-time. 
We described a general framework capable of achieving 
this, composed of a preprocessor and an interactive 
rendering engine. 
We provided an overview of the state of the art in real 
time rendering acceleration techniques, and identified 
criteria that permit the selection of each given a specific 
type of scene. 
Given the encompassing nature of this work, we chose a 
small subset of these techniques, and implemented a 
prototype, which, although in its initial stages, validated 
our ideas: in situations for which appropriate algorithms 
were available, interactive frame rates where achieved. 
For other situations, further tests are needed. 
We have discovered that, as with all acceleration 
techniques, there are tradeoffs involved. In this case we 
trade space for speed. 

7. FUTURE WORK 
The first issue we would like to explore is the use of 
cache management techniques to mitigate the memory 
requirements problem. This subject was already studied 
by Funkhouser [Funkhouser96], in the context of portal 
based scenes. He predicted the cells where the user could 
be in the next frames and tried to load their PVSs from 
persistent storage, before the user reached them. Thus, 
the required data will always be in memory and the 
system will not block, i.e., will not stop generating 
images, due to cache misses. Their ideas could be 
adapted to handle our structure. 
Another issue to explore is how many spatial intervals to 
consider. At this time the 3D grid divides space evenly. 
The space of possible directions is also divided into a 
pre-specified number of intervals. It would be interesting 
to use an octree and automatically decide when to stop 
subdividing the octree and what intervals to consider for 

29

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001



the space of possible orientations, in order to reduce the 
amount of positions to consider and still obtain the 
highest frame possible. A possible approach is to use 
brute force. We can start with a very fine interval 
resolution, preprocess the scene and then merge intervals 
where there are no changes in the used techniques. 
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