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Abstract
In the simulation of manufacturing processes, complex models are used to examine process properties. To save computation
time, so-called metamodels serve as surrogates for the original models. Metamodels are inherently difficult to interpret, because
they resemble multi-dimensional functions f : Rn→ Rm that map configuration parameters to production criteria. We propose
a multi-view visualization application called memoSlice that composes several visualization techniques, specially adapted to
the analysis of metamodels. With our application, we enable users to improve their understanding of a metamodel, but also to
easily optimize processes. We put special attention on providing a high level of interactivity by realizing specialized paralleliza-
tion techniques to provide timely feedback on user interactions. In this paper we outline these parallelization techniques and
demonstrate their effectivity by means of micro and high level measurements.

Categories and Subject Descriptors (according to ACM CCS): Simulation and Modeling [I.6.6]: Simulation Output Analysis—
Numerical Analysis [G.1.1]: Interpolation—Interpolation Formulas Computer-Aided Engineering [J.6]: Computer-aided man-
ufacturing (CAM)—

1. Introduction

The understanding and configuration of manufacturing processes
is a complex task, influenced by a multitude of input parameters.
E.g., quality criteria, such as the roughness of a cut for a laser cut-
ting process, are affected by configuration parameters, such as the
focus of the laser beam. These parameters are usually chosen from
technology tables that provide information on the results of specific
pre-measured parameter settings. This, limits the choice of param-
eter combinations to exactly these pre-measurements.

Computational process simulations can be used to overcome this
limitation. However, each simulation run may take hours or even
days. To reduce computation time, global approximation models
are constructed as surrogates for the original models. These surro-
gates are referred to as metamodels, because they are an abstraction
of the original model. They represent the mapping of a process’ pa-
rameter space to its criteria space as function f : Rn→ Rm. Due to
their multi-dimensional nature, they are inherently hard to under-
stand.

In this paper, we propose memoSlice, a visualization application
designed to facilitate the interactive visual exploration of multi-
dimensional metamodels of manufacturing processes. Specifically,
memoSlice has been developed in close collaboration with domain
scientists who investigate laser cutting processes. Our development
was guided by the following two challenges. First, we needed to
devise a visualization that facilitates the accessible exploration of
the underlying function space. Second, production-size metamod-

els can be quite large; their interactive exploration requires an effi-
cient evaluation scheme in order to ensure fast user feedback.

We address the first challenge by following a coordinated mul-
tiple views (CMV) approach, which tightly integrates several visu-
alization techniques (see Fig. 1 / Sec. 4). In order to meet the sec-
ond challenge, we propose a highly dynamic task-parallel execu-
tion scheme that focuses on immediate user feedback rather than
shortest overall execution time. This scheme is detailed in Sec. 5.
We evaluate our approach’s performance in a set of micro bench-
marks and end-to-end measurements, which we discuss in Sec. 6.
Finally, we conclude with a discussion and an outlook on future
work.

2. Related Work

The analysis of multi-dimensional data is a core area of visual-
ization. However, no solution has been presented so far that suits
all needs for analysis of multi-dimensional metamodels for man-
ufacturing processes. Kehrer et al. survey visualization techniques
for both, multi-dimensional and multi-variate data [KH13]. Hyper-
Slice [vWvL93] is adapted as one element of our proposed visual-
ization approach, but enriched with additional information. Inter-
active navigation in the parameter space was previously realized,
based on the basic idea of the scatterplot matrix [EDF08]

With regard to the terminology of a recent conceptual frame-
work for visual parameter analysis [SHB∗14], our solution pro-
vides analysis tasks for optimization, uncertainty, and sensitivity
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on the predicted outputs of surrogate models for the physical mod-
els of manufacturing processes. Several solutions incorporate mut-
liple linked view designs [Rob07] for visual parameter analysis and
address similar analysis tasks as we do. HyperMoVal [PBK10] pro-
vides a combined visualization of a regression model and validation
data. A solution for finding suitable parameter combinations for im-
age segmentation algorithms is introduced [TWSM∗11]: Gaussian
process models are iteratively refined and explored to identify pa-
rameter combinations. An approach for the uncertainty-aware ex-
ploration of continuous parameter spaces is proposed [BPFG11]:
2D scatterplots and parallel coordinates are employed, augmented
with additional information on the uncertainty of predicted results
between sampling points. Vismon [BMPM12] is a design study, tai-
lored to the needs of analysis in fishery management: the effects of
two input variables on many output variables are analyzed, thereby
incorporating sensitivity and constraint-based analysis as well as
analysis of tradeoffs and uncertainty.

The gradient field is of key importance for the understand-
ing of a scalar function [Max70, Sma61]. Specifically, for more
than one input variable, gradient trajectories facilitate a better un-
derstanding of the behavior of a scalar field and its local sen-
sitivity. Therefor, we include a corresponding visualization in
our approach. In scientific visualization, topological approaches
have enjoyed significant success in various settings, including,
e.g., fast and robust iso-contour extraction and volume render-
ing [PSBM07, WDC∗07, CSvdP10]. In particular, recent devel-
opments based on Morse theory [Mil63] have led to approaches
for the computation and visualization of the Morse-Smale com-
plex of scalar fields [EHNP03, BHEP04, GBHP08]. Ideas rooted
in topology are adapted to the exploration of multi-dimensional
data [OHJS10,GBPW10]. These and related approaches have been
proven to be a versatile tool for the investigation of scalar functions.
They are used, e.g., to track and analyze burning structures in tur-
bulent combustion processes [BWP∗10]. A generic query language
defines and visualizes features based on the MSC [GKK∗12].
Metamodels for production processes are often widely monotonic
or of low polynomial order for individual parameters. Moreover,
ideal parameter settings are not always characterized by local ex-
trema. Hence, we rely on gradient trajectories for user guidance
created by tracing integral lines [MLP∗10].

3. Input Data

The data to be analyzed with our approach are metamodels for
simulations of manufacturing processes [AKES15]. Their purpose
is to provide a fast and cheap, yet precise approximation for the
computation-intense simulation.

In general, metamodels resemble functions f : Rn→ Rm, with
Rn being the parameter space and Rm being the criteria space.
Parameters in Rn are process parameters, such as the laser power in
a laser cutting process. In contrast, criteria in Rm are quantifications
of process results, such as the roughness of the resulting cut.

The metamodel implementation relies on radial basis function
networks (RBFNs) [Orr96], which provide non-linear interpolation
between training points that are gathered by an iterative smart sam-
pling approach [AKES15]. An RBFN is a three layer feed forward

neural network. It comprises an input layer, a hidden layer of non-
linear basis functions, and an output layer. While the input layer can
be modeled as a vector of real numbers, the output layer contains a
scalar function of the input layer.

The output of a metamodel exactly matches the training data
when evaluating at a training point’s location in the data space.
Between training points, uncertainty about the quality of the re-
sult exists due to interpolation. As a measure for the uncertainty
of the evaluation, the training point density is included as separate
criterion in every metamodel.

The output of an RBFN for a given input vector~x is

f (~x) =
i∈R
∑ωiφ(‖~x−~xi‖2) (1)

where R is the set of basis functions, ωi is the weight of the i-th
basis function, φ(ρ) is the RBF kernel and ~xi is the position vector
of the i-th RBF. In the implementation, three kernel types exist.
These are a Gaussian kernel φg, a multi-quadratic kernel φm, and a
linear kernel φl :

φg(ρ) = e−
ρ

r2 , φm(ρ) =

√
r2 +ρ

r
, φl(ρ) =

√
ρ (2)

For φg(ρ) and φm(ρ), r is the kernel width of the data field.

Not every parameter combination yields a feasible process result.
Considering, e.g., a laser cutting process, any parameter combina-
tion that results in not being able to cut through the material is con-
sidered infeasible. To account for this, a second metamodel—the
classification model—splits the data space in the feasible and the
infeasible domain [Al 15]. Since it represents the working limits of
a process, it is called limits metamodel.

4. Visualization Concept

As introduced above, the first challenge in order to support end
users with an accessible visualization tool for metamodel explo-
ration is to create a suitable visualization design. To this end,
memoSlice is designed as a coordinated multiple views (CMV) sys-
tem. Its consists of four main views, whose combination provides
insights on different abstraction levels. As illustrated in Fig. 1, these
views are the scatterplot matrix view, the parallel coordinates view,
the HyperSlice view, and the 3D view. They are accompanied by an
optional cut shape view, which is present for cutting tasks.

The scatterplot matrix view and the parallel coordinates view vi-
sualize a shared set of randomly sampled data points. They mainly
provide an overview of the data and allow for investigating high-
level relationships, such as interdependencies between parameters
and individual sensitivities of parameters on criteria. In contrast,
the HyperSlice view and the 3D view facilitate detailed analysis
and optimization tasks. To this end, they show slices of different
dimensionalities through the multi-dimensional data domain. Ad-
ditional information, i.e., points of interest (POI) and gradient tra-
jectories, are superimposed to add further user guidance.

The visualization primitives in memoSlice are based on a set of
shared concepts, which we describe in the following. Afterwards,
we detail the individual views.
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Figure 1: memoSlice: scatterplot matrix view (top left), parallel coordinates view (top right), HyperSlice view (bottom left), cut shape view
(below), and 3D view (bottom right).

4.1. Shared Concepts

The views of a CMV application need to be coordinated, i.e.,
linked. In memoSlice, we realize this linkage via focal points (cf.,
e.g., [vWvL93,TSDS96,PBK10]). A focal point ~p ∈Rn represents
a parameter combination based on which visualization primitives
determine which sub spaces to display. Upon changing it, all af-
fected visualizations are updated.

Slices are used by the visualization primitives of the HyperSlice
view and the 3D view. In general, a slice is an m-dimensional cut
through the n-dimensional data domain with m < n. In memoSlice,
1D, 2D, and 3D slices are used, where 1D slices are represented
as function plots, 2D slices are represented as color-coded squares,
and 3D slices are represented via direct volume rendering.

To aid navigation and sensitivity analysis, a projection of the gra-
dient trajectory passing through the current focal point is overlayed
on every 2D and 3D slice and on the parallel coordinates. For the
computation of the gradient ∇ f : Rn → Rn, the representation of
the data as RBFN enables us to rely on analytical computation of
the weighted sum of RBFs f : Rn→ R as described in Eq. 1. The
gradient trajectory τ : R→ Rn is defined as

dτ

dt
=∇ f , τ(t0) = ~p, φ

′(ρ) =
dφ

dρ
(3)

∇ f (~x) = 2
j∈N
∑~e j

i∈R
∑ωi(xn− xi,n)φ

′(‖~x−~xi‖2) (4)

where N are the dimension indices, with ~e j ∈ Rn being the or-

thonormal basis vectors, R being the set of basis functions, ωi being
the weight of the i-th basis function, φ(ρ) being the RBF kernel,
and ~xi being the position vector of the i-th RBF. Based on ∇ f , we
compute the individual vertices of a gradient trajectory by apply-
ing forward and backward integration, starting at the focal point
~p, thereby utilizing the Runge–Kutta (RK4) method [Kut01] and
adaptive step widths.

Gradient trajectories indicate the steepest ascend and descent in
the data field, which corresponds to the direction where a change
would have the strongest effect. Thus, they support process opti-
mization and local sensitivity analysis.

Trajectories are color-coded with the same color map as the
slices they are overlayed on to further support the understanding
of their path. This way the local rate of change is depicted, which
is shown even clearer in the gradient trajectory navigators above
and below the HyperSlice view and below the 3D view (see Fig. 1).
They show the slope of the trajectory by mapping its length to the
x-axis and its value to the y-axis. Additionally, they facilitate multi-
dimensional navigation, by dragging the respective sliders along
the course of the trajectory, which updates the location of the used
focal point.

With the scatterplot matrix view and the parallel coordinates
view, we include two different point visualizations. While such vi-
sualizations can be directly used to display the training data from
which metamodels are created, this is often of limited use due to
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a rather sparse sampling of training points. Exploiting the capabil-
ity of fast metamodel evaluation, we create a common point set on
the fly. This way, parameter combinations that lie between training
points can be displayed. It also allows for applying zooming and fil-
tering, while guaranteeing representations with consistent density.

Points that are uniformly sampled within the visible data domain
allow for getting an overview on the data. Furthermore, they assist
users in drawing conclusions regarding global sensitivity of param-
eters on criteria. To also account for local sensitivity analysis, we
furhter support normal distribution sampling around the current fo-
cal point with a user-defined standard deviation (SD). This way,
the direct vicinity of the focal point can be analyzed in multiple
dimensions simultaneously.

Knowing the working limits of a manufacturing process is of key
importance, since they indicate parameter configurations that do
not yield feasible results. To clarify the working limits, areas with
infeasible parameter combinations are grayed out in all visualiza-
tions.

Two types of POI are displayed as additional landmarks to
improve orientation in the parameter space: locations of training
points and local extrema. Both are displayed as circular overlays in
the slices of the HyperSlice view and as spheres in the 3D view.
Training points are displayed in light gray, local minima in blue,
and local maxima in red. While training points are an inherent el-
ement of metamodels, extrema are computed in a pre-process via
randomly seeding gradient trajectories in the data domain.

To allow for detailed analysis, the visible ranges for all param-
eters can be adjusted individually, which corresponds to zooming.
Adjusting the visible range is a global configuration that affects all
visualization primitives in memoSlice.

When considering optimization tasks, it is beneficial to users to
exclude undesired criteria values from their analysis. To account
for this, we include the option to limit the visible range for criteria,
too. This results in points of the common point set to be discarded
if their criteria values do not reside in the desired range. Similar to
working limits, such regions are grayed out in slice visualizations,
which reduces visual clutter and allows users to focus on desired
criteria values.

To enable comparisons of different criteria, the displayed crite-
rion can be changed for the detail views, i.e., the upper and lower
triangular part of the HyperSlice view and the 3D view, respec-
tively. Consequently, we allow users to carry out multi-criteria opti-
mizations of up to three criteria at the same time. The training point
density is included as criterion in every metamodel and can be used
to identify areas that are too sparsely sampled. Additionally, it is
an uncertainty indicator, so displaying it in one view increases the
users’ awareness for the uncertainty of analysis results.

4.2. Individual Views

The scatterplot matrix view gives an instant overview of a meta-
model, but also supports sensitivity analysis. It is based on the com-
mon concept of a scatterplot matrix and thus contains a scatterplot
for every pair of parameter–criterion combinations, therefore giv-
ing an overview of the distribution of values. Through the com-
bination of zooming and filtering with the different capabilities of

point sampling, the scatterplot matrix view is of key importance
for local and global sensitivity analysis. Furthermore, it allows for
navigating the data space by clicking the projections of individual
samples.

As the second point visualization, we include the parallel co-
ordinates view [Gan83]. It visualizes the same set of points as the
scatterplot matrix view. Because of visualizing relations between
neighboring axes, it enables users to analyze sensitivities of param-
eters and criteria. Additionally, it visualizes the common gradient
trajectory for the used focal point to provide a more sophisticated
means of local sensitivity analysis. To this end, a point set is gener-
ated by sampling the gradient trajectory uniformly over its length.
Its visualization depicts the ranges covered on individual axes at
a glance, while also revealing local interdependencies. It can be
shown as overlay or stand-alone.

The HyperSlice view [vWvL93] gives users a comprehensive
view on the multi-dimensional vicinity of focal points. It improves
the overall understanding of the data, but also directly depicts po-
tential optimizations. HyperSlice is a matrix of axis-aligned 1D and
2D slices through the parameter space. It consists of three parts: the
upper triangular part, the lower triangular part, and the diagonal.
The upper and lower parts each show all possible axis-aligned 2D
slices through the respective focal point. The diagonal of the matrix
shows all axis-aligned 1D slices through the focal point.

This layout implies that the upper and lower part display trans-
posed views on the same data. Though this might seem redundant
at first, it features several benefits for metamodel analysis: it en-
ables users to emphasize different aspects of the data by applying
different color mappings for the upper and lower triangular part.
Alternatively, users can analyze two different criteria or two differ-
ent focal points simultaneously, thus supporting comparisons and
multi-criteria optimization. To further support the understanding
of metamodels, the 2D slices are superimposed with additional in-
formation: projections of POI and the common gradient trajectory
originating from the used focal point.

In contrast to the HyperSlice view, the 3D view only shows a
single 3D slice with user-defined axes. Thus, it does not give an
overview over all dimensions, but instead fully depicts three pa-
rameters, thereby providing more context for users. To improve
spatial understanding, the 3D view contains three crossed 2D slices
of which the intersection point matches the projection of the fo-
cal point. Furthermore, we display a gradient trajectory through the
focal point and POI.

Analyzing cutting processes, analysts often have an interest in
gaining knowledge about the actual shape of the resulting cut kerf.
To provide such information, the optional cut shape view illustrates
the shape of the cut kerf produced by a cutting process. For the view
to be present, the metamodel must provide the cut depth as param-
eter and the resulting cut width as criterion. Additionally, scaling
information for both attributes must be provided. If these condi-
tions are met, the cut shape view is shown below the HyperSlice
view.
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5. Parallel Metamodel Updates

In order to facilitate interactive exploration of large metamodels,
it is crucial to provide fast updates for each of the CMV compo-
nents discussed above. In this section, we propose different opti-
mization strategies to achieve instant overview feedback, based on
which the user can decide whether to wait for further refinement or
to continue exploration with different parameters right away. This
does not only support interactive exploration, but ultimately helps
in arriving at better results faster.

The main computational load is generated by metamodel evalu-
ations, either from probing the RBFN during slice updates or from
gradient evaluation during trajectory tracing. For each evaluation,
the contribution of all training points—the inner sums in Equa-
tions 1 and 4—has to be computed for the metamodel and if pro-
vided, for the limits metamodel. We deliberately decided to use a
CPU-based parallelization approach for a number of reasons: first,
it makes memoSlice available on platforms that do not feature ded-
icated GPUs; second, it allows us to integrate memoSlice—or parts
thereof—into other application contexts, such as virtual production
prototyping [PGK∗14].

5.1. Asynchronous Parallel Computations

RBFN evaluations are embarrassingly parallel in nature at two lev-
els. Each RBFN evaluation can be performed independently and the
contributions of individual RBFs can be computed in parallel. We
translate these observations into a layered, task-based paralleliza-
tion scheme for the CPU. On the top level, a single task comprises
the update of one 1D, 2D, or 3D slice, the computation of a gra-
dient trajectory, the sampling of the common point set, and other
small-scale tasks for certain application components.

The task for updating a slice is decomposed into sub-tasks, each
of which providing several samples. Each of these tasks in turn
spawns sub-tasks, which evaluate and sum up individual RBF-
kernels, utilizing the parallel reduce pattern. Gradient trajectory
tracing results in two sub-tasks for forward and backward trac-
ing, respectively. In every tracing step, these tasks are decomposed
in parallel RBF evaluations to compute ∇ f , again, utilizing the
parallel reduce pattern. The task for sampling the common point
set is decomposed analogously to slice updates. Other components
also directly probe metamodels for individual values, which is re-
flected by a corresponding small-scale task. For instance, the evalu-
ation of criterion values of focal point previews is carried out asyn-
chronously to avoid impact on the frame rate when analyzing large
metamodels. memoSlice additionally uses other small-scale tasks
for computations that might exceed the duration of a single frame,
e.g., determining the focused point in scatterplots for direct discrete
navigation.

Load-balancing across CPU cores and low-level task scheduling
are handled by the Intel R© Threading Building Blocks (TBB) run-
time [Int18b]. For scheduling it primarily relies on a thread pool
with task stealing for idling threads. The task engine runs asyn-
chronously to the frame loop, hence not interfering with continuous
rendering updates, but saturating all other available CPU cores. In
memoSlice a custom task manager spawns high-level tasks when-
ever depictions need to be updated and updates are displayed as

soon as they become available. In contrast, small-scale tasks are
directly spawned by the components requiring their computations.
The full task hierarchy is depicted in Fig. 2.

Small-scale
Task

Direct Metamodel
Evaluation Task

Point Sampling
Task

Slice Computation
Task

Gradient Trajectory
Tracing Task

Calculate Point
Samples Task

Calculate Slice
Samples Task

Forward/Backward
Tracing Task

Sum RBFs
Task

Sum RBF
Derivatives Task

Application
Components

memoSlice
Task Manager

Figure 2: Task hierarchy of memoSlice. The task manager spawns
top level tasks for visualization updates. Other application compo-
nents issue small-scale tasks as needed. All tasks recursively spawn
sub tasks, where feasible.

5.2. Streaming Updates

Most metamodels feature smooth gradients over extended parts of
the data domain. Hence, it is possible to gain a first overview of the
data field based on coarse sampling. Precision adjustments require
a more accurate depiction of the data. To reduce the perceived sys-
tem latency and to update the visualizations as quickly as possible,
we propose progressive computation of slice-based views. Slice up-
dates start with a minimum resolution and are refined by interval
bisection until a maximum resolution is reached (5 to 129 sam-
ples per axis; see Fig. 3). The progressive update scheme provides
nearly instant overviews, with further refinements being streamed
in upon availability. Since new samples are inserted between al-
ready calculated ones, this calculation scheme does not generate
computational overhead in terms of metamodel evaluations.

Figure 3: 1D, 2D, and 3D slices (l.t.r.) at minimum (top) and max-
imum (bottom) resolutions.

We follow an alternative approach for updating the common
point set. High numbers of points allow for a better understand-
ing of relations in point visualizations. However, users can already
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draw first conclusions from small numbers of samples. Conse-
quently, point visualizations are continuously updated as soon as
new points are computed. To this end, exactly one top-level task
for point sampling is active at a time per point set. The number of
points to be computed by this task is chosen on an estimate so that
new points are available in fixed time intervals (by default, 0.25s).
Whenever such a computation task terminates, the newly computed
points are added to the common point set and the point visualiza-
tions are updated. If more points need to be sampled, a continuation
task is spawned immediately.

5.3. Avoiding Redundant Computations

Update computations can be reduced significantly by exploiting the
fact that multiple visualization primitives in memoSlice display dif-
ferent visual representations of the same data. For example, pro-
jections of the same gradient trajectory are overlayed on multiple
tiles of the HyperSlice view. To avoid redundant computations, we
label each computation by a unique key, which is derived from its
configuration, e.g., a slicer is uniquely identified by its set of pa-
rameters, its criterion, focal point, and metamodel. Visualization
primitives use this key to query the respective computations from
registries and receive the corresponding data objects, which auto-
matically notify the visualization about incoming updates. For in-
stance, the upper-left and lower-right slice visualizations of the Hy-
perSlice view in Fig. 1 would both request a slicer that creates slices
along the PulseDuration – ThicknessLevel parameters of the limits
metamodel and share the output data. The registries—at the mo-
ment one exists for each, slicers and gradient trajectories—store all
computations that are currently used by at least one visualization
primitive. The visualization primitives are responsible for trans-
forming the data to match their configuration, e.g., transposing a
slice as needed and applying color mapping.

Recomputations of slices, gradient trajectories, and the common
point set are triggered by events, e.g., a change to the respective
focal point or the adjustment of visual ranges. However, in many
situations such recomputations are only partly needed or can fully
be avoided. Regarding slices, a change to the focal point has an
effect on the slice iff the change took place in dimensions that are
not sliced through. Consequently, unaffected slices do not need to
be updated. In contrast, changes to the visible range of a parameter
only require slices to be recomputed if the changed parameter is
part of the slice. To further reduce the perceived latency of such
a change, we scale the textures used for displaying the slices until
updated computations are ready.

Regarding gradient trajectories, these are always affected by fo-
cal point changes. In contrast, adjustments to the visible ranges
only affect the visual representations of gradient trajectories. Con-
sequently, such adjustments are handled by the respective visual-
ization primitives within frame updates.

The need for recomputing the common point set depends on its
current configuration. If uniform random distribution sampling is
active, a change to the respective focal point causes recomputa-
tion iff changed parameters are currently locked. Since this sam-
pling method is used most of the time and changes to locked pa-
rameters happen rarely, also the common point set rarely needs to

be recomputed. In contrast, for sampling with normal distribution,
any change to the respective focal point requires a recomputation.
No matter which sampling method is used, changes to the visible
range always require recomputation of the common point set. Nar-
rowing the range requires to replace excluded points with newly
created ones, while widening the range requires recomputation for
the newly included areas.

5.4. Task Scheduling

An advantage of the task-based parallelization scheme is that task
spawning can be prioritized in a user-centric fashion. By this, we
aim at further reducing the perceived latency between interaction
and visual feedback. Moreover, in the case of rapidly succeeding
user interactions, we are able to cancel out-of-date tasks and issue
new ones to account for the latest application state.

Task spawning in memoSlice’ task manager is triggered by
events like a change to the focal point, a switch of the displayed
criterion, and the termination of an update computation. For an in-
coming event, we check for each individual slice and gradient tra-
jectory, as well as the common point set whether the event invali-
dates its current state and thus demands an update of the respective
calculation. Due to their low number of high-level tasks and poten-
tially long-lasting computations, tasks for the computation of gradi-
ent trajectories and the common point set are spawned immediately
when respective updates are required.

Progressive refinement of slices demands more sophisticated
task scheduling. A top level task is issued for every new refinement
iteration of a slice. Since TBB does not make guarantees for the
order of task executions, spawning new refinement tasks whenever
possible could result in unbalanced resolution levels. This would
hinder the intent of providing an instant overview with refinements
being streamed in on over time. To mitigate this issue, we develop
a task scheduling scheme, based on the following observations.

First, we consider the complexity of slice computations. For the
progressive refinement of slices, we define the refinement level
(l ∈ N+) of any slice to be the current iteration in the refinement
process, starting at l = 1. Interval bisection requires an odd num-
ber of samples per refinement level, so the number of samples per
slice axis n ∈N+ is given by n = 2l +1. The complexity of the cal-
culation of a slice with dimensionality d ∈ N+ is O(nd) or, when
considering the refinement level, O(2ld). I.e., the calculation time
for a slice computation iteration exponentially grows with both, the
refinement level and the dimensionality. Consequently, the fastest
user feedback can be achieved by first focusing on lower refine-
ment levels and dimensionalities when scheduling slice computa-
tion tasks. However, to grant nearly-instant overview to users, it
is still important to present slices of higher dimensionality as fast
as possible. These observations lead to the following scheduling
theme for slice computation tasks.

Upon an incoming task spawning event, we decide for each slice
in the slice registry if the next refinement iteration is considered to
be scheduled based on the following rules: first, if the final refine-
ment iteration is already reached, no further iterations are needed.
Otherwise, we perform two additional tests: first, the within dimen-
sion test. It succeeds if the next refinement level for the current slice
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is at maximum one level ahead of the lowest completed refinement
level among all slices with the same dimensionality. This test guar-
antees, that all slices of the same dimensionality are refined in a bal-
anced fashion, e.g., that all graphs displaying 1D slices have about
the same resolution. If that test passed, we perform the between di-
mensions test. For 1D slices, this test always succeeds. For slices of
higher dimensionality, this test succeeds, if the refinement level of
the slice is less than the lowest completed refinement level of any
unfinished slice with lower dimensionality. This way, we prioritize
the refinement of slices of lower dimensionality, while allowing the
other slices to catch up soon.

Another important observation regarding slice computations is
that using different interpolators (see Sec. 3) and metamodels might
result in varying computation times. To account for this, we group
all slice computations by these attributes plus the used focal point,
which is needed for a later step. In the previously described tests,
only slices in the same group are compared to each other. Conse-
quently, slicing levels within groups increase in a balanced fash-
ion, while groups with shorter computation times are allowed to
advance faster than those with longer computation times.

To finally decide, which refinement tasks are spawned, we fur-
ther consider user interaction with the goal of minimizing perceived
latency by prioritizing updates in the focus of user attention. To
this end, we store the time stamp of the last user interaction for
each parameter of each focal point. We choose the refinement task
for the slice the user interacted with last for each of the previously
discussed groups. If no other task from the respective group is cur-
rently running, the task manager finally spawns the chosen task.

The last limitation—only having a maximum of one top level
task running per group of slice computations—further adds to the
goal of reducing the perceived latency. This way, refinements in the
focus of users’ attention are computed first. Yet, the overall compu-
tation time for one refinement iteration over all slices is not higher
compared to spawning all refinement tasks in parallel. This is due
to our layered parallelization scheme, which draws benefit from
concurrency by performing task parallelization on deeper layers.

6. Performance Analysis

To prove the applicability of our performance optimization ap-
proaches, we present two types of performance measurements of
different complexity. First, we discuss the scalability of our meta-
model evaluation optimization by analyzing micro measurements
carried out on a state of the art multi-core workstation. Second, we
illustrate the benefits of the combination of our individual optimiza-
tion approaches by presenting measurements from a close-to-real-
use lab setting that outlines average wait times for the calculation
of individual visualization primitives in memoSlice.

6.1. Performance Micro Measurements

We present performance measurements, carried out on a high-end
consumer-grade workstation featuring two Intel R© Xeon R© CPUs
E5-2695 v3 with a clock frequency of 2.30 GHz. Each of the CPUs
has 14 physical / 28 logical cores, resulting in 28 physical / 56 log-
cial cores for the test system. It is equipped with 512 GB of RAM.

6.1.1. Procedure

We analyzed the performance and scalability of our approach for
the independent variables number of cores (c), number of training
points (nt ), number of input dimensions (nd), RBF kernel type (φ),
and parallelization hierarchy depth (h). For each measurement,
we created a synthetic data set with randomly distributed training
points and random RBF weights. We then performed 100,000 meta-
model evaluations at random locations in the data space and mea-
sured the time for the evaluations (t). Depending on t, we calculated
the sampling rate (r) as r = 100,000/t. Additionally, we calculated
the parallel efficiency (ec) depending on c as ec =

rc
r1c where rc is

the sampling rate with c cores and r1 is the sampling rate with 1
core.

In our measurements, we varied c by initializing the thread pool
of the TBB task engine with c threads. If not stated differently,
c = 28, which corresponds to the number of physical CPU cores
of our test system. With c > 28, logical cores are used in ad-
dition to physical ones. The levels measured for nt are 10i : i ∈
[1, . . . ,5]⊂ N. From these, 102–104 represent magnitudes of train-
ing point amounts from production metamodels. We included the
other amounts to cover boundary conditions. If not stated differ-
ently, nt = 104, which corresponds to large production metamod-
els. Regarding nd , we performed measurements for 4, 6, and 8 input
dimensions, which are regularly occurring values for metamodels.
If not stated differently, nd = 6, which is most widely used. We
measured the performance of the three kernel types presented in
Sec. 3: φm, φg, and φl . If not stated differently, φ = φm, since it is
the default kernel for encoding criteria in production metamodels.
To simulate the layered parallelization scheme of memoSlice, we
performed measurements with two different levels of h. In the flat
hierarchy setting F , all 100,000 metamodel evaluations were car-
ried out serially, i.e., with only the evaluation of the RBFN being
computed in parallel. In contrast, in the deep hierarchy setting D,
the metamodel evaluations were carried out in parallel, thus provid-
ing two layers of parallelization and mimicking the computation of
slices and the common point set. If not stated differently, h = D,
since this type of evaluation is carried out most.

6.1.2. Results

The highest sampling rate of r = 3.0×106 1
s was achieved with nt =

10 and c = 56. Since these conditions do probably not resemble
a situation that occurs in practice, we consider this value to be a
theoretical upper boundary for the sampling rate achievable with
our test system. Fig. 4 reveals that c has a negligible impact on r for
metamodels with nt = 10. However, for metamodels with nt = 102,
c = 8 imposes a considerable performance benefit, with a close-to-
linear correlation of nt and r for metamodels with nt ≥ 102. For
metamodels with nt ≥ 103, c = 28 imposes a further performance
increase, with a close-to-linear correlation of nt and r.

We found that the parallelization hierarchy depth h has a strong
impact on the parallel efficiency ec, which is illustrated in Fig. 5.
For h = F and nt = 103, ec already falls below 50% when using
4 cores and it falls below 10% when using 20 cores. For larger
metamodels (nt = 104), ec is still slightly above 80% with 4 cores,
while falling below 50% with 11 cores. In contrast, h = D yields
clearly higher levels for ec: for medium-sized metamodels (nt =
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Figure 4: Sampling rate of metamodel evaluations for metamodels
of varying size.

103), ec is above 80% when using less than 10 cores, while it is still
above 65% for 28 cores. For large metamodels (nt = 104), ec has
overall high values, with results around 80% even when using 28
cores. When additionally using logical cores, ec for h=D stagnates
faster, but still yields considerable speed gains with ec = 34% (nt =
103) and ec = 42% (nt = 104) for c = 56.

These measurements illustrate that h = D, i.e., using a layered
parallelization approach, implies considerably larger speed gains
with a rising number of CPU cores compared to h = F . They also
show that the evaluation of larger metamodels benefits more from
parallelization than the evaluation of smaller ones. In memoSlice,
tasks with both, flat and deep parallelization hierarchies are carried
out. However, as illustrated in Fig. 2, only few metamodel evalua-
tions are carried out with a flat hierarchy, i.e., individual evaluations
by application components. In contrast, the largest amount, i.e.,
slice and point sampling tasks, are carried out with a deep hierar-
chy. Considering the performance measurements, we deem this ap-
proach suitable for practical use. Additionally, we recommend the
use of simultaneous multithreading for running memoSlice when-
ever available, since the use of logical cores imposes considerable
speed gains, even if ec stagnates faster than with solely using phys-
ical cores.
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Figure 5: Parallel efficiency of metamodel evaluations for flat and
deep parallelization hierarchies.

Considering the different RBF kernels, our measurements show
that φl is evaluated fastest, followed by φm and φg (see Fig. 6).
For small metamodels (nt = 102), φ accounts for approximately
10 % performance impact (rφm/rφl = 0.91, rφg/rφl = 0.89). On the
contrary, for metamodels with nt ≥ 103, the sampling rate with φm
is about 90 % of the sampling rate with φl (rφm/rφl = 0.91), while
it is about 50 % with φg (rφg/rφl = 0.50). These values are means
over the sampling rates for nt = 103, nt = 104, and nt = 105.

100

101

102

103

104

105

106

107

102 103 104 105

Sa
m

pl
in

g 
Ra

te
 r 

Number of Training Points nt

ϕm ϕg ϕl

Figure 6: Sampling rates with the different RBF kernels for vary-
ing numbers of training points.

Regarding the number of input dimensions, an increase in nd
causes a decrease on r (see Fig. 7). This effect gets pronounced
with a rising number of training points. For metamodels with
nt = 103 and nd = 8, r resides at approximately 72 % compared
to metamodels with the same number of training points and nd = 4
(rnd=8/rnd=4 = 0.718). For metamodels with nt = 104 this ratio
is approximately 65 % (rnd=8/rnd=4 = 0.652), while it is approxi-
mately 62 % with nt = 105 (rnd=8/rnd=4 = 0.615).
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Figure 7: Sampling rates for different numbers of input dimen-
sions.

To get further hints on optimization potential, we analyzed our
test program with Intel R© VTune [Int18c], a widely-accepted per-
formance analysis tool. The results show an ideal effective time by
utilization for RBFN evaluation. Furthermore, its clockticks per in-
structions retired (CPI) rate is 0.62. As a reference, Intel architects
set up a value of 0.75 and below as “good” [Int18a]. These results
indicate that no or little bottlenecks regarding I/O or memory band-
width exist, i.e., that the efficiency is mainly CPU-bound.

6.2. High-level Performance Measurements

To illustrate the benefits of combining our methods to achieve high
levels of responsiveness, we present high-level performance mea-
surements that aim at closely resembling real metamodel anal-
ysis sessions. The measurements were carried out on a high-
performance consumer-grade workstation featuring two Intel R©

Xeon R© CPUs E5-2620 v4 with a clock frequency of 2.10 GHz.
Each of the CPUs has 8 physical / 16 logical cores, resulting in 16
physical / 32 logical cores for the system. It is equipped with 32 GB
of RAM.
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6.2.1. Procedure

Our goal for the high-level performance measurements is to cre-
ate a controlled lab setting that resembles real analysis sessions
as closely as possible. We augmented memoSlice with methods
for artificial user input and time measurement. We measured the
times to compute the individual slicing iterations for all 1D, 2D,
and 3D slices, the time to compute the individual iterations for
the common point set, and the computation time for the gradient
trajectories. We performed these measurements for three produc-
tion metamodels of different sizes: small (Ms: 6 parameters, 1,160
training points for the criterion metamodel, 1,727 training points
for the limits metamodel), medium (Mm: 5 parameters, 8,949 train-
ing points for the criterion metamodel, 9,990 training points for
the limits metamodel), and large (Ml : 5 parameters, 20,237 train-
ing points for the criterion metamodel, 9,990 training points for the
limits metamodel).

To conduct the measurements, memoSlice was configured to dis-
play the first criterion of the metamodel in the upper part of the
HyperSlice view and the 3D view. The lower part of the Hyper-
Slice view displayed the training point density. Uniform sampling
was used to generate the common point set. The application always
displayed the full data space.

To mimic user input, we added a frame-loop callback that
changed the focal point after all computations had reached their
maximum levels. These were 100,000 points for the common point
set, 129 samples per axis for 1D and 2D slices, and 65 samples
per axis for 3D slices. Further, all gradient trajectories were to be
computed, i.e., 2 in total, always one for the first criterion and the
training point density.

A change to the focal point would usually not trigger recom-
putation of the common point set (see Sec. 5.3) in the described
test configuration. To account for this, we disabled this redundancy
avoidance feature, to gather data on point computation times.

Considering standard workflows of real analysis sessions, re-
computation for all visualization primitives as simulated in our
measurements rarely occurs. However, such types of interaction
cause the longest wait times for users in real analysis sessions,
which is why we chose such a setting to illustrate the upper bound-
aries of user wait times.

6.2.2. Results

For each metamodel we performed 500 successive measurements.
We present the mean computation times for the following variables:
1D, 2D, and 3D slices for the first criterion of the metamodel and
the limits metamodel (1DC, 1DL, 2DC, 2DL, 3DC, and 3DL), gra-
dient trajectories for the first criterion and the training point density
of the metamodel (GTC and GTD), and the common point set (P).
These variables represent the individual scheduling groups of our
task scheduling scheme (see Sec. 5.4). For slices, the iterative re-
finement resolutions included in our measurements are 9, 17, 33,
65, and 129 samples per axis for 1D slices; 5, 9, 17, 33, 65, and
129 samples per axis for 2D slices; 5, 9, 17, 33, and 65 samples per
axis for 3D slices. For gradient trajectories, we present the mean
computation time and the average number of integration steps. For

the computation of the common point set, our measurements in-
clude the mean times of updates at which at least 102, 103, 104, and
105 points were sampled, respectively. We classify individual mea-
surements whose values deviate more than three times the standard
deviation from the mean value as outliers and exclude them from
our analysis. This accounts for 2.2 % of the measurements for Ml ,
2.1 % for Mm, and 1.1 % for Ms. We discuss these at the end of our
analysis.

Figure 8 depicts an overview of the results. It illustrates the aver-
age computation times for the individual variables on multiple time
lines, where each dot represents the termination of a new refine-
ment iteration.
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Figure 8: Mean computation times for updates of the individual
visualization primitives for Ml, Mm, and Ms (t.t.b.).

Regarding slices, for all metamodels, several refinement itera-
tions for 1D slices were available within the first second after a
focal point change. The longest computation time for the first iter-
ation of 2D slices was encountered for the criteria of Ml with 2.6s,
followed by the criteria of Mm 1.5s. For both metamodels, the first
iteration of the limits metamodel was computed in below 1s. For
Ms three iterations (172 samples) were computed in below 1s for
both, the criteria and the working limits. Computation times for the
first iteration of 3D slices were slightly higher for all metamodels:
2.8s and 1.0s for criteria and working limits of Ml , respectively,
and 1.8s and 1.1s for criteria and working limits of Mm, respec-
tively. Three iterations (173 samples) were finished within the first
second for both metamodels of Ms.

Regarding the computation of the common point set, one second
after a focal point change, more than 1,000 points were available
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for Ml , while it lasted 49.1s on until 100,000 points were ready. For
Mm it were more than 10,000 after the first second while the final
iteration of 100,000 points was computed after 29.0s. For Ms, after
the first second, the final iteration of 100,000 points was already
computed.

The longest average computation times for gradient trajectories
were encountered for Ml , with 6.1s and 11.7s for the first criterion
and the training point density, respectively. The respective average
numbers of integration steps were 304 and 475. For Mm, the aver-
age computation times were 2.9s and 5.2s with average respective
numbers of integration steps of 273 and 369. For Ms, the gradient
trajectories for both criteria were available after 0.3s with average
respective numbers of integration steps of 106 and 76.

6.3. Discussion

The presented micro measurements give valuable hints on the effi-
ciency of memoSlice. We could demonstrate that the evaluation of
production-size metamodel can be performed fast enough on mod-
ern hardware to theoretically enable users to perform interactive
exploration. In this context, our layered parallelization scheme is a
key-enabler and we showed that we achieve a reasonable parallel
efficiency, which is particularly important for the analysis of larger
metamodels. Additionally, we illustrated the impact of several vari-
ables of metamodels and can conclude that, among these, the num-
ber of training points has the strongest effect on the sampling rate.
Furthermore, the performance analysis with VTune showed that the
current implementation is mainly CPU-bound, indicating a good
utilization of the underlying hardware with little room for further
improvements.

To complement these conclusions the results of our high-
level measurements confirm that our acceleration methods make
memoSlice suitable for interactive visualization of metamodels.
User feedback in form of 1D slices was nearly instantly available
for all metamodels, while longer wait times were present for 2D and
3D slices for the larger metamodels. With always less than 3s, we
still deem these wait times acceptable for interactive analysis. For
the medium-sized metamodel, first iterations of 2D and 3D slices
were available within the first second after interaction. Addition-
ally, a reasonable size of the common point set was available the
first second after interaction for all metamodels.

Regarding gradient trajectories, the average computation times
varied strongly, not only over the tested metamodels but also over
the criteria. This shows that the computation time of such trajecto-
ries does not only depend on the actual size of a metamodel, but
also on the number of integration steps needed for their compu-
tation. We attribute the varying number of integration steps to the
different topologies of the analyzed criteria. In general, the wait
times for gradient trajectories are acceptable for large metamodels
while for medium-sized metamodels, they are negligible.

Over all of our measurements we identified between 1.1% and
2.2% of the individual runs to contain outliers. Reproducing situa-
tions that lead to such long computations for individual task groups,
we found that the computation of a gradient trajectory or the com-
mon point set can saturate most or even all of the available CPU
cores. We attribute this behavior to a high number of low-level tasks

being distributed over the majority of cores via TBB’s task steal-
ing policy. To avoid such a situation, the high-level task scheduling
scheme of memoSlice should be refined in a way that guarantees
that all computations needed to provide an overview are finished
before tasks that can saturate all cores are issued. Nonetheless, we
do not see the relatively rare occurrence of outliers to be critical.
In such cases, successive user interaction aborts ongoing computa-
tions and starts rescheduling of tasks.

In general, it should be taken into account that, due to the cho-
sen test setup, the measured wait times represent upper boundaries.
Consequently, shorter wait times are to be expected in practical use.
We can conclude that the response times of memoSlice for short- to
medium-sized metamodels are negligible, while short wait times
are to be anticipated for large metamodels. Thus, memoSlice can
be considered to be a suitable solution for the interactive visual
analysis of metamodels with regard to performance.

7. Conclusion

In this paper, we have presented memoSlice, a visualization appi-
cation that targets the interactive exploration of multi-dimensional
metamodels. As stated in the introduction, the development faced
two challenges: making the data accessible and providing interac-
tive user feedback. To this end, we have proposed a CMV design
that integrates a number of carefully designed views in order to
grant users a holistic understanding of the local data space. As a
downside, this design critically depends on the fast evaluation of
metamodels, because it requires a large number of such evaluations,
particularly after user interaction. In order to reduce response times,
we have devised several acceleration strategies, most importantly,
our task-based parallelization approach. We have presented evalua-
tions of our acceleration approaches via micro and high-level mea-
surements. Considering the micro measurements, we conclude that
our evaluation scheme, in particular, grants considerable perfor-
mance improvements and that it scales well with a rising number of
CPU cores. Additionally, our high-level measurements demonstrate
acceptable response times for interactive exploration of production-
size metamodels in memoSlice.

We would like to note that until now we performed all mea-
surements in artificial lab settings. We currently plan to roll out
memoSlice for a large user population and gather performance data
from daily use. By combining such data with respective user feed-
back, chances for additional improvements might be discovered.
Nonetheless, the performance measurements carried out so far al-
ready show that the employed methods make memoSlice responsive
enough to analyze metamodels via interactive visualization.
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