
Dynamic Algorithm Selection: a New Approach to the Real-
Time Rendering of Complex Scenes Problem

Pedro Pires
IST & INESC-ID
Lisbon - Portugal

pedro.pires@acm.org

João Madeiras Pereira
IST & INESC-ID
Lisbon - Portugal
jap@inesc.pt

Abstract
This paper presents a novel approach to the real-time rendering of complex scenes problem. Up to the present
date, a huge number of acceleration techniques have been proposed, although most are geared towards a
specific kind of scene. Instead of using a single, or a fixed set of rendering acceleration techniques, we propose
the use of several, and to select the best one based on the current viewpoint. Thus, dynamically adapting the
rendering process to the contents of the scene, it is possible to take advantage of all these techniques when they
are better suited, rendering scenes that would otherwise be too complex to display at interactive frame rates.
We describe a framework capable of achieving this purpose, consisting on a pre-processor and an interactive
rendering engine. The framework is geared towards interactive applications were a complex and large scene
has to be rendered at interactive frame rates. Finally, results and performance measures taken from our test
implementation are given.

Keywords
Real-Time Rendering, Scene Management, Visibility Culling, Levels-of-Detail, Image-Based Acceleration
Techniques.

1. INTRODUCTION
Real-time rendering of complex scenes is an old problem
in computer graphics. Applications such as computer
aided design (CAD), architectural visualization, flight
simulators, virtual environments and computer games
need to display scenes comprising many thousands, if not
millions of polygons. Even today’s hardware accelerated
rendering pipelines cannot handle all the polygons that
compose such scenes. Due to our everlasting quest for
visual realism, the gap between processor power and
scene complexity, is expected to maintain itself in the
future. Thus, it is necessary to employ rendering
acceleration techniques, i.e., techniques that reduce the
number of polygons sent to the graphics pipeline, at each
frame.
Over the years, several techniques that address this
problem where proposed. They can be categorized into
the following areas: (1) visibility determination
techniques, and (2) geometric complexity reduction
techniques. Area (1) encompasses topics such as view-
frustum culling techniques and occlusion culling
techniques, where as area (2) includes geometric detail
reduction techniques and image-based acceleration
techniques.
Most of these techniques have one thing in common: they
are special purpose, i.e., they are built to explore
characteristics of certain types of scenes. As an example,

consider a city model: if the camera were located inside a
building, in a room, it would be wise to use techniques
that take advantage of the room’s specific geometric
arrangement – walls, which occlude other areas, and
doors through which one can see – namely: portal based
techniques [Airey90,Teller91,Teller92,Leubke95]. If the
user were walking along a street, it would no longer be
possible to use portal techniques, instead, more generic
occlusion culling techniques should be used, such as
shadow frusta [Coorg97,Hudson97] or hierarchical
occlusion maps [Zhang97, Zhang98]. If the user where
flying high above the city, it would be useless to use
occlusion culling techniques, instead detail reduction
techniques should be used, for most of the city would be
visible.
As shown by this example, the best techniques to use
depend on where the user is, and where he is looking at.
In this paper we propose a new approach to the real-time
rendering of complex scenes problem: we propose to
select the set of rendering acceleration techniques based
on the current viewpoint and view-direction and we
present a framework capable of achieving this purpose.
This paper is organized as follows: in section 2, we
review the state of the art in rendering acceleration
techniques, specifically: on visibility culling, scene
simplification and image-based acceleration techniques;
in section 3 we present our general framework; on
section 4 we provide an overview of our test

23

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

implementation; on section 5 the results are introduced;
on section 6 we present our conclusions; and on section 7
we outline future research directions.

2. PREVIOUS WORK
Rendering scenes as complex and as fast as possible has
always been a major goal in computer graphics. Over the
time, many different techniques and rendering algorithms
where proposed. Today, rendering pipelines are
implemented in hardware, and are standardized around
the z-buffer algorithm. Thus research focus has shifted
towards techniques that try to reduce the number of
polygons passed to the graphics pipeline. Here, apart
from a small exception, we will concentrate on such
techniques only, and not in rendering techniques that can
no longer be used.
Specifically, we will cover visibility determination
techniques, including view-frustum culling and occlusion
culling techniques, and geometric complexity reduction
techniques, including geometric detail reduction
techniques, and image-based acceleration techniques.

2.1 Visibility Determination
2.1.1 View-Frustum Culling
View-frustum culling techniques try to quickly determine
which objects are inside the current view-frustum and
pass only those to the graphics pipeline. Either a
bounding volume hierarchy, or a spatial partitioning
hierarchy, is used, and each volume is hierarchically
tested for containment within the frustum planes
[Moller96].
This is a simple and effective test, which is performed by
most applications, and implemented in any retained mode
API.

2.1.2 Occlusion Culling
Occlusion culling techniques try to eliminate objects
(occludees) that are hidden behind other objects
(occluders).
Greene et. al. proposed the use of a hierarchical z-buffer
[Greene93]. A scene in augmented with a hierarchical
spatial partitioning tree and it is rendered in front-to-back
order. Polygons will be tested against pyramid of z-
buffers, and for densely occluded scenes. The last, and
thus the furthest, will be quickly rejected. Until recently
this technique was limited to software rendering, but the
latest graphic accelerators already implement hierarchical
z-buffers in hardware.
Zhang et. al. proposed another object space occlusion
culling technique – Hierarchical Occlusion Maps
(HOMs) [Zhang97, Zhang98]. For a given viewpoint,
several occluders are rendered into an image, using
hardware acceleration. Several lower resolutions of this
image are created, also using the standard hardware, in
order to form an image pyramid. The bounding box of
the remaining objects are projected onto the screen and
checked against the image pyramid. Any object whose
bounding box is covered by the projection of the
occluders is hidden behind them.

Object space occlusion techniques were also proposed
[Coorg97,Hudson97]. The basic idea is that if the
viewpoint is considered to be a light source, any object in
the shadow of an occluder is invisible from the same
viewpoint. A shadow frusta, i.e., a set of planes bounding
this area can be built and each object’s bounding box is
tested against these planes.
Another set of techniques, instead of trying to determine
what is invisible from a point in space, try to determine
what is visible from a given volume in space – its
Potentially Visible Set (PVS).
For static interior scenes, portals and cells are the
preferred solution. The terms portals and cells where first
coined by Jones [Jones71] in the context of hidden line
removal, back in 1971. In his algorithm, models were
manually subdivided into convex cells and convex
portals. Rendering begins with the walls and portals of
the cell containing the user. As each portal is drawn, the
cell on the opposite side is recursively rendered and its
contents clipped against its portal. Later, Airey [Airey90]
focused on the problem of determining cell-to-cell
visibility, proposing several solutions, including point
sampling and shadow volumes. Teller [Teller91,Teller92]
took the concept further and found an analytic solution to
the portal-to-portal visibility problem based on linear
programming techniques. Luebke and Georges
[Leubke95] suggested dynamically calculating the PVSs
at run-time.
For static exterior scenes techniques were proposed that
calculate the PVS for a volume in space. They are
conservative volume techniques since they calculate a as
tight as possible superset of the objects which can be
seen from any point inside a given volume in space
[Cohen-Or98,Durand00,Durand99,Schaufler00].

2.2 Geometric Complexity Reduction
2.2.1 Geometry-Based Techniques
Geometry based techniques aim to reduce the number of
polygons used to represent an object, based on certain
criteria: typically, its distance to the viewpoint. The
reason behind this is that objects further away from the
viewpoint occupy a smaller screen space area, and thus
can be represented with less detail.
Static levels of detail, first introduced by Clark
[Clark74], use several representations of the same object
at different resolutions and switch between them based
on the distance to the user. Funkhouser and Séquin
studied the problem of selecting the set of object
representations that maximizes the visual benefit while
maintaining a target frame rate [Funkhouser93].
Progressive meshes, introduced by Hoppe
[Hoppe96,Hoppe98] represent an object as a coarse base
mesh, plus a record of each operations required to
transform it into the full resolution mesh. These
operations are invertible, and each adds a new vertex.
Thus, it is possible to progressively increase or decrease
detail, depending on the distance to the viewpoint. The

24

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

addition and removal of vertexes can be smoothly
animated.
Techniques capable of selectively refining the models,
where also proposed [Xia96,Xia97,Hoppe97,Luebke97].
For large models, it is desirable to increase details in the
parts that are closer to the viewpoint, and not the object
as a whole.
Special purpose algorithms, capable of reducing the
detail in a view dependent way were also proposed for
height field (terrain) data
[Lindstrom96,Duchaineau97,Hoppe98b].
Another possibility is the use of parametric surfaces to
represent scene content [Kumar96,Kumar97]. They can
be tessellated on the fly, with more or less detail,
depending on their distance to the user.

2.2.2 Image-Based Acceleration Techniques
Image-based acceleration techniques, try to replace
portions of a scene with images. An image can represent
as many objects as necessary, and its rendering time
depends only on its resolution. On the other hand, it can
only represent static content and it is only valid when
seen from the point where it was created.
Marciel and Shirley where the first to use images in this
context. They replaced objects with pre-rendered images
(a single polygon texture mapped with an image), and
coined the name impostors for this new primitive
[Maciel95].
Shade et.al. [Shade96] and Schaufler and Stürzlinger
[Schaufler96] introduced the idea of image caches.
Impostors are generated on the fly to replace parts of the
scene, and remain valid for a couple of frames. As the
viewpoint moves, and the error exceeds a user specified
number of pixels, the impostor(s) will be invalidated and
regenerated.
Techniques to extend the life of impostors were proposed
by Scilion et. al.[Scillion97] and Decoret et. al.
[Decoret99].
Images have also been used in portal environments.
Aliaga and Lastra introduced the concept of portal
textures [Aliaga97]. They replaced portals with pre-
rendered images of the cells behind it and showed how to
smoothly transition from images to geometric based
representations of a portal, when the user approaches it.
They also introduced a method to automatically place
images in order to guarantee a minimum frame rate
[Aliaga99].

2.3 Discussion
Most of the above-mentioned techniques are special
purpose ones, i.e., they are best suited for specific kinds
of scenes. Some can only handle static scenes; others are
suited for both static and dynamic ones. Some require
that the scene be represented as a set of disjoint objects;
others do not impose any particular structure. Some are
only usable for interior scenes; others are geared towards
exterior ones. Some offer advantages when used with
geometry located close to the viewpoint, others are

preferred for objects located far away. Given these
criteria, Table 1 (located at the end of this document)
summarizes the requirements/appropriateness of each
above-mentioned technique, and groups them into
categories.

Table 1 – Categorization of existing Rendering Accel-
eration Techniques and situations where they should
be used. DYN stands for dynamic scenes, STA for
static scenes, IN for interior scenes, OUT for exterior
scenes, UNSTR for unstructured scenes (poly soup),
STR for structured scenes (objects/meshes), NEAR
for scene content close to the viewpoint and FAR for
scene content far from the viewpoint.

Point visibility occlusion techniques are suitable for both
interior/exterior and static/dynamic scene content.
Among these, Shadow Frusta and Hierarchical Occlusion
Maps (HOMs) handle static occluders better, but
occludees can still be dynamic. They also require that the
scene be organized as a set of objects that have bounding
volumes assigned. Hierarchical Z-buffer imposes no
organization on the scene.
Conservative volume visibility evaluation techniques are
done off-line, thus are only applicable to static scene
content. Portals and BSP trees are special purpose and
suitable only to interior scenes. While Portals require the
scene to be subdivided into cells and portals, BSP trees
impose no such structure, since they are able to create it
from polygon soup models. Octree-based conservative
visibility evaluation techniques are suited for exterior
scene content.
The distinction between complexity reduction techniques
is cleaner. With the exception of portal textures, which
are more special purpose, they are all suited to both
interior and exterior scenes. Geometric detail techniques
require the scene to be organized as a set of objects some
with special purpose representations, while image-based
techniques do not impose any special structure on object
representation. Geometric detail techniques are suited for
both static and dynamic objects, while image-based
techniques still have difficulty to cope with dynamic
scenes, be it moving objects or changing illumination
conditions. Images are also better suited to represent
scene content that is far from the viewer, given that the
error induced as the viewpoint moves away from the

25

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

viewpoint from where it was originally created is smaller,
if the image is placed far away from the user. Geometric
detail techniques are usually better to represent scene
content closer to the user, since that after some point in
the distance an object will contribute very little to the
user perception of the scene and its lowest detail can be
used, without having to change it further.
 Moreover, it is useless to apply occlusion-culling
techniques if a substantial part of the scene is not
occluded from a given viewpoint. Similarly, it is useless
to employ complexity reduction techniques, if there are
not enough polygons visible.
As a conclusion, it is safe to say that: the best
acceleration techniques are dependent on the chosen
viewpoint and view-direction.

3. SELECTING THE BEST RENDERING
ACCELERATION ALGORITHM
In order to select the best rendering acceleration
techniques, it is necessary to analyze the scene and
determine which of the available techniques are best
suited for the current viewpoint. This process takes its
time, which should be minimized. Specifically, the time
to select an algorithm iα , amortized by the number of
frames it remains valid, plus the time to render the scene
using it, should be inferior to the time to render the scene
with a single algorithm β .

)()(
_

)(
βα

α
renderirender

iselect tt
framesvalid

t
<+

Another important criterion is that it is undesirable to
switch between algorithms every frame. In other words,
spatial coherency hints that the best techniques for a
given viewpoint remain the same over a given
neighborhood thereof.
To keep the selection time low, we propose to analyze
the scene off-line, and store information that can be used
at runtime to select the appropriate algorithm, once the
viewpoint is known.
To explore spatial coherency, we suggest augmenting the
scene with a spatial subdivision hierarchy, and marking
each node with the techniques to use, when the viewpoint
is located within the volume it represents. This tree
should be kept separate from the usual view-frustum
culling hierarchy, since it fits a different purpose: the
former groups objects based on their spatial location, and
the later categorizes zones of space. Even if the same
type of data structure is used, each will benefit from
different subdivision criteria. Possible choices for such a
tree are an octree, a k-dtree, a bsp-tree or a similar data
structure. The advantages and disadvantages of each are
well documented elsewhere.
Since the best techniques are liable to change with the
view-direction, it is necessary to consider several view-
directions per node. Ignoring the camera tilt, its
orientation can be expressed by two angles: θ (azimuth)

and ϕ (elevation). Dividing the space of all possible
orientations into discrete intervals of the form n
[[[[1+1+ ,, × iii i ϕϕθθ , it is possible to determine the best
techniques when the view-direction is inside each
interval. This information can be stored at each node
using a bi-dimensional table, indexed using the current
view direction ()ϕθ , .

Such representation takes advantage of space coherency
since that the contents of a scene, as seen from two points
close by in space, using more or less the same view-
direction, are likely to be very similar. Thus the best
techniques are also likely to be the same in both
situations.
Summarizing: During the preprocessing step the scene is
divided into a set of volumes, using a spatial subdivision
hierarchy. Each volume is analyzed in order to determine
the best techniques to use when the viewpoint is therein,
and looking in a given direction. This information is
written in the corresponding tree node. Additional
preprocessing required for each particular algorithm is
done and stored at this time. At run time, once the
viewpoint is known, the spatial subdivision hierarchy is
used to rapidly access the pre-computed information and
to determine the techniques to use.

Figure 1 - Dividing the space of all possible view-
directions into discrete intervals

26

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

Figure 2 – The scene is portioned using a Hierarchical
Space Partition Tree (an octree in this example) and
each node stores a table with the techniques to use for
each view-direction. At runtime the viewpoint (x,y,z)
is used to determine the current tree node and the
view-direction (θ,φ) is used to index the
corresponding table, obtaining the acceleration
techniques and associated data.

In the next two sections both these steps will be
addressed.

3.1 Scene Preprocessing
The preprocessor’s goal is to build the hierarchical
spatial partition tree, analyze the scene as seen from each
node and view-direction, determine the techniques that
are better suited in each case, store this information at
each node and write the hole data structure to disk.
In order to determine if acceleration techniques are
required, it is necessary to measure how complex is a
scene, as seen from a given viewpoint. Then there are
two characteristics that have to be analyzed for each
viewpoint and view-direction: first, in order to justify the
use of occlusion techniques, it is necessary to determine
the set of objects that can be seen, and the occlusion
relationships between these objects. Second, to determine
if detail reduction techniques are required, it is necessary
to determine how complex is this set of objects.

3.1.1 Measuring Geometric Complexity
How complex a scene is, is a relative concept. A scene
can be too complex for one machine, and fairly easy to
render using another. The simplest way to determine the
time it takes to render a given object is to simply render it
and measure. Since this is done as a preprocessing step,
it means that the scene has to be preprocessed in the same
type of workstation that will be used for the visualization.
This may not always be desirable. Thus, it is necessary to

find an abstract and adjustable model of each machine’s
graphics pipeline. Back in 1993, Funkhouser and Séquin
[Funkhouser93] proposed one such model. Surprisingly it
is still valid today.
The cost of rendering an object or a set of polygons, i.e.,
the time it takes to do it, increases with the number of
per-vertex and per-fragment operations, the hardware
has to perform. Per-vertex operations include moving the
vertexes to the GPU, through the system’s bus, vertex
transform, lighting and clipping, or whatever vertex
program is specified in today’s programmable graphic
pipelines. Per-fragment operations include rasterization,
texture mapping, depth compares, stencil operations,
pixel-shader operations, and so on.
Funkhouser and Séquin argued, and showed
experimentally, that the per-vertex cost and the per-pixel
cost change linearly, with machine dependent
proportionality constants vα and pα , with the number

of triangles and the number of pixels drawn, respectively.
Both these proportional factors can be taken from
manufacturer’s data sheets or evaluated experimentally
on each platform. The cost of rendering an object, or a
set of triangles is the higher of these costs, since these
operations run in parallel, in a pipeline, whose weakest
link determines the overall cost.

}_,_max{ pixelsnumvertexesnum pv ×× αα

Calculating the number of pixels occupied by each
triangle, is time consuming and unnecessary. Instead the
number of pixels occupied by an object can be
approximated by the number of pixels occupied by the
projection of its bounding box on the screen. To make
calculations even simpler, it can be approximated by the
number of pixels occupied by the 2D bounding box of
the screen projection of the object’s 3D bounding box.

3.1.2 Selecting Visibility Techniques
Since interior areas are usually modeled separately, we
assume that they are marked as such in the scene model.
Thus, it is not necessary to determine which areas are
interiors and which are exteriors automatically. Interior
areas are represented as cells with portals which link to
other cells, or to the tree structure (for example, an
octree) used to represent the outside areas (windows or
doors can lead outside or to other rooms). Portals leading
into inside areas will be represented in the nodes of this
tree structure, corresponding to the volume where they
are located.
Thus, if an implementation wishes to use portal based
techniques, its hierarchical structure will be a
combination of a cell graph, and an octree. The only
requirement is that given a point in space, it must be
possible to determine in which cell it is or in which
octree node it is located.
A cell will assume the same role as an octree node. It will
also have a table, which is indexed using the current view
direction. If justifiable, a cell can be further divided (for
instance, complex factory models are known to exhibit

27

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

large, and highly intricate interior rooms, with pipes and
machinery occluding each other). For all purposes, a
portal is treated as any other object, except that when it is
rendered, the cell behind it will be displayed instead.
During the preprocessing step this hierarchy is built,
using the usual techniques. If memory constraints permit
it, the PVS for the interior cells can be computed and
stored at this time [Airey90,Teller91,Teller92].
Alternatively visibility can be evaluated at run-time using
Leubke and Georges’ technique [Leubke95].
The first thing to do at each viewpoint is to cull all the
objects outside the view-frustum, and determine if the
remaining ones can be rendered under the allotted frame
time. If they can, it is not necessary to use any special
techniques. If they cannot, it is necessary to determine if
there are objects that can be used as occluders. Object
space occlusion culling techniques require a reduced
number of large close by occluders. On the other hand,
Zhang’s hierarchical occlusion maps can handle several
smaller occluders. More specific measures on how to
select ocluders for each technique are given in
[Coorg97,Hudson97] and [Zhang97, Zhang98]
respectively. Using our technique, the accelerations
techniques are chosen based on the number and type of
possible occluders, and not the other way around.
Whatever technique gets chosen, the set of occluders to
use for this viewpoint and direction are stored at the
corresponding node.

3.1.3 Selecting Complexity Reduction Techniques
Given a viewpoint, a view-direction and the set of visible
objects, the preprocessor determines if they can be
rendered in the allotted frame time, without complexity
reduction techniques. If they cannot, it tries to use
different techniques for different parts of the scene.
The relevant criterion here is proximity: Image-based
techniques are better suited for representing far away
portions of the scene, since they can group lots of small
objects into a single image, and the further away the
image is, the further one can move away from the point
where it was created without noticing errors. On the other
hand, after some point in the distance, the object will be
too small and it can be rendered using the lowest detail
possible. Thus geometric detail techniques are better
suited for objects that are closer to the viewpoint.
Furthermore, since most image-based techniques can
induce visual artifacts, we have chosen to try geometric
detail techniques first and image-based ones only if
necessary.
The visible objects are placed in a list sorted by distance
to the viewpoint. Two passes are made through this list,
starting from the further object to the closest one. In the
first, each object is selected to be rendered using a
geometric detail reduction approach. In the second each
object is selected to be rendered using an image-based
approach. Note that in the later case, all selected objects
can be represented using the same image-based primitive,
since images can effectively combine several objects.

After each selection, the time to render the scene is
evaluated, and this process stops as soon as this time is
under the required maximum frame time.
Note that a portal is treated as any other object. It can be
displayed rendering the geometry of the cell behind it, or
using a portal texture [Aliaga97,Aliaga99].
The required images will be stored at the corresponding
tree node table, and cannot be reused at other nodes since
they are view-dependent.
Data required for the geometric detail reduction
techniques, will be stored in a common pool and a
pointer to the relevant information will be kept at the
node, since this data can usually be shared by other nodes
(for instance, if it is decided to use a progressive mesh to
render an object, the same mesh will probably be used
for many other positions and orientations.

3.2 Interactive Rendering
Once the preprocessing is done, rendering the scene is a
simple matter. The user’s position in space is used to
index the spatial structure and the node corresponding to
the volume where the user is. The view-direction is used
to index the scene and determine the techniques to use.
Once again, if a portal is visible it will be treated as any
other object, and will be rendered with the technique
assigned during the preprocessing step.

4. TEST IMPLEMENTATION
In order to validate our ideas, we have developed a proto-
type preprocessor and a rendering engine. Since it would
be impossible to implement all the techniques proposed
in the literature in any reasonable amount of time, we
decided to focus on a subset of thereof. In addition we
chose the techniques that would be faster to implement.
We chose to use a quadtree to index exterior scene con-
tent and portals to represent interiors. For simplicity we
do not calculate the PVS for each cell, instead we use
Leubke and Georges’ technique [Leubke95]. The tech-
niques to use are kept in a separate structure, a 3D grid,
since an octree would use more memory.
We use hierarchical view-frustum culling to eliminate
objects exterior to the view volume and shadow frusta to
handle occlusions. As a geometric complexity reduction
technique, we used a static level of detail approach.
At this time, we have not experimented with image-based
acceleration techniques. We plan to use simple impostors
for the further objects when necessary. As we are not
considering warping techniques, [McMillan95] there will
surely be artifacts when switching between impostors,
but that is a characteristic of the chosen acceleration
technique, and it does not invalidate the ideas presented
at this paper, namely the possibility of preprocessing a
scene in order to extract enough information to permit a
fast real-time selection of the best algorithm for any
viewpoint and view-direction.

28

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

5. RESULTS
We tested our approach using a model of our university’s
campus and surrounding area. It contains about 75k
polygons spread by 3500 objects. In order to increase its
complexity, it was instanced 49 times (in a 7x7 square),
adding up to 3,6M polygons.
To reduce the number of possible viewpoints, the user
was only allowed to fly within the campus up to a height
of 70m above the ground, at which time he can view the
whole model.

Figure 3 - Two snapshots from the test model: one
showing the campus and the other showing the sur-
rounding area as seen from inside the campus. The
model was provided by SAE/IST1 and is a part of the
Virtual Lisbon project.

The system was implemented entirely in C++ and
OpenGL. The testes were run on a Pentium III 450MHz
with a GeForce256 graphics accelerator and the frame
rate was locked to the monitor refresh rate, 75Hz, yield-
ing a maximum of 75fps. Without any acceleration tech-
niques, the model could only be rendered at 0,6fps in this
system. From within the campus, using only view frus-
tum culling, the worst-case views were rendered at 2fps.

1 Environment and Energy Group at Instituto Superior Técnico.

Depending on the user position and orientation, frame
rate varied significantly. In interior areas 30fps to 75fps
where easily achieved. In exterior areas, close to ground
level, the results depended on how well the preprocessor
selected the occluders. In the presence of large objects
close to the camera, the Shadow Frusta algorithm was
activated and we achieved frame rates between 10fps and
30fps (depending on the number of occluders and how
much of the scene they occluded). In open areas, with
many small occluders close to the horizon and when fly-
ing above the campus, these were not the most appropri-
ate algorithms, thus frame rate plummeted to 2fps. It is
our belief that if we use Hierarchical Occlusion Maps
and/or image based techniques, speedups will be possible
in these areas, although we need to implement them, and
perform further tests in order to make that claim.

6. CONCLUSIONS
We have presented a novel approach to the real-time
rendering of complex scenes problem. We proposed to
select the best rendering techniques for each viewpoint
and view-direction. In order to minimize the time to
select new algorithms, we analyze the scene offline and
store information to permit a rapid selection at run-time.
We described a general framework capable of achieving
this, composed of a preprocessor and an interactive
rendering engine.
We provided an overview of the state of the art in real
time rendering acceleration techniques, and identified
criteria that permit the selection of each given a specific
type of scene.
Given the encompassing nature of this work, we chose a
small subset of these techniques, and implemented a
prototype, which, although in its initial stages, validated
our ideas: in situations for which appropriate algorithms
were available, interactive frame rates where achieved.
For other situations, further tests are needed.
We have discovered that, as with all acceleration
techniques, there are tradeoffs involved. In this case we
trade space for speed.

7. FUTURE WORK
The first issue we would like to explore is the use of
cache management techniques to mitigate the memory
requirements problem. This subject was already studied
by Funkhouser [Funkhouser96], in the context of portal
based scenes. He predicted the cells where the user could
be in the next frames and tried to load their PVSs from
persistent storage, before the user reached them. Thus,
the required data will always be in memory and the
system will not block, i.e., will not stop generating
images, due to cache misses. Their ideas could be
adapted to handle our structure.
Another issue to explore is how many spatial intervals to
consider. At this time the 3D grid divides space evenly.
The space of possible directions is also divided into a
pre-specified number of intervals. It would be interesting
to use an octree and automatically decide when to stop
subdividing the octree and what intervals to consider for

29

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

the space of possible orientations, in order to reduce the
amount of positions to consider and still obtain the
highest frame possible. A possible approach is to use
brute force. We can start with a very fine interval
resolution, preprocess the scene and then merge intervals
where there are no changes in the used techniques.

8. ACKNOWLEDGEMENTS
The main test model was provided by the Environment
and Energy Group at Instituto Superior Técnico
(SAE/IST) (see http://visualis.ist.utl.pt). It is a small part
of the Virtual Lisbon Project, which aims to build and
display a 3D representation of the city of Lisbon. We
would like to thank the team behind this project, for
allowing us to use a part of their model.

9. REFERENCES
[Airey90] John Airey. Increasing Update Rates in the

Building Walkthrough System with Automatic
Model-Space Subdivision and Potentially Visible Set
Calculations. PhD thesis, Department of Computer
Science, University of North Carolina at Chapel Hill,
TR#90-027, 1990.

[Aliaga97] Daniel G. Aliaga and Anselmo A. Lastra.
Architectural Walkthroughs Using Portal Textures,
IEEE Visualization '97, pp. 355-362 (November
1997). IEEE. Edited by Roni Yagel and Hans Hagen.
ISBN 0-58113-011-2.

[Aliaga99] Daniel G. Aliaga and Anselmo Lastra. Auto-
matic Image Placement to Provide a Guaranteed
Frame Rate, Proceedings of SIGGRAPH 99, Com-
puter Graphics Proceedings, Annual Conference Se-
ries, pp. 307-316 (August 1999, Los Angeles, Cali-
fornia). Addison Wesley Longman. Edited by Alyn
Rockwood. ISBN 0-20148-560-5.

[Cohen-Or98] Daniel Cohen-Or, Gadi Fibich, and Dan
Halperinand Eyal Zadicario. Conservative visibility
and strong occlusion for viewspace partitioning of
densely occluded scenes. Computer Graphics Forum,
17(3):243–254, 1998. ISSN 1067-7055.

[Coorg97] S. Coorg and S. Teller. Real Time Occlusion
Culling for Models with Large Occluders. In Simpo-
sium on Interactive 3D Graphics, pages 83–90, April
1997.

[Decoret99] Xavier Decoret, François Sillion, Gernot
Schau er, and Julie Dorsey. Multi-layered impostors
for accelerated rendering. Computer Graphics Forum,
18(3):61–73, September 1999. ISSN 1067-7055.

[Durand99] Frédo Durand. 3D Visibility: analytical study
and applications. PhD thesis, Université Joseph Fou-
rier, Grenoble I, July 1999.

[Durand00] Frédo Durand, George Drettakis, Joëlle
Thollot, and Claude Puech. Conservative visibility
preprocessing using extended projections. Proceed-
ings of SIGGRAPH 2000, pages 239– 248, July
2000. ISBN 1-58113-208-5.

[Duchaineau97] Mark A. Duchaineau, Murray Wolinsky,
David E. Sigeti, Mark C. Miller, Charles Aldrich, and

Mark B. Mineev-Weinstein. Roaming terrain: Real-
time optimally adapting meshes. IEEE Visualization
’97, pages 81–88, November 1997. ISBN 0-58113-
011-2.

 [Funkhouser93] Thomas A. Funkhouser and Carlo H.
Séquin. Adaptive display algorithm for interactive
frame rates during visualization of complex virtual
environments. Proceedings of SIGGRAPH 93, pages
247–254, August 1993. ISBN 0-201-58889-7.

[Funkhouser96] Thomas A. Funkhouser. Database
management for interactive display of large
architectural models. Graphics Interface ’96, pages 1–
8, May 1996. ISBN 0-9695338-5-3.

[Greene93] N. Greene, M. Kass, and G. Miller.
Hierarchical Z-Buffer Visibility. In Computer
Graphics (SIGGRAPH 1993 Proceedings), pages
231–238, August 1993.

[Hoppe96] [Hop96] Hugues Hoppe. Progressive meshes.
Proceedings of SIGGRAPH 96, pages 99–108,
August 1996. ISBN 0-201-94800-1. Held in New
Orleans, Louisiana.

[Hoppe97] Hugues Hoppe. View-dependent refinement
of progressive meshes. Proceedings of SIG-GRAPH
97, pages 189–198, August 1997. ISBN 0-89791-
896-7. Held in Los Angeles, California.

[Hoppe98a] Hugues Hoppe. Efficient implementation of
progressive meshes. Computers & Graphics,
22(1):27–36, February 1998. ISSN 0097-8493.

[Hoppe98b] Hugues H. Hoppe. Smooth view-dependent
level-of-detail control and its application to terrain
rendering. IEEE Visualization ’98, pages 35–42,
October 1998. ISBN 0-8186-9176-X.

[Hudson97] T. Hudson, D. Manocha, J. Cohen, M. Lin,
K. Hoff, and H. Zhang. Accelerated Occlusion
Culling Using Shadow Frusta. In Symposium on
Interactive 3D Graphics, pages 1–10, June 1997.

[Jones71] C.B. Jones. A New Approach to the ’Hidden
Line’ problem. The Computer Journal, 14(3):232,
August 1971.

[Kumar96] Subodh Kumar and Dinesh Manocha.
Hierarcical visibility culling for spline models.
Graphics Interface ’96, pages 142–150, May 1996.
ISBN 0-9695338-5-3.

 [Kumar97] Subodh Kumar, Dinesh Manocha, Hansong
Zhang, and III Kenneth E. Hoff. Accelerated
walkthrough of large spline models. 1997 Symposium
on Interactive 3D Graphics, pages 91–102, April
1997. ISBN 0-89791-884-3.

[Leubke95] D. Luebke and C. Georges. Portals and
Mirrors: Simple, Fast Evaluation of Potentially
Visible Sets. In Symposium on Interactive 3D
Graphics, pages 105–106 and 212, April 1995.

[Luebke97] David Luebke and Carl Erikson. View-
dependent simplification of arbitrary polygonal
environments. Proceedings of SIGGRAPH 97, pages

30

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

199–208, August 1997. ISBN 0-89791-896-7. Held
in Los Angeles, California.

[Lindstrom96] Peter Lindstrom, David Koller, William
Ribarsky, Larry F. Hughes, Nick Faust, and Gre-gory
Turner. Real-time, continuous level of detail
rendering of height fields. Proceedings of
SIGGRAPH 96, pages 109–118, August 1996. ISBN
0-201-94800-1. Held in New Orleans, Louisiana.

[McMillan95] Leonard McMillan and Gary Bishop.
Plenoptic modeling: An image-based rendering
system. Proceedings of SIGGRAPH 95, pages 39–46,
August 1995. ISBN 0-201-84776-0. Held in Los
Angeles, California.

[Moller96] Tomas Moller and Eric Haines. Real Time
Rendering. A K Peters, 1996.

[Maciel95] Paulo W. C. Maciel and Peter Shirley. Visual
navigation of large environments using textured
clusters. 1995 Symposium on Interactive 3D
Graphics, pages 95–102, April 1995. ISBN 0-89791-
736-7.

[Shade96] Jonathan Shade, Dani Lischinski, David
Salesin, Tony DeRose, and John Snyder. Hierarchical
image caching for accelerated walkthroughs of
complex environments. Proceedings of SIGGRAPH
96, pages 75–82, August 1996. ISBN 0-201-94800-1.
Held in New Orleans, Louisiana.

[Schaufler96] Gernot Schaufler and Wolfgang
Stürzlinger. A three dimensional image cache for
virtual reality. Computer Graphics Forum, 15(3):227–
236, August 1996. ISSN 1067-7055.

[Schaufler00] Gernot Schaufler, Julie Dorsey, Xavier
Decoret, and Fran¸cois X. Sillion. Conservative
volumetric visibility with occluder fusion.

Proceedings of SIGGRAPH 2000, pages 229–238,
July 2000. ISBN 1-58113-208-5.

[Sillion97] François X. Sillion, G. Drettakis, and B.
Bodelet. Efficient impostor manipulation for real-time
visualization of urban scenery. Computer Graphics
Forum, 16(3):207–218, August 1997. ISSN 1067-
7055.

[Teller91] S. Teller and C. Séquin. Visibility preprocess-
ing for interactive walkthroughs. In Computer Graph-
ics (SIGGRAPH 1991 Proceedings), pages 61–70,
August 1991.

[Teller92] Seth Teller. Visibility Computation in Densely
Occluded Polyhedral Environments. PhD thesis, De-
partment of Computer Science, University of Califor-
nia Berkeley, TR#92/708, 1992.

[Xia97] Julie C. Xia, Jihad El-Sana, and Amitabh Varsh-
ney. Adaptive real-time level-of-detail-based render-
ing for polygonal models. IEEE Transactions on
Visualization and Computer Graphics, 3(2), April -
June 1997. ISSN 1077-2626.

[Xia96] Julie C. Xia and Amitabh Varshney. Dynamic
view-dependent simplification for polygonal models.
IEEE Visualization ’96, pages 327–334, October
1996. ISBN 0-89791-864-9.

[Zhang97] H. Zhang, D. Manosha, T. Hudson, and K.
Hoff. Visibility Culling Using Hierarchical Occlusion
Maps. In Computer Graphics (SIGGRAPH 1997
Proceedings), pages 77–88, August 1997.

[Zhang98] Hansong Zhang. Effective Occlusion Culling
for Interactive Display of Arbitrary Models. PhD
thesis, Department of Computer Science, University
of North Carolina at Chapel Hill, 1998.

31

10º Encontro Português de Computação Gráfica

1-3 de Outubro 2001

