
V ALIDITY MAINTENANCE OF MODELS WITH
INTERACTING FEATURES

/
Rafael Bidarra

Willem F. Bronsvoort

Faculty oflnforrnation Technology and Systems

Delft University of Technology

Zuidplantsoen 4, NL-2628 BZ Delft, The Netherlands

Email: (Bidarra/Bronsvoort)@cs.tudelft.nl

Abstract

Current feature-based modelling systems fail to adequately maintain feature semantics.
This is partly due to inappropriate specification of validity conditions in feature classes,
but mainly due to a Jack of effective validity maintenance mechanisms throughout the
modelling process. An essential aspect in this is feature interaction management. This
paper presents a new approach to the detection of feature interactions, which uses
semantic and interaction constraints in feature class specification. Validity maintenance
is automatically performed after each modelling operation by checking these
constraints, thus being able to detect a variety of interaction types. Such interactions are
then analyzed, and their causes identified and reported to the user.

1. Introduction

Feature modelling systems offer the possibility to build a product model with features .

These are representations of shape aspects of a physical product that are mappable to a

generic shape and are functionally significant. Stated differently, each feature has a well

defined meaning, which should be represented and preserved in a product model.

Severa! proposals have been made to approach the problems of specification and

maintenance of feature validity. These were surveyed in (Dohmen et ai. 96), and it was

concluded that a declarative approach, where validity specification is clone separately from

validity maintenance, provides the best solution. Currently, no feature modelling system

provides a really powerful and self-contained scheme for validity specification of feature

classes. Most approaches are based on a variety of constraint types, each of which gives a

specific contribution in the description of the behavior desired for instances of each class in

the feature library. Whenever a feature is instantiated, instances of its validation constraints

are automatically created. Such constraints have to be solved and maintained, both at a

feature's creation and in subsequent modelling steps.

Without effective validity maintenance, or in case the validation constraints specified are

insufficient, the modeller will fail in preserving feature semantics and, thus, in capturing

designer intent. This is the case in many commercial "feature-based" systems which, for

8º Encontro Português de Computação Gráfica 65

example, fail to notify the transmutation of a blind hole into a through hole, as depicted in

Figure 1.

Current research prototypes that do perform validity maintenance, see for example (de

Kraker et ai. 95), (Mandorli et ai. 95) and (Vieira 95), simply reject any user modelling

operation that yields inconsistencies in the feature model. The user then has to take some

altemative action, e.g. changing parameters of a feature, or even taking a feature of a

different type.

-t>

Figure 1 - Blind hole transmutation due to slot displacement

However, this scheme seems too rigid, as it may often be hard to trace why invalidity arose

or to find a way around it. The least that is desirable is that the user gets a good explanation

on what has caused the invalidation of a feature. A further improvement would be that he

gets hints on how to avoid or overcome the problem. Ideally, the system would

automatically adapt the model to get a valid model again in cases this is possible and

desirable, although this should probably not be dane without consulting the user. ln the

previous example of Figure 1, the blind hole might be automatically converted into a

through hole, if the user permits this.

Most validity violations are caused by feature interactions, which arise from modelling

operations such as the creation of a new feature or the modification of an existing feature. It

is therefore important to manage feature interaction phenomena, so that all relevant

interaction situations can be detected, reported and handled in an appropriate way (Regli

and Pratt 96). Within the scope of this research, we understand as feature interactions those

modifications of the shape aspects represented by a feature that affect its functional

meaning.

ln short, a global solution to the validation problems pointed out so far should include:

66

a) a declarative scheme for flexible specification of feature classes, allowing a fine

tuning of the behavior desired for their instances;

b) a separate validity maintenance mechanism;

e) monitoring each modeller operation issued by the user in order to detect feature

interactions;

Grupo Português de Computação Gráfica - EUROGRAP HICS

d) reporting to the user the causes of any invalid situation, together with a detailed

analysis of its consequences;

e) providing the user with a reasonable choice of reaction mechanisms to overcome

invalid situations.

The remainder of the paper is organized as follows. First, we give an overview of the current

status of the feature validity specification and maintenance scheme (Section 2) and summa

rize how it is implemented within the SPIFF1 modelling system, a prototype multiple-view

feature-based modeller developed at Delft University of Technology (Section 3). Next, we

focus on the interaction management issues of this approach (Section 4) and describe the

interaction detection algorithms in detail (Section 5). We then illustrate their operation with

an example model (Section 6). Finally, some conclusions are drawn on the present

approach, pointing out some further developments in this research (Section 7).

2. Specification and Maintenance of Feature Validity

An effective proposal for specification and maintenance of feature validity in feature models

has been presented in (Dohmen et al. 96) and (Bidarra et al. 97), and implemented in the

prototype system SPIFF. This system has a mechanism for feature validity maintenance

based on constraint solving. Severa! types of validation constraints are available; here only a

brief description of each one is given:

• attach constraints specify how a feature instance is attached to the model, by coupling

some of its feature elements (i.e. faces or edges) to elernents of other features already

present in the model;

• geometric constraints specify geometric relations, such as parallelism and distance,

between feature elements;

• dimension constraints specify an interval for the value of feature parameters;

• algebraic constraints specify an expression for feature parameters;

• semantic constraints specify how a feature instance is allowed to topologically devíate

from its canonical behavior, by stating the extent to which its feature elements should

belong to the model boundary;

• interaction constraints specify whether a given interaction type should be disallowed

for a feature instance.

Such constraints are created in two ways. First, they may be embedded as attributes of a

feature class - the generic feature definition - and are, thus, instantiated together with each

new feature instance. Second, they may be explicitly added by the user, to further constrain

.....,.
1 Named after Spaceman Spiff, interplanetary explorer extraordinaire. ~

8º Encontro Português de Computação Gráfica 67

or relate specific feature instances in the model. ln either case, this is called specification of

validity conditions (either of individual features or of the feature model as a whole).

The basic idea of our approach is that after a modelling operation has been performed,

the model is required to conform to all existing constraints. The operation is unsuccessful,

and thus rejected, if any of the constraints is violated. However, analysis of all constraint

violations is performed in order to provide the user of the system with proper explanations

of their causes. Such explanations typically include references to the feature elements or

parameters involved in the invalidity situation, and possibly conflicting constraints (Noort et

al. 97) . This is called validity maintenance.

Severa! advantages can be pointed out for this approach:

• the use of various constraint types for validity specification in genenc feature

definitions permits a more complete definition of all semantic aspects of each feature

class;

• user-added constraints can further assist m capturing designer intent, still applying

uniform constraint management;

• once specified, validity is always maintained throughout model editing, thus ensuring

that all its feature instances are kept valid;

• separated validity maintenance, performed during incremental evolution of the model,

allows for the application of various techniques, including an explanation mechanism

for inconsistencies encountered in this process.

68

o
-E
o
u

~
-.;
"O o
E

-.; e:
"O o o...,
E "' u
~~
.;i :;:
"' a. .. "'

Figure 2 - Architecture of the SPIFF system

Grupo Português de Computação Gráfica - EUROGRAP HICS

3. System Architecture

Validity maintenance is performed in SPIFF by means of a Constraint Manager, a Feature

Geometry Manager and an Interaction Manager, under the contrai of a Feature Manager,

according to the architecture depicted in Figure 2.

The Feature Manager receives commands from the user, issued via a graphical user

. interface, and sends appropriate requests to the respective Managers, after which the result

of the operation is returned to the user.

The Constraint Manager maintains all constraints in a constraint graph, and solves them

by calling dedicated solvers. The constraint graph is mapped onto two primitive constraint

graphs, one for primitive algebraic constraints and another for primitive geometric

constraints. The primitive algebraic constraint graph is solved using the SkyBlue approach

(Sannella 92), the primitive geometric constraint is solved using the Degrees of Freedom

analysis approach (Kramer 92). After a primitive graph has been solved, the constraint

graph maintained by the Constraint Manager is updated. In this way, primitive constraint

graph solving is dane efficiently by dedicated solvers, while the Constraint Manager takes

care of the interdependence of the primitive constraint graphs.

The Feature Geometry Manager is responsible for performing those operations, issued by

the Feature Manager, that modify the geometry of the model, for instance, adding a new

feature to the model and removing or modifying an existing feature. It maintains the

geometric representation of the feature model in a cellular model (Bidarra et ai. 98). Each

feature is associated to one or more instances of shape classes. Each shape instance accounts

for a bounded region of space - the shape extent. A through hole, for example, is associated

to a cylinder shape. Features also assign to their shapes the nature attribute, specifying

whether this volumetric extent is additive, i.e. adding material to the volume of the

represented part, or subtractive, i.e. removing material from it.

The cellular model represents apartas a connected set of volumetric quasi-disjoint cells,

in such a way that each cell either lies entirely inside a shape extent or entirely outside it.

Feature shapes are decomposed into cells; overlapping feature shapes share one or more

cells. The complete boundary of a feature is decomposed into functionally meaningful

subsets, the shape e/ements, which are also explicitly represented in terms of cel/ faces and

edges (or simply cell elements). For the through hole example above, its boundary is

decomposed into the cylinder top, side and bottom faces, as well as the top and bottom loop

edges. Each cell element stores in an owner list which shape elements it belong to;

analogously, each cell stores in an owner list which shapes it belongs to. In this way, the

geometric representation of feature shapes and their elements can be selectively accessed at

ariy time, allowing for the analysis of feature semantics.

ln the next section we describe the functionality of the Interaction Manager.

8º Encontro Português de Computação Gráfica 69

Table 1 - lnteraction classes handled in SP!FF

SPLITTING INTERACTION

insertion of the slot splits the through hole
boundary into disconnecled components

BOUNDARY CLEARANCE INTERACTION

enlargemenl of the prolrusion widlh obstrucls
entrance face of lhe lhrough holes

CLOSURE INTERACTION

displacemenl of lhe prolrusion causes the whole
volume of two blind holes to become closed voids

inside the model

GEOMETRIC INTERACTION

inserlion of a V-slep changes lhe deplh of the
blind hole

4. The interaction Manager

DISCONNECTION INTERACTION

•
enlargemenl of the lhrough hole diameter

disconnects part of the block from lhe remaining
model

VOLUME CLEARANCE INTERACTION

insertion of a prolrusion inlrudes into the
sublraclive volume of lhe

V-slol

ABSORPTION INTERACTION

insertion of a slot suppresses conlribution of the
lhrough hole to the model shape

TRANSMUTATION INTERACTION

insertion of a V-slep turns lhe blind hole inlo a
lhrough hole

The Interaction Manager performs the last stage of the validation process, after each

modelling operation: detennining whether any disallowed feature interaction occurs, and

taking appropriate action. A variety of interaction classes that may affect feature semantics

has been identified (Bidarra and Bronsvoort 96). A summary of these interaction types is

presented in Table 1.

The global procedure of the Interaction Manager may, for each of the main modelling

operations - insertion, modification and remova/ of a feature -, be subdivided into three

main phases:

70 Grupo Português de Computação Gráfica - EUROGRAP HICS

a) determination of the interaction scope of each operation;

b) detection of specific feature interactions arising from the operation;

e) individual analysis of each interaction, which includes reporting its causes.

The feature interaction scope (FIS) of a modelling operation on a feature f is determined by

identifying all feature instances in the model that may potentially be affected by it. For this,

two important notions, with regard to a given featuref, are:

• the set of features that overlap withf, either volumetrically or between their boundaries;

these features make up the overlapping set of f, denoted OS(/), and they are identified

by querying the Feature Geometry Manager, which keeps track of ali feature shapes and

their intersections in the cellular model;

• the set of features that depend on f; these features make up the dependency set of f,
denoted DS(f), and they are identified by querying the Constraint Manager, which .

recursively traces in the constraint graph the dependency relations onf

Depending on the modelling operation, the feature interaction scope will consist of different

combinations of overlapping and dependency sets, see (Bidarra et al. 97) for a detailed

description.

Feature interactions taking place on any feature of FIS are detected by checking their

interaction and semantic constraints. ln this stage, the other Managers are queried, in order

to obtain the specific data required by each detection algorithm described in the next -

section.

Bach constraint violation is recorded by the Interaction Manager. Bventually, the set of

constraint violations is analyzed, in order to identify their causes, which are then reported to

the user.

5. Detection of each Interaction Class

ln this section, detection procedures are presented for the interaction classes presented in

Table 1. For each of them, it is also pointed out how additional information is collected, in

order to provide the user with a detailed explanation.

Bach of these algorithms is aimed at checking the respective interaction constraint. For

simplicity, the detection algorithms shown here opera te on features with only one shape; .

however, their extension to features consisting of several shapes is straightforward. Only the

detection algorithm for disconnection interactions operates on the whole model, provided

that such interactions may take place without actually splitting any single shape, but rather

disconnecting it from the remaining model volume.

The algorithms shown make use of the functionality provided by the Constraint Manager

and the Feature Geometry Manager in order to query their data. Most of the methods are

described in detail in (Bidarra et al. 98); for completeness, a summary of them is given in

Table 2.

8º Encontro Português de Computação Gráfica 71

Table 2 - Summary of methods used in the detection algorithms

CELLULAR MODEL, cm

SHAPE,s

s.nature

s.elements

s.cells

s.boundary(nature)

s.overlappingSet(nature)

s.constraints(type)

cf.cell

cf.partner

cf.ownerlist

cf.nature

l.after(element1, element2)

5.1 Splitting interaction

returns the nature (additive ar subtractive) specified for shape s

returns the list of shape elements of shape s

returns tlze list of ali cells that lie in the shape extent of s

returns tlze list of cell faces with specified nature that lie in the extent of shape
eleme11ts of s

returns the list of shapes of specified nature that overlap with shape s (either
volumetrically or between their boundaries - cell faces and edges)

) returns the list of constraints of specified type established 011 shape s

returns the cell bounded by cell face cf

returns the partner cell face of cf that bounds an adjacent cell (if this exists)

returns the list of shape elements that own cellface cf

returns additive if the cell face cf lies on the model boundary, and subtractive
otherwise

returns true if element 1 occurs after element 1 in the owner list /

Splitting interactions can be

described in terms of the nature

of feature boundaries. They occur

to a feature shape whenever the

cellular decomposition of its

boundary is such that the subset

of its additive cell faces is not

connected.

Splitting interaction detection algorithm

boundary +- s.boundary(additive)
cf1 +- boundary.first
for each cell face cf 2 in boundary

if not boundary.accessible(cf1 ,cf2)

return true
return falsa

additional data returned

• the split subsets of additive faces

The accessible (01 , 0 2) method of a s0t of entities returns tru0 iff (a) for the two

specified elements, 0 1 and 0 2, either 0 1 =02

third element 0 3 in the s0t

s0t. accessible (03 , 0 2).

or 0 1 . adjacent (02) holds; or (b) there is a

such that 0 1 . adj acent (0 3) and

72 Grupo Português de Computação Gráfica - EUROGRAP HICS

5.2 Disconnection interaction

Disconnection interactions are

analogous to splitting interac

tions, but they are better

described in terms of the behavior

of additive shape volumes. They

occur to additive features when

ever the cellular decomposition

of the model is such that the

Disconnection interaction detection algorithm

cells +-- cm . cells(additive)
c 1 +-- cells.first
for each cell c 2 in cells

if not cells.accessible(c1 ,c2)

return true
return false

additional data returned

• the split subsets of additive cells of the mo dei

subset of its additive cells is not connected.

5.3 Boundary clearance interaction

Some semantic constraints, in

particular those of type
notOnBoundary(complete
1 y) , are intended, for example,

to guarantee clearance on

toolpath entrance faces of sub

tractive features . A clearance

interaction occurs to a subtractive

feature whenever such a semantic

Boundary clearance interaction detection algorithm

semanticConstraints +-- s . constraints(semantic)
for each se in semanticConstraints

if sc.type = nob(completely) and not sc.check
return true

return false

additional data returned

• the shape element with the unsatisfied semantic
constraint

• the shape(s) causing the constraint violation

constraint on one of its shape elements is not satisfied.

5.4 Volume clearance interaction

A volume clearance interaction

occurs to a subtractive feature

whenever a subset of its volume

is !ater occupied by an additive

feature. The detection of this

interaction relies on checking the

owner list of all cells in the

subtractive feature shape.

5.5 Closure interaction

Volume clearance interaction detection algorithm

for each cell e in s . cells
list +-- c . ownerlist
for each shape s ; in list

if list . after(s ; ,s) and s i .nature additive
return true

return false

additional data returned

• the additive feature shape causing the interaction

This interaction class may be characterized by the occurrence of a (group of interacting)

subtractive feature(s) whose (compound) volume becomes a closed void inside the model.

ln the case of single closure, there is only one feature shape involved and, hence, a

necessary and sufficient condition is that its whole shape boundary is totally present on the

8º Encontro Português de Computação Gráfica 73

model boundary, i.e. it has no

subtractive cell faces. ln

multiple closure, however, such

cell faces may occur on the

involved features' boundaries,

but only separating their

overlapping

Therefore, the

volumes.

detection

algorithm exits as soon as it

Closure interaction detection algorithm

closedShapes +- s v s.overlappingSet{subtractive)
for each shape S ; in closedShapes

for each cell face cf in s ;. boundary{subtractive)
if not exists cf.partner

return false
els e

closedShapes . add{cf .partner.ownerlist.last.shape)
return true

additional data returned

• the set of closed feature shapes

finds one cell face of these boundaries that is not separating two subtractive cells.

5.6 Absorption interaction

Absorption interactions are again

described in volumetric rather

than in boundary terms. They

occur to either an additive or a

subtractive feature, whenever it

ceases to contribute to the model

shape. A sufficient and necessary

Absorption interaction detedion algoritbm

for each cell e in s.cells
if c.ownerlist.last = s

return false
return true

additional data returned

• the set of interacting shapes causing the absorption

condition is that all cells of the absorbed feature shape are contained in, i.e. owned by, one

or more other interacting shapes. This information is explicitly stored in the owner list of a

cell, whose last element stands for the shape that most recently occupied the cell volume.

5.7 Geometric interaction

Geometric interactions on a subtractive feature are described by a combination of

volumetric and boundary conditions on shape elements. Informally, they can be described as

the remova! of a "slice" of the feature shape adjacent to one of its shape elements. The

detection algorithm, thus, analyzes,_ for each shape element, the boundary of all cells in its

neighborhood.

The "amount" of geometric

interaction (i.e. the computation

of the actual parameter value

shown), requires additional

geometric queries: determination

(i) of the parameter related with

the shape element, (ii) of the

respective direction, and (iii) of

the dimension of the remaining

shape volume in that direction.

Geometric interaction detection algorithm

for each shape element e in s.elements
geom_int +- true
for each cell face cf in e.cellFaces

for each cell face cf; in cf.cell.boundary
if cf;. nature = additiva

geom int +- falsa
exit

if not geom_int
exit

if geom_int
return trua

return falsa

additional data returned

• the shape element(s) involved

• the actual parameter value(s)

74 Grupo Português de Computação Gráfica -EUROGRAPHICS

5.8 Transmutation interaction

Transmutation interactions are

analogous to geometric interac

tions, in that they also act on a

shape element. When a shape
element e has a semantic

constraint, its semantic nature,
denoted e. sernanticNature,

is defined as:
addi tive, if it has a

semantic constraint of type
onBoundary;

subtractive, if it has a

semantic constraint of type
notOnBoundary;and

nil, otherwise.

Transmutation interaction detection algorithm

for each shape element e in s.elements
n ~ e . semanticNature
if n ~ nil

transm_int ~ true
for each cell face cf in e . cellFaces

if cf.nature = n
transm_int ~ falsa
exit

if transm_int
return trua

return falsa

additional data returned

• the shape element with the unsatisfied semantic
constraint

• the identified feature class of the transmutated feature

With a transmutation, the nature of all cell faces of a shape element is opposite to its

semantic nature. Shape elements on which no semantic constraints are specified (meaning

that their presence/absence on the model boundary is irrelevant for feature semantics) are,

thus, not subject to this interaction class. To determine the potential new class of the

transmutated feature, a dedicated module is used that performs incremental identification of

features in the cellular model, see (de Kraker et ai. 97).

6. Interaction Detection Examples

ln this section we illustrate with an example severa! classes of interactions that are detected

by the algorithms presented above. We start with the model in Figure 3, which consists of a

base block with six subtractive features: one rectangular step, two blind slots, two through

holes and one blind hole.

By means of the graphical user interface of SPIFF, this model can be edited, for instance

by modifying one of its features or adding a new one. After each operation, model

validation analysis signals all interaction constraint violations detected. The user can then

inspect each of them, getting feedback on its causes and consequences; see Figure 4 for a

variety of interaction situations which have been derived in this way. For each of them, we

assume that the respective interaction constraint has been specified and is, thus, present in

the affected feature instances.

8º Encontro Português de Computação Gráfica 75

Figure 3 - Example feature model created in SPIFF

ln Figure 4.(a) the insertion of a rib generates a clearance interaction on the blind hole. ln

Figure 4.(b) one of the through holes is displaced, so that its side face breaks across the

block. ln Figure 4.(c) the two blind slots see their effective length reduced dueto the step

insertion over their entrance faces. ln Figure 4.(d) a through slot with an excessively large

depth is inserted, causing the base block disconnection interaction.

76 Grupo Português de Computação Gráfica - EUROGRAPHICS

(a) boundary clearance (b) semantic

(e) geometric (d) disconnection

Figure 4 - Some interaction situations caused by editing the model of Figure 3

8º Encontro Português de Computação Gráfica 77

7. Conclusions and Future Work

Validity maintenance of feature models is not complete without proper management of

feature interactions. This poses strong requirements at various levels of a feature-based

modelling system, in particular at the:

• specification level of feature classes;

• geometric representation level of feature models;

• operational level of the modeller.

The approach described in this paper has the following advantages. It:

• permits fine tuning of validity specification (both at the generic feature definition level

and at any modelling stage) for all feature instances in the model;

• ensures feature validity after each modelling operation;

• detects and classifies each kind of interaction occurring in the model.

Future research includes the generation of possible reaction methods to interactions

detected, and the development of mechanisms for automatic recovery of model validity.

Acknowledgments

Rafael Bidarra's work is supported by the Praxis XXI Program of the Portuguese

Foundation for Scientific and Technological Research (FCT).

References

Bidarra, R. and Bronsvoort, W.F. (1996) "Towards classification and automatic detection of

feature interactions". ln: Roller, D., editor, Proceedings of the 29th International

Symposium on Automotive Technology and Automation, pp. 99-108.

Bidarra, R., Dohmen, M. and Bronsvoort, W.F. (1997) "Automatic Detection oflnteractions

in Feature Models". ln: CD-ROM Proceedings of ASME 1997 Computers in

Engineering Conference . .

Bidarra, R., de Kraker, K.J. and Bronsvoort, W.F. (1998) "Representation and management

of feature information in a cellular model". To be published in Computer-Aided

Design.

Dohmen, M., de Kraker, K.J. and Bronsvoort, W.F. (1996) "Feature validation in a multiple

view modeling system". ln: McCarthy, J.M., editor, CD-ROM Proceedings of

ASME 1996 Computers in Engineering Conference.

78 Grupo Português de Computação Gráfica - EUROGRAP HICS

de Kraker, K.J., Dohmen, M. and Bronsvoort, W.F. (1995) "Multiple-way feature

conversion to support concurrent engineering". ln: Hoffmann, C. and Rossignac,

J., editors, Proceedings of the Third ACMIIEEE Symposium on Solid Modeling

andApplications, pp. 105-114.

de Kraker, K.J., Dohmen, M. and Bronsvoort, W.F. (1997) "Maintaining multiple views in

feature modeling". ln: Hoffmann, C. and Bronsvoort, W.F., editors, Proceedings

of the Fourth ACM Symposium on Solid Modeling and Applications, pp. 123-

130.

Kramer, G.A. (1992) "Solving geometric constraints systems: a case study in kinematics".

The MIT Press, Cambridge, MA, USA.

Mandorli, F., Cugini, U., Otto, H.E. and Kimura, F. (1995) "Reflective contrai of attributed

entities in feature-based CAD systems using a CARW system manager"; ln:

Tomiyama, T., Mantyla, M. and Finger, S., editors, Preprints of the IFIP WG5.2

Workshop on Knowledge Intensive CAD-1, Espoo, Finland, pp. 217-244,

September 1995.

Noort, A., Dohmen, M. and Bronsvoort, W.F. (1997) "Solving over- and underconstrained

geometric models". ln: Brüderlin, B. And Roller, R., editors, Proceedings of

Workshop on Geometric Constraint Solving and Applications, Ilmenau,

Germany, pp. 8-22, September 1997.

Regli, B. and Pratt, M. (1996) "What are feature interactions?". ln: McCarthy, J.M., editor,

CD-ROM Proceedings of ASME 1996 Computers in Engineering Conference.

Sannella, M. (1992) "The SkyBlue constraint solver", Technical Report 92-07-02,

University ofWashington, USA.

Vieira, A.S. (1995) "Consistency management in feature-based parametric design". ln:

Gadh, R., editor, Proceedings of the ASME 1995 Design Engineering Technical

Conferences, Vol. 2, Boston, MA, pp. 977-987.

8º Encontro Português de Computação Gráfica 79

