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Abstract 

Current feature-based modelling systems fail to adequately maintain feature semantics. 
This is partly due to inappropriate specification of validity conditions in feature classes, 
but mainly due to a Jack of effective validity maintenance mechanisms throughout the 
modelling process. An essential aspect in this is feature interaction management. This 
paper presents a new approach to the detection of feature interactions, which uses 
semantic and interaction constraints in feature class specification. Validity maintenance 
is automatically performed after each modelling operation by checking these 
constraints, thus being able to detect a variety of interaction types. Such interactions are 
then analyzed, and their causes identified and reported to the user. 

1. Introduction 

Feature modelling systems offer the possibility to build a product model with features . 

These are representations of shape aspects of a physical product that are mappable to a 

generic shape and are functionally significant. Stated differently, each feature has a well

defined meaning, which should be represented and preserved in a product model. 

Severa! proposals have been made to approach the problems of specification and 

maintenance of feature validity. These were surveyed in (Dohmen et ai. 96), and it was 

concluded that a declarative approach, where validity specification is clone separately from 

validity maintenance, provides the best solution. Currently, no feature modelling system 

provides a really powerful and self-contained scheme for validity specification of feature 

classes. Most approaches are based on a variety of constraint types, each of which gives a 

specific contribution in the description of the behavior desired for instances of each class in 

the feature library. Whenever a feature is instantiated, instances of its validation constraints 

are automatically created. Such constraints have to be solved and maintained, both at a 

feature's creation and in subsequent modelling steps. 

Without effective validity maintenance, or in case the validation constraints specified are 

insufficient, the modeller will fail in preserving feature semantics and, thus, in capturing 

designer intent. This is the case in many commercial "feature-based" systems which, for 
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example, fail to notify the transmutation of a blind hole into a through hole, as depicted in 

Figure 1. 

Current research prototypes that do perform validity maintenance, see for example (de 

Kraker et ai. 95), (Mandorli et ai. 95) and (Vieira 95), simply reject any user modelling 

operation that yields inconsistencies in the feature model. The user then has to take some 

altemative action, e.g. changing parameters of a feature, or even taking a feature of a 

different type. 

-t> 

Figure 1 - Blind hole transmutation due to slot displacement 

However, this scheme seems too rigid, as it may often be hard to trace why invalidity arose 

or to find a way around it. The least that is desirable is that the user gets a good explanation 

on what has caused the invalidation of a feature. A further improvement would be that he 

gets hints on how to avoid or overcome the problem. Ideally, the system would 

automatically adapt the model to get a valid model again in cases this is possible and 

desirable, although this should probably not be dane without consulting the user. ln the 

previous example of Figure 1, the blind hole might be automatically converted into a 

through hole, if the user permits this. 

Most validity violations are caused by feature interactions, which arise from modelling 

operations such as the creation of a new feature or the modification of an existing feature. It 

is therefore important to manage feature interaction phenomena, so that all relevant 

interaction situations can be detected, reported and handled in an appropriate way (Regli 

and Pratt 96). Within the scope of this research, we understand as feature interactions those 

modifications of the shape aspects represented by a feature that affect its functional 

meaning. 

ln short, a global solution to the validation problems pointed out so far should include: 
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a) a declarative scheme for flexible specification of feature classes, allowing a fine 

tuning of the behavior desired for their instances; 

b) a separate validity maintenance mechanism; 

e) monitoring each modeller operation issued by the user in order to detect feature 

interactions; 
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d) reporting to the user the causes of any invalid situation, together with a detailed 

analysis of its consequences; 

e) providing the user with a reasonable choice of reaction mechanisms to overcome 

invalid situations. 

The remainder of the paper is organized as follows. First, we give an overview of the current 

status of the feature validity specification and maintenance scheme (Section 2) and summa

rize how it is implemented within the SPIFF1 modelling system, a prototype multiple-view 

feature-based modeller developed at Delft University of Technology (Section 3). Next, we 

focus on the interaction management issues of this approach (Section 4) and describe the 

interaction detection algorithms in detail (Section 5). We then illustrate their operation with 

an example model (Section 6). Finally, some conclusions are drawn on the present 

approach, pointing out some further developments in this research (Section 7). 

2. Specification and Maintenance of Feature Validity 

An effective proposal for specification and maintenance of feature validity in feature models 

has been presented in (Dohmen et al. 96) and (Bidarra et al. 97), and implemented in the 

prototype system SPIFF. This system has a mechanism for feature validity maintenance 

based on constraint solving. Severa! types of validation constraints are available; here only a 

brief description of each one is given: 

• attach constraints specify how a feature instance is attached to the model, by coupling 

some of its feature elements (i.e. faces or edges) to elernents of other features already 

present in the model; 

• geometric constraints specify geometric relations, such as parallelism and distance, 

between feature elements; 

• dimension constraints specify an interval for the value of feature parameters; 

• algebraic constraints specify an expression for feature parameters; 

• semantic constraints specify how a feature instance is allowed to topologically devíate 

from its canonical behavior, by stating the extent to which its feature elements should 

belong to the model boundary; 

• interaction constraints specify whether a given interaction type should be disallowed 

for a feature instance. 

Such constraints are created in two ways. First, they may be embedded as attributes of a 

feature class - the generic feature definition - and are, thus, instantiated together with each 

new feature instance. Second, they may be explicitly added by the user, to further constrain 

.....,. 
1 Named after Spaceman Spiff, interplanetary explorer extraordinaire. ~ 
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or relate specific feature instances in the model. ln either case, this is called specification of 

validity conditions ( either of individual features or of the feature model as a whole ). 

The basic idea of our approach is that after a modelling operation has been performed, 

the model is required to conform to all existing constraints. The operation is unsuccessful, 

and thus rejected, if any of the constraints is violated. However, analysis of all constraint 

violations is performed in order to provide the user of the system with proper explanations 

of their causes. Such explanations typically include references to the feature elements or 

parameters involved in the invalidity situation, and possibly conflicting constraints (Noort et 

al. 97) . This is called validity maintenance. 

Severa! advantages can be pointed out for this approach: 

• the use of various constraint types for validity specification in genenc feature 

definitions permits a more complete definition of all semantic aspects of each feature 

class; 

• user-added constraints can further assist m capturing designer intent, still applying 

uniform constraint management; 

• once specified, validity is always maintained throughout model editing, thus ensuring 

that all its feature instances are kept valid; 

• separated validity maintenance, performed during incremental evolution of the model, 

allows for the application of various techniques, including an explanation mechanism 

for inconsistencies encountered in this process. 
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Figure 2 - Architecture of the SPIFF system 

Grupo Português de Computação Gráfica - EUROGRAP HICS 



3. System Architecture 

Validity maintenance is performed in SPIFF by means of a Constraint Manager, a Feature 

Geometry Manager and an Interaction Manager, under the contrai of a Feature Manager, 

according to the architecture depicted in Figure 2. 

The Feature Manager receives commands from the user, issued via a graphical user 

. interface, and sends appropriate requests to the respective Managers, after which the result 

of the operation is returned to the user. 

The Constraint Manager maintains all constraints in a constraint graph, and solves them 

by calling dedicated solvers. The constraint graph is mapped onto two primitive constraint 

graphs, one for primitive algebraic constraints and another for primitive geometric 

constraints. The primitive algebraic constraint graph is solved using the SkyBlue approach 

(Sannella 92), the primitive geometric constraint is solved using the Degrees of Freedom 

analysis approach (Kramer 92). After a primitive graph has been solved, the constraint 

graph maintained by the Constraint Manager is updated. In this way, primitive constraint 

graph solving is dane efficiently by dedicated solvers, while the Constraint Manager takes 

care of the interdependence of the primitive constraint graphs. 

The Feature Geometry Manager is responsible for performing those operations, issued by 

the Feature Manager, that modify the geometry of the model, for instance, adding a new 

feature to the model and removing or modifying an existing feature. It maintains the 

geometric representation of the feature model in a cellular model (Bidarra et ai. 98). Each 

feature is associated to one or more instances of shape classes. Each shape instance accounts 

for a bounded region of space - the shape extent. A through hole, for example, is associated 

to a cylinder shape. Features also assign to their shapes the nature attribute, specifying 

whether this volumetric extent is additive, i.e. adding material to the volume of the 

represented part, or subtractive, i.e. removing material from it. 

The cellular model represents apartas a connected set of volumetric quasi-disjoint cells, 

in such a way that each cell either lies entirely inside a shape extent or entirely outside it. 

Feature shapes are decomposed into cells; overlapping feature shapes share one or more 

cells. The complete boundary of a feature is decomposed into functionally meaningful 

subsets, the shape e/ements, which are also explicitly represented in terms of cel/ faces and 

edges (or simply cell elements). For the through hole example above, its boundary is 

decomposed into the cylinder top, side and bottom faces, as well as the top and bottom loop 

edges. Each cell element stores in an owner list which shape elements it belong to; 

analogously, each cell stores in an owner list which shapes it belongs to. In this way, the 

geometric representation of feature shapes and their elements can be selectively accessed at 

ariy time, allowing for the analysis of feature semantics. 

ln the next section we describe the functionality of the Interaction Manager. 
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Table 1 - lnteraction classes handled in SP!FF 

SPLITTING INTERACTION 

insertion of the slot splits the through hole 
boundary into disconnecled components 

BOUNDARY CLEARANCE INTERACTION 

enlargemenl of the prolrusion widlh obstrucls 
entrance face of lhe lhrough holes 

CLOSURE INTERACTION 

displacemenl of lhe prolrusion causes the whole 
volume of two blind holes to become closed voids 

inside the model 

GEOMETRIC INTERACTION 

inserlion of a V-slep changes lhe deplh of the 
blind hole 

4. The interaction Manager 

DISCONNECTION INTERACTION 

• 
enlargemenl of the lhrough hole diameter 

disconnects part of the block from lhe remaining 
model 

VOLUME CLEARANCE INTERACTION 

insertion of a prolrusion inlrudes into the 
sublraclive volume of lhe 

V-slol 

ABSORPTION INTERACTION 

insertion of a slot suppresses conlribution of the 
lhrough hole to the model shape 

TRANSMUTATION INTERACTION 

insertion of a V-slep turns lhe blind hole inlo a 
lhrough hole 

The Interaction Manager performs the last stage of the validation process, after each 

modelling operation: detennining whether any disallowed feature interaction occurs, and 

taking appropriate action. A variety of interaction classes that may affect feature semantics 

has been identified (Bidarra and Bronsvoort 96). A summary of these interaction types is 

presented in Table 1. 

The global procedure of the Interaction Manager may, for each of the main modelling 

operations - insertion, modification and remova/ of a feature -, be subdivided into three 

main phases: 
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a) determination of the interaction scope of each operation; 

b) detection of specific feature interactions arising from the operation; 

e) individual analysis of each interaction, which includes reporting its causes. 

The feature interaction scope (FIS) of a modelling operation on a feature f is determined by 

identifying all feature instances in the model that may potentially be affected by it. For this, 

two important notions, with regard to a given featuref, are: 

• the set of features that overlap withf, either volumetrically or between their boundaries; 

these features make up the overlapping set of f, denoted OS(/), and they are identified 

by querying the Feature Geometry Manager, which keeps track of ali feature shapes and 

their intersections in the cellular model; 

• the set of features that depend on f; these features make up the dependency set of f, 
denoted DS(f), and they are identified by querying the Constraint Manager, which . 

recursively traces in the constraint graph the dependency relations onf 

Depending on the modelling operation, the feature interaction scope will consist of different 

combinations of overlapping and dependency sets, see (Bidarra et al. 97) for a detailed 

description. 

Feature interactions taking place on any feature of FIS are detected by checking their 

interaction and semantic constraints. ln this stage, the other Managers are queried, in order 

to obtain the specific data required by each detection algorithm described in the next -

section. 

Bach constraint violation is recorded by the Interaction Manager. Bventually, the set of 

constraint violations is analyzed, in order to identify their causes, which are then reported to 

the user. 

5. Detection of each Interaction Class 

ln this section, detection procedures are presented for the interaction classes presented in 

Table 1. For each of them, it is also pointed out how additional information is collected, in 

order to provide the user with a detailed explanation. 

Bach of these algorithms is aimed at checking the respective interaction constraint. For 

simplicity, the detection algorithms shown here opera te on features with only one shape; . 

however, their extension to features consisting of several shapes is straightforward. Only the 

detection algorithm for disconnection interactions operates on the whole model, provided 

that such interactions may take place without actually splitting any single shape, but rather 

disconnecting it from the remaining model volume. 

The algorithms shown make use of the functionality provided by the Constraint Manager 

and the Feature Geometry Manager in order to query their data. Most of the methods are 

described in detail in (Bidarra et al. 98); for completeness, a summary of them is given in 

Table 2. 
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Table 2 - Summary of methods used in the detection algorithms 

CELLULAR MODEL, cm 

SHAPE,s 

s.nature 

s.elements 

s.cells 

s.boundary(nature) 

s.overlappingSet(nature) 

s.constraints(type) 

cf.cell 

cf.partner 

cf.ownerlist 

cf.nature 

l.after(element1, element2) 

5.1 Splitting interaction 

returns the nature (additive ar subtractive) specified for shape s 

returns the list of shape elements of shape s 

returns tlze list of ali cells that lie in the shape extent of s 

returns tlze list of cell faces with specified nature that lie in the extent of shape 
eleme11ts of s 

returns the list of shapes of specified nature that overlap with shape s (either 
volumetrically or between their boundaries - cell faces and edges) 

) returns the list of constraints of specified type established 011 shape s 

returns the cell bounded by cell face cf 

returns the partner cell face of cf that bounds an adjacent cell (if this exists) 

returns the list of shape elements that own cellface cf 

returns additive if the cell face cf lies on the model boundary, and subtractive 
otherwise 

returns true if element 1 occurs after element 1 in the owner list / 

Splitting interactions can be 

described in terms of the nature 

of feature boundaries. They occur 

to a feature shape whenever the 

cellular decomposition of its 

boundary is such that the subset 

of its additive cell faces is not 

connected. 

Splitting interaction detection algorithm 

boundary +- s.boundary(additive) 
cf1 +- boundary.first 
for each cell face cf 2 in boundary 

if not boundary.accessible(cf1 ,cf2 ) 

return true 
return falsa 

additional data returned 

• the split subsets of additive faces 

The accessible (01 , 0 2 ) method of a s0t of entities returns tru0 iff (a) for the two 

specified elements, 0 1 and 0 2, either 0 1 =02 

third element 0 3 in the s0t 

s0t. accessible (03 , 0 2 ). 

or 0 1 . adjacent (02 ) holds; or (b) there is a 

such that 0 1 . adj acent ( 0 3 ) and 
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5.2 Disconnection interaction 

Disconnection interactions are 

analogous to splitting interac

tions, but they are better 

described in terms of the behavior 

of additive shape volumes. They 

occur to additive features when

ever the cellular decomposition 

of the model is such that the 

Disconnection interaction detection algorithm 

cells +-- cm . cells( additive) 
c 1 +-- cells.first 
for each cell c 2 in cells 

if not cells.accessible(c1 ,c2 ) 

return true 
return false 

additional data returned 

• the split subsets of additive cells of the mo dei 

subset of its additive cells is not connected. 

5.3 Boundary clearance interaction 

Some semantic constraints, in 

particular those of type 
notOnBoundary(complete 
1 y) , are intended, for example, 

to guarantee clearance on 

toolpath entrance faces of sub

tractive features . A clearance 

interaction occurs to a subtractive 

feature whenever such a semantic 

Boundary clearance interaction detection algorithm 

semanticConstraints +-- s . constraints(semantic ) 
for each se in semanticConstraints 

if sc.type = nob(completely) and not sc.check 
return true 

return false 

additional data returned 

• the shape element with the unsatisfied semantic 
constraint 

• the shape(s) causing the constraint violation 

constraint on one of its shape elements is not satisfied. 

5.4 Volume clearance interaction 

A volume clearance interaction 

occurs to a subtractive feature 

whenever a subset of its volume 

is !ater occupied by an additive 

feature. The detection of this 

interaction relies on checking the 

owner list of all cells in the 

subtractive feature shape. 

5.5 Closure interaction 

Volume clearance interaction detection algorithm 

for each cell e in s . cells 
list +-- c . ownerlist 
for each shape s ; in list 

if list . after(s ; ,s ) and s i .nature additive 
return true 

return false 

additional data returned 

• the additive feature shape causing the interaction 

This interaction class may be characterized by the occurrence of a (group of interacting) 

subtractive feature(s) whose (compound) volume becomes a closed void inside the model. 

ln the case of single closure, there is only one feature shape involved and, hence, a 

necessary and sufficient condition is that its whole shape boundary is totally present on the 
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model boundary, i.e. it has no 

subtractive cell faces. ln 

multiple closure, however, such 

cell faces may occur on the 

involved features' boundaries, 

but only separating their 

overlapping 

Therefore, the 

volumes. 

detection 

algorithm exits as soon as it 

Closure interaction detection algorithm 

closedShapes +- s v s.overlappingSet{subtractive) 
for each shape S ; in closedShapes 

for each cell face cf in s ;. boundary{subtractive) 
if not exists cf.partner 

return false 
els e 

closedShapes . add{cf .partner.ownerlist.last.shape) 
return true 

additional data returned 

• the set of closed feature shapes 

finds one cell face of these boundaries that is not separating two subtractive cells. 

5.6 Absorption interaction 

Absorption interactions are again 

described in volumetric rather 

than in boundary terms. They 

occur to either an additive or a 

subtractive feature, whenever it 

ceases to contribute to the model 

shape. A sufficient and necessary 

Absorption interaction detedion algoritbm 

for each cell e in s.cells 
if c.ownerlist.last = s 

return false 
return true 

additional data returned 

• the set of interacting shapes causing the absorption 

condition is that all cells of the absorbed feature shape are contained in, i.e. owned by, one 

or more other interacting shapes. This information is explicitly stored in the owner list of a 

cell, whose last element stands for the shape that most recently occupied the cell volume. 

5.7 Geometric interaction 

Geometric interactions on a subtractive feature are described by a combination of 

volumetric and boundary conditions on shape elements. Informally, they can be described as 

the remova! of a "slice" of the feature shape adjacent to one of its shape elements. The 

detection algorithm, thus, analyzes,_ for each shape element, the boundary of all cells in its 

neighborhood. 

The "amount" of geometric 

interaction (i.e. the computation 

of the actual parameter value 

shown), requires additional 

geometric queries: determination 

(i) of the parameter related with 

the shape element, (ii) of the 

respective direction, and (iii) of 

the dimension of the remaining 

shape volume in that direction. 

Geometric interaction detection algorithm 

for each shape element e in s.elements 
geom_int +- true 
for each cell face cf in e.cellFaces 

for each cell face cf; in cf.cell.boundary 
if cf;. nature = additiva 

geom int +- falsa 
exit 

if not geom_int 
exit 

if geom_int 
return trua 

return falsa 

additional data returned 

• the shape element(s) involved 

• the actual parameter value(s) 
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5.8 Transmutation interaction 

Transmutation interactions are 

analogous to geometric interac

tions, in that they also act on a 

shape element. When a shape 
element e has a semantic 

constraint, its semantic nature, 
denoted e. sernanticNature, 

is defined as: 
addi tive, if it has a 

semantic constraint of type 
onBoundary; 

subtractive, if it has a 

semantic constraint of type 
notOnBoundary;and 

nil, otherwise. 

Transmutation interaction detection algorithm 

for each shape element e in s.elements 
n ~ e . semanticNature 
if n ~ nil 

transm_int ~ true 
for each cell face cf in e . cellFaces 

if cf.nature = n 
transm_int ~ falsa 
exit 

if transm_int 
return trua 

return falsa 

additional data returned 

• the shape element with the unsatisfied semantic 
constraint 

• the identified feature class of the transmutated feature 

With a transmutation, the nature of all cell faces of a shape element is opposite to its 

semantic nature. Shape elements on which no semantic constraints are specified (meaning 

that their presence/absence on the model boundary is irrelevant for feature semantics) are, 

thus, not subject to this interaction class. To determine the potential new class of the 

transmutated feature, a dedicated module is used that performs incremental identification of 

features in the cellular model, see (de Kraker et ai. 97). 

6. Interaction Detection Examples 

ln this section we illustrate with an example severa! classes of interactions that are detected 

by the algorithms presented above. We start with the model in Figure 3, which consists of a 

base block with six subtractive features: one rectangular step, two blind slots, two through 

holes and one blind hole. 

By means of the graphical user interface of SPIFF, this model can be edited, for instance 

by modifying one of its features or adding a new one. After each operation, model 

validation analysis signals all interaction constraint violations detected. The user can then 

inspect each of them, getting feedback on its causes and consequences; see Figure 4 for a 

variety of interaction situations which have been derived in this way. For each of them, we 

assume that the respective interaction constraint has been specified and is, thus, present in 

the affected feature instances. 
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Figure 3 - Example feature model created in SPIFF 

ln Figure 4.(a) the insertion of a rib generates a clearance interaction on the blind hole. ln 

Figure 4.(b) one of the through holes is displaced, so that its side face breaks across the 

block. ln Figure 4.(c) the two blind slots see their effective length reduced dueto the step 

insertion over their entrance faces. ln Figure 4.(d) a through slot with an excessively large 

depth is inserted, causing the base block disconnection interaction. 
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(a) boundary clearance (b) semantic 

(e) geometric (d) disconnection 

Figure 4 - Some interaction situations caused by editing the model of Figure 3 
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7. Conclusions and Future Work 

Validity maintenance of feature models is not complete without proper management of 

feature interactions. This poses strong requirements at various levels of a feature-based 

modelling system, in particular at the: 

• specification level of feature classes; 

• geometric representation level of feature models; 

• operational level of the modeller. 

The approach described in this paper has the following advantages. It: 

• permits fine tuning of validity specification (both at the generic feature definition level 

and at any modelling stage) for all feature instances in the model; 

• ensures feature validity after each modelling operation; 

• detects and classifies each kind of interaction occurring in the model. 

Future research includes the generation of possible reaction methods to interactions 

detected, and the development of mechanisms for automatic recovery of model validity. 
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