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Abstract
We present a novel technique to visualize wave propagation in 2D scalar fields. Direct visualization of wave
fronts is susceptible to visual clutter and interpretation difficulties due to space-time interference and global
influence. To avoid this, we employ Huygens’ principle to obtain virtual sources that provide a concise space-
time representation of the overall dynamics by means of elementary waves. We first demonstrate the utility of
our overall approach by computing a dense field of virtual sources. This variant offers full insight into space-time
wave dynamics in terms of elementary waves, but it reflects the full problem of inverse wave propagation and hence
suffers from high costs regarding memory consumption and computation. As an alternative, we therefore provide
a less accurate and less generic but more efficient approach. This alternative performs wave front extraction with
subsequent Hough transform to identify potential virtual sources. We evaluate both approaches and demonstrate
their strengths and weaknesses by means of a GPU-based prototype and an implementation on a Cray XC40
supercomputer, using data from different domains.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation and Modeling]: Simulation Output
Analysis—; J.2 [Physical Sciences and Engineering]: Physics—

1. Introduction

Scientific visualization has a long and successful history of
revealing essential structures in complex data. While already
3D scalar fields demand advanced visualization techniques
for proper analysis, visualization of vector and tensor fields
poses even more difficult problems due to the high complex-
ity of the involved phenomena and the structures they cause.
Propagation of waves is an omnipresent phenomenon occur-
ring in most of these data, which has been, however, widely
neglected in their visualization so far.

While vector fields represent a single direction at each
point, and the visualization of n-dimensional tensor fields
is typically based on their n-dimensional eigensystem, there
are possibly infinitely many waves propagating simultane-
ously through each point of a domain, each of them poten-
tially having global impact. This complexity is present not
only on the structural side—wave propagation phenomena
are also computationally expensive to simulate and repre-
sent, because very small time steps and high spatial resolu-
tions are required. Together with the high computational cost
of inverse wave projection discussed below, this makes vi-

sualization of wave propagation exceptionally difficult and
costly—and is the reason why this paper addresses wave
propagation in 2D domains only. Nevertheless, extension to
higher dimensions would be straightforward.

Wave propagation phenomena are traditionally examined
by observing displacement (amplitude) in space and time.
In 2D fields, mapping amplitude to color and observing the
resulting video is commonly used. A drawback with this ap-
proach is, however, that already single frames of such video
exhibit complexity that is beyond visual interpretation—the
massive superposition of wave fronts rapidly exceeds the
limits of human perception and reasoning.

Following the basic visualization aim of reducing data to
their essential structure, we seek for a more effective rep-
resentation of wave fronts. A straightforward approach to
reduce the time-dependent 2D field to a set of 1D curves,
would be to obtain the wave fronts by extracting crease lines,
i.e., ridge and valley lines, and observing the resulting an-
imations. To avoid the difficulty of perceiving video, one
could additionally employ a space-time representation, i.e.,
treat time as an additional ‘spatial’ dimension. In this repre-
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sentation, the wave fronts become space-time surfaces, and
their extraction by means of crease surfaces becomes more
robust because spatio-temporal coherence within the data
can be exploited. However, although this approach would
provide a static picture of the time-dependent phenomenon,
it would typically suffer from occlusion, in particular, be-
cause it cannot reduce the massive superposition (interfer-
ence) of wave fronts. Hence, further reduction is required to
achieve expressive visualization.

According to Huygens’ principle [BW03], arbitrary wave
fronts can be represented by a superposition of elemen-
tary waves (Figure 1). Hence, each wave front in space can
be represented by a set of virtual sources (i.e., elementary
waves), located at respective positions in space and time.
A straightforward discretizing approach, that we follow, is
to assume a regular spatio-temporal grid of virtual sources,
and determine the amplitude of each such that the superposi-
tion of the respective elementary waves fits the given dataset.
Since this approach is computationally demanding, we also
provide an approximating alternative that avoids fitting a
large number of elementary waves. Instead, it employs the
Hough transform for efficient search of virtual sources and
reduces the fitting to their respective, extracted wave fronts.

While our overall approach is generic and could be used
for the visualization of waves in vector and tensor fields as
well, we focus here on waves in scalar fields. Specifically,
our contributions include:

• Employing Huygens’ principle for the visualization of
wave propagation in terms of elementary waves.

• Introduction of virtual source fields and sets.
• Extraction of wave fronts by space-time crease surfaces.

2. Related Work

Visualization of wave propagation is still a rather small field
in scientific visualization. So far, visualization of waves has
been concentrating on the visualization of wave fronts, often
defined and extracted by means of crease surfaces. A sem-
inal work on the definition and extraction of height ridge
surfaces is that by Eberly [Ebe96], based on the Hessian.
Deines et al. [DBM∗06] visualize acoustic wave fronts in-
cluding particles and maps, and coloring by incoming inten-
sity. Obermaier et al. [OMD∗12] present mesh-free extrac-
tion of crease surfaces from 3D acoustic data.

The problem of the inversion of the wave equation is also
an important problem from a purely mathematical point of
view. Tarantola [Tar05] provides an overview on different
inverse problems and a detailed mathematical discussion of
their solution. As discussed in Section 4.1, our approach is
amenable to common least squares fitting.

3. Fundamentals

3.1. Scalar Waves

A one-dimensional scalar wave is a function ψ(x, t) that
solves the partial differential equation

∂ 2ψ(x, t)
∂x2 − 1

v2
∂ 2ψ(x, t)

∂ t2 = 0, (1)

with position x, time t, and phase velocity v. Any function
ψ(x, t) = f (x− vt)+ g(x+ vt) with f and g being arbitrary
functions of one variable satisfies Equation (1), particularly,
a wave need not be a periodic function in x or t. Equation (1)
can be generalized to arbitrary dimensions by replacing the
partial derivative ∂ 2/∂x2 with the n-dimensional Laplacian
∆n = ∑

n
i=1 ∂ 2/∂x2

i . However, in our case, we focus on ele-
mentary waves, i.e., spherical waves Ψ(x, t) that originate at
a given point and propagate symmetrically in all directions.
It is straightforward to show that all 3D spherical waves can
be expressed with the general solution of Equation (1) as

Ψ(x, t) =
ψ(r, t)

r
, where r =

√
x2 + y2 + z2 in 3D, (2)

i.e., Ψ decays ∼ 1/r with increasing distance r from its ori-
gin [BW03]. Physically, the decay ∼ 1/r is a consequence
of the conservation of energy. We use this 1/r dependency
to model the amplitude decay of our elementary waves with
r =

√
x2 + y2 as the underlying physical models are 3D, ex-

cept for the water basin in Section (6). Here however, we
also neglect friction effects.

One example that suggests itself for an application of our
method, is acoustic waves in fluids. Such waves are devi-
ations p(x, t) of the pressure from its mean value p0 and
closely related to the generation of sound, or, more specif-
ically, unwanted noise that should be minimized in many
industrial applications. To this end, our technique provides
a visualization of potential causes for noise. For acoustic
waves, the energy density is proportional to p2 and the decay
p ∼ 1/r ensures that the flux through the surface O = 4πr2

of every sphere around a source is equal.

Please note that we denote the phase velocity ‘wave
speed’ or ‘propagation speed’ throughout this paper. Fur-
ther, we assume, and limit our technique to, data with uni-
form wave speed, i.e., we require the propagation speed to
be independent of the frequency, time, and location. This as-
sumption holds reasonably well for many physical phenom-
ena such as sound in air or water, light in air, or waves on
free fluid surfaces if the fluid is not too shallow.

3.2. Huygens-Fresnel Principle

Our approach is based on an inversion of the well-known
Huygens-Fresnel principle. Here, we give a short overview
of this principle. Readers interested in more details are re-
ferred to standard textbooks on optics, e.g., to Born and
Wolf [BW03]. The propagation of waves through space can
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Figure 1: Huygens’ principle applied to the diffraction of a
plane wave hitting a single slit. Before the wave reaches the
slit, contributions of the elementary waves perpendicular to
the direction of propagation cancel each other out. In the
slit, the elementary waves at S1 and S6 no longer have neigh-
bors with which their orthogonal components could cancel
out—the wave is diffracted.

be described by taking each point P on a wave front at time t0
as the source for a new elementary wave as in Equation (2).
The superposition of all these elementary waves at a later
time t0 +∆t gives the propagated wave front. A well-known
application of Huygens’ principle in optics is the diffrac-
tion of a plane light wave on a single slit, see Figure 1.
To explain why the superposition of the elementary waves
only creates a new wave front in the direction of propaga-
tion, e.g., Ψ0(t0 +∆t) in Figure 1, and not on the opposite
side, e.g., Ψ0(t0−∆t), Fresnel complemented the Huygens-
Fresnel principle with an inclination factor that is 1 in the di-
rection of propagation and 0 in the opposite direction. In Fig-
ure 1, the inclination factor is implicitly included by drawing
the elementary waves as semicircles. In our inversion of the
Huygens-Fresnel principle, however, no such problem arises
as we have both spatially and temporally resolved data and
hence the direction of propagation is always given.

3.3. Wave Fronts in Space-Time

Any time-dependent 2D scalar field D(x, t) with x :=
(x,y)> ∈ R2 can be interpreted in space-time representation
by treating time t as an additional dimension, i.e., as a scalar
field D′(x′), with x′ := (x,y, t)> ∈ R3. Wave front curves in
the 2D field turn into wave front surfaces in space-time. To
use the definition of elementary waves in a numerical algo-
rithm however, we have to supply them with a finite spatial
extent W , where we have to choose W so large that at least
two grid nodes are covered by the elementary wave.

For the elementary wave emerging at time t0 at the point
x0, we then obtain a cone described by the relation√

‖x−x0‖2− v2(t− t0)2 ≤W/2, t > t0. (3)

At each fixed time, the elementary wave is an annulus with
inner radius v(t−t0)−W/2 and outer radius v(t−t0)+W/2.
Definition (3) also encapsulates that an elementary wave that

arises at time t0 can only contribute to the data field at later
times t. The opening angle of this cone α = tanv directly
represents the wave speed, i.e., the slower a wave propagates,
the narrower the cone is.

Arbitrary wave fronts represent arbitrary surfaces in
space-time. However, since a single wave front, under the
aforementioned assumptions, propagates at uniform wave
speed, the angle α between the normal of the space-time
surface and the time axis is also constant and represents the
wave speed. However, even if the wave speed is constant,
α can vary due to superposition of wave fronts. During su-
perposition, the fronts of the individual (elementary) waves
typically disappear and are replaced by others. This has no
impact on our first approach (Section 4.1) that fits a virtual
source field, but can, as we will show, affect the alternative
approach (Section 4.2) that builds on wave front extraction.

3.4. Hough Transform and Waves

If we now take a complementary look—i.e., instead of look-
ing at elementary waves and how they superimpose over
time, we look at a given point in space-time and search
for all points that can influence this point in terms of wave
propagation—we obtain a similar cone as for the elemen-
tary wave in Equation (3), but now extending backwards in
time with t < t0. This cone contains wave source candidates,
i.e., all space-time points that have to be considered as pos-
sible sources for D at the given point. We employ the Hough
transform for extracting these source candidates.

The Hough transform is a tool widely used in computer
vision for detecting parametric shapes [DH72]. It expects
binary input corresponding to potential features. The basic
idea is to establish a parameter space representing all shapes
that can possibly be detected. For each input point, all points
in parameter space that represent a possible shape contain-
ing this point are voted for, i.e., their value is increased.
Subsequently, the accumulation points are extracted from
the parameter space, giving the parameters that describe the
matched shapes. Circles in images, e.g., can be extracted by
using an edge detector for input generation and voting in a
parameter space with center coordinates and radius as axes.

For our method, since we assume constant wave speed,
the virtual source candidates have their space-time origin as
the only parameter while their amplitudes at this point are
still undetermined. Therefore, the parameter space for our
method is space-time itself. This means marking all param-
eter configurations for a given input feature point can be
achieved by voting for all points lying on the reverse cone
extending from that particular feature point.

4. Method

Our technique consists of two alternative approaches: a di-
rect, but computationally expensive approach providing vir-
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tual source fields (Section 4.1), and a more efficient, but ap-
proximate and limited approach extracting individual virtual
sources (Section 4.2).

4.1. Virtual Source Field Fitting

Our goal is to invert Huygens’ principle, i.e., to find a set of
weighted virtual sources that give rise to the original field
if their respective weighted elementary waves are superim-
posed. To facilitate computation and to keep memory con-
sumption within reasonable limits, we do not solve for the
positions of the virtual sources in this first approach. Instead,
we assume a user-defined 3D space-time regular grid of vir-
tual sources and limit the problem to finding a weight (am-
plitude) for each of the sources such that the superposition
of the respective elementary waves approximates the origi-
nal field as accurately as possible. We denote this space-time
grid of weights the virtual source field.

This problem represents a projection problem, i.e., we
project the original space-time dataset D onto a regular
space-time grid of basis functions. Each of the basis func-
tions represents an elementary wave in the form of a space-
time cone as in Equation (3), with its tip located at the origin
of the respective virtual source in space and time. In this
formulation, the amplitudes (weights) S follow from a least
squares problem of the form

‖AS−D‖→min . (4)

Here, A is an m×n matrix, where m is the number of samples
from the original dataset and n the number of virtual sources,
i.e., basis functions, with m > n. We obtain the form

A(xD, tD,xS, tS) =
1− [(tD− tS)v−|xD−xS|]/W

|xD−xS|
(5)

for the component of A that describes the influence of the el-
ementary wave located at (xS, tS) on the data point (xD, tD).
This definition takes the amplitude decay ∼ 1/r in Equa-
tion (2) into account. Please note that all components out-
side of the cones (3) vanish, especially all components with
tD < tS. We can easily ensure the requirement m > n by in-
troducing, if necessary, more sample points by interpolation
of the original space-time field. In all our results, we have
m = rx× ry× (rt −1), with ri being the dataset resolution in
the respective direction. This way, we ignore the source can-
didates with no influence, i.e., those in the latest time slice.

Generally, problems similar to our least squares formula-
tion can suffer from being not well-posed, which can lead
to substantial noise in the solution. In such cases Tikhonov
regularization [TGSY95] is an often used approach to give
preference to a particular solution. We experimented with in-
cluding such a regularization in our algorithm. However, due
to the physically motivated amplitude decay ∼ 1/r that we
apply, we found an ordinary least squares to be sufficient.

4.2. Virtual Source Extraction

Due to the high computational demands of the virtual source
field extraction explained so far, we now present an alterna-
tive approach that is less demanding, but also less generic
and less accurate. The computational cost of the technique
from Section 4.1 basically scales cubically with the num-
ber n of virtual sources to fit, and its memory requirement
scales with mn + n2. Hence, a primary strategy to reduce
the overall cost is to reduce the number n of virtual sources.
We achieve this by reducing the problem at different stages.
First, instead of taking the whole space-time dataset into
account, we only consider the wave fronts it contains. We
extract these in terms of space-time crease surfaces (Sec-
tion 4.2.1). These surfaces represent feature candidates for
elementary waves. For efficiency, we search for the respec-
tive virtual sources using the Hough transform, i.e., we vote
in the parameter space (Section 3.4) of the space-time cones
and detect and filter accumulation points in this space (Sec-
tion 4.2.2). Finally, we fit the obtained source point can-
didates to their influence range in the original space-time
dataset (Section 4.2.3) to obtain their amplitude, and visu-
alize them (Section 4.2.4).

4.2.1. Extraction of Space-Time Wave Fronts

As introduced in Section 3.3, we can extract the wave fronts
by means of crease surface extraction. We use the height
ridge definition by Eberly [Ebe96] and employ a modified
marching cubes algorithm for their extraction, according to
Sadlo and Peikert [SP07]. Extracting the wave fronts as
crease surfaces in space-time, instead of time series of crease
lines in space, makes the extraction more robust by exploit-
ing spatio-temporal coherence and thus suppressing noise.

The extraction of height ridges (and valleys) according to
Eberly involves the computation of the Hessian of the orig-
inal data, which requires second derivatives, and is there-
fore subject to noise amplification, which typically results in
spurious ridges. These issues are usually addressed by filter-
ing. Besides the widely used filtering by value (amplitude),
second derivatives (eigenvalues of the Hessian), and compo-
nent size, we additionally exploit the wave speed, i.e., we re-
ject crease surface parts whose normal angle α deviates too
much from the angle associated with the wave speed. Fig-
ures 2(a) and 2(b) show an example of the resulting space-
time crease surfaces, before and after filtering, respectively.

As discussed in Section 3.3, wave fronts can exhibit de-
viating propagation speeds due to superposition. For non-
periodic fields, this does not represent a severe problem be-
cause the wave fronts superimpose, i.e., cross, only at com-
parably few locations. After rejecting those parts due to de-
viating α , there will still remain enough ridge parts that rep-
resent wave front propagation at wave speed and lead to
good results. However, in case of periodic wave phenomena
that undergo massive interference, it can happen that almost
all wave front regions are subject to interference and hence
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only few crease regions exhibit the required α , leading to an
insufficient number of feature points. Although the virtual
source extraction approach fails in such cases, these cases
can be detected by having too few feature points. Such data
need to be analyzed with our virtual source field fitting ap-
proach, however, at high computational cost.

4.2.2. Extraction of Source Candidates

Using the filtered crease surface parts, we can now search
for appropriate virtual source candidates. To this end, the
centroid of each triangle of the crease surface parts repre-
sents a feature point. Each elementary wave can influence
other space-time positions only within the spatio-temporal
cone pointing forward in time. Hence, searching for vir-
tual sources that can contribute to a given wave front fea-
ture point can be achieved by a Hough transform that detects
these cones. This is accomplished by voting with the reverse
cone in space-time parameter space. In our examples, we
discretize this parameter space using a regular grid with res-
olution equal to the original dataset.

To obtain the virtual source candidates, we extract the lo-
cal maxima from the Hough field. We achieve this by ex-
tracting critical points of type sink from its gradient field
(Figures 2(c), 2(d)). To suppress spurious local maxima, we
reject from these candidates those where the largest eigen-
value of the Hessian is not sufficiently negative (given by
a user-defined threshold) and subsequently merge the re-
maining candidates that are closer to any other candidate
than a prescribed threshold. While this approach provided
good results in our applications, employing topological per-
sistence [ELZ02] could be a worthwhile alternative.

4.2.3. Amplitude Fitting

Having the source candidates identified, we have to derive
quantitative information, i.e., how each of them contributes
to the extracted wave fronts under consideration. We accom-
plish this by the least squares fitting from Section 4.1, but
this time we fit only the ñ obtained source candidates in-
stead of all n virtual sources on a grid. Since each of the
ñ source candidates can influence only the data within its
forward-time cone, we only need to fit the candidates to the
node values of the original grid within these cones, which
also reduces m and allows us to visualize substantially larger
datasets. After fitting, each source candidate has an ampli-
tude (weight), with which the elementary wave has to be re-
leased to fit the data in the vicinity of the filtered crease sur-
face parts, obtained in Section 4.2.2. Similar to Section 4.1,
this can be used to reconstruct the field, but only at the
grid points that are in the influence region of the elemen-
tary waves. The residual between the resulting field and the
original can serve for validation of the visualization.

4.2.4. Virtual Source Visualization

The virtual sources obtained so far not only provide a notion
about the quantitative propagation of the elementary waves

and how they contribute to the extracted space-time ridges,
but their amplitude also reflects the importance of a virtual
source within the determined set. Virtual sources with low
amplitude have lower impact and are therefore of inferior
importance. Thus, we visualize the obtained virtual sources
with glyphs (such as spheres and crosses) and map the am-
plitude to both color and radius, to reflect both the value and
the importance of each obtained virtual source (Figure 2(d)).

4.3. Comparison

To conclude, we favor the approach of fitting virtual source
fields because it is not affected by interference (in contrast to
the virtual source extraction) and provides a full representa-
tion of the original field (the superposition of the elementary
waves reconstructs the full field). Furthermore, the residual
field of the least squares method directly provides a measure
of fitting error and hence the uncertainty of the represen-
tation. On the other hand, inverting Huygens’ principle is
a hard problem that requires substantial compute power for
problems at the real-world scale.

5. Implementation

5.1. Least Squares Fitting

The least squares fitting is demanding both concerning com-
putation time and memory. We investigated a single-CPU-
based implementation using the Eigen library [GJ∗10], a
GPU-based implementation that employs LU decomposition
using CULA [HPS∗10], and a supercomputer implementa-
tion that uses the ScaLAPACK library [BCC∗97]. The bot-
tleneck of the GPU implementation is memory. We further
experienced noise in the virtual source field when using sin-
gle precision arithmetic, possibly related to the limited reso-
lution, and we therefore had to employ double precision for
all shown results. We used a nVidia GeForce GTX 680 and
were able to treat, as our largest example, a 17× 17× 25
dataset in less than one minute but with almost using the en-
tire memory of the GPU. On the other hand, our single-CPU
implementation took over an hour on a i7 2600 with 3.4GHz
for this dataset.

Our massively parallel implementation was executed on
the Cray XC40 “Hornet” at HLRS. The Hornet supercom-
puter consists of 3944 compute nodes, each having 24 cores
of Intel(R) Xeon(R) E5-2680 v3 CPUs with 2.50 GHz and
128GB memory. In our implementation, we subdivided the
m×n matrix A in blocks of size msub×nsub and distributed
them on (m/msub) · (n/nsub) processors. We chose msub and
nsub as divider of m or n, respectively. Although this tech-
nique provides a concise and robust visualization, the lim-
ited resolution represents a major downside regarding appli-
cability in non-high-performance computing environments.
There, however, its results are convincing (Section 6).
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(a) (b) (c) (d) (e)

Figure 2: Crease surfaces (red: ridges, blue: valleys) of the Circulating Source dataset, before (a), and after (b) filtering, and
volume rendering of the Hough transform of the ridges (c), using a black body radiation color map. Accumulation points are
visible as yellow blobs, and are extracted to obtain the final reconstructed sources (d). The result of the virtual source field
fitting for resolution 17×17×25 is shown in (e) for comparison.

5.2. Crease Surface Extraction

The raw extraction of the space-time crease surfaces is ac-
complished on the GPU, however, the angle filter and the
connected component labeling to filter crease parts by their
size is employed on the CPU subsequently.

5.3. Hough Transform

As detailed in Section 4.2.2, we need to convolve all space-
time feature points with a reverse space-time cone. We tested
both a GPU and a CPU approach for that purpose.

To carry out the Hough transform on the GPU, we process
every point in parameter space in parallel. For each parame-
ter point, we evaluate whether it lies within a given neighbor-
hood of the space-time cone extending from a feature point.
If it does, the value at the given parameter point is incre-
mented. This operation is carried out for all feature points.

Our CPU implementation of the Hough transform, on the
other hand, employs both forward and inverse Fourier trans-
form using the FFTW library [FJ05] to accelerate the con-
volution. For that, we first need to sample the feature points
on a regular grid, which we accomplish by sampling a disc
with radius rD = v/h extending in both spatial dimensions.
Here, v is the wave speed and h the spatial resolution of the
sampling grid. The disc is centered at the feature point, with
value 1 at its center and linearly decaying to zero at the disc
boundary. This preprocessing step is carried out on the GPU.

We then employ the convolution theorem by transforming
both the sampled discs and the cone to the frequency domain
using the Fourier transform, performing a point-wise multi-
plication there, and transforming the result back to space-
time by the inverse Fourier transform, which results in the
Hough parameter space. Due to its high memory require-
ments, this approach is not feasible on the GPU.

6. Results

We exemplify our technique using five 2D time-dependent
datasets, of which four are synthetic and one measured with

(a) Circulating Source dataset

(b) Translating Modulated Source dataset

(c) Orbiting Sources dataset

(d) Translating Sources dataset

(e) Water Basin dataset

Figure 3: Overview of used datasets.

a custom setup. Figure 3 provides an overview. For our syn-
thetic datasets, we assumed the sources to have an extent of
half a cell. Within that region, their amplitude is set constant.

Circulating Source (CS) This dataset (Figure 3(a)) consists
of a temporally sine-oscillating source that moves uniformly
along a circle with constant radius. This data has been sam-
pled on a uniform grid of dimension 150× 150× 150. Fig-
ure 2 shows the complete source reconstruction process for
this dataset.

Translating Modulated Source (TMS) This dataset (Fig-
ure 3(b)) is a linearly moving source with sine-modulated
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Figure 4: Extracted virtual source set for the Translating
Modulated Source dataset with adapted (a), and with re-
laxed filtering parameters (b), leading to additional spuri-
ous sources (TMSAC), with respective amplitude graphs ((c),
(d)) of the original source variation (red), and fitted ampli-
tudes of the central 15 best fits (blue crosses).

amplitude. As can be seen in Figure 4(a), our crease-based
technique successfully extracts all 15 peaks of the source.
We validated this result by comparing the amplitudes of the
extracted virtual sources with the original modulated signal
of the translating source, as shown in Figure 4(c).

To examine the robustness of our crease-based approach,
we reduced the filtering thresholds in the Hough extrema ex-
traction, leading to additional virtual source candidates (de-
noted as TMSAC). As can be seen in Figure 4(b), the addi-
tional 84 spurious off-axis candidates were assigned low am-
plitudes because the 15 central sources already represented
the original data sufficiently well. We evaluated the impact
of the spurious sources by comparing the amplitudes of the
15 central sources with the original signal, which were of in-
ferior quality, but still reasonably well represented the origi-
nal variation of the source, indicating the low impact of spu-
rious sources (Figure 4(d)).

Orbiting Sources (OS) With our next dataset, we investi-
gate the robustness of our ridge-based virtual source set ex-
traction technique regarding wave front interference. As dis-
cussed in Section 3.3, superposition can change the apparent
wave front propagation speed and hence pose problems for
our ridge-based extraction technique.

To investigate this, we use a dataset with a stationary pe-
riodic source near the center and superimpose a periodic
source moving along a circle around it. The linear source
was not placed exactly at the center of this circle to avoid
symmetry effects (Figure 3(c)).

One can see the quality of our extracted extrema deteri-
orating, from a good fit in Figure 6(a), where the additional

(a) (b)

(c) (d)

Figure 5: Translating Source dataset. Volume rendering (a)
and results for resolutions 1503 (b) and 3003 (c) with the
glyph radii of the virtual sources scaled according to their
importance. Figure (d) shows the corresponding virtual
source field fitting result with a resolution of 17× 9× 24.
Virtual source clusters and fitting are better for higher reso-
lution. The moving source is located outside of the input sub
set (gray) but is still sufficiently well detected.

source’s amplitude is 10% of the original source’s amplitude,
to a rather insufficient fit in Figure 6(c), where the additional
source’s amplitude is 50% of the original source’s amplitude.

For the 10% superposition, the source candidates still lie
where the sources in the original dataset reside, but are a
little offset. For 50%, the candidates can only be extracted
with substantial noise, while the sources on the circle are
too weak to be extracted reliably. This can be attributed to
the deformed ridges due to interference, leading to a blurring
of the accumulation points in Hough space due to variation
of the apparent wave speed, which in turn leads to inferior
extrema extraction. Using higher temporal and spatial reso-
lution of the Hough space did not help with this problem.
As can be seen in Figures 6(d)–(f), aperiodic signals do not
suffer from these issues.

We also use this dataset to demonstrate our virtual source
field fitting approach. From Figures 2(e) and 6(g) it becomes
clear that both the stationary source and the circularly mov-
ing source are captured, however, at the respective cost.

Translating Source (TS) To increase the difficulty for vi-
sualization, we now test our technique with a dataset where
the source resides outside the domain. This corresponds to
typical real-world cases where measurements are physically
confined and the desired sources are located somewhere out-
side the measured domain. To this end, we use a temporally
sine-oscillating source that translates at constant speed (see
Figures 3(d) and 5(a)).

Our approach was able to reconstruct the original sources
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(a) a = 0.1 (b) a = 0.3 (c) a = 0.5 (d) a = 0.1 (e) a = 0.3 (f) a = 0.5 (g)

Figure 6: Two types of Orbiting Source datasets. Figures (a)–(c) show periodic data, whereas (d)–(f) show six singular events.
The stationary source oscillates with a = 1 throughout, while we assume different oscillation amplitudes for the moving source.
Sources are depicted as crosses, the original field by volume rendering. One can see that our ridge-based approach fails if the
orbiting source has low magnitude with periodic sources, but not for discrete (singular) sources. Finally, Figure (g) shows the
result of the virtual source field fitting method with a = 1.0 for the periodic moving source for comparison, where this method
can still accurately extract the sources.

(a) (b) (c)

Figure 7: Water Basin dataset. (a) Original dataset with our virtual source result (spheres colored with fitted amplitude),
and, for comparison, ground truth space-time positions of the droplet impacts (crosses) determined visually from the video.
(b) Extracted ridges in the observed region (gray) of the dataset, together with our virtual sources. (c) A slice of the original
space-time dataset, highlighting the observed region (gray). The location of the slice is also shown in (b) with a black outline.

Figure 8: Experimental setup. Fish tank coated with white
paper on a white table, camera above, light source from
above (for the acquisition of the dataset we used sun light).

reasonably well in the form of concentrated clusters, al-
though they were located outside of the available data. Only
the topmost source is missing, as its starting time is too late
to generate a sufficient amount of space-time creases within
the space-time domain. As can be seen in Figures 5(b) and
5(c), increasing the resolution of the dataset results in a bet-
ter location of the extracted sources and improved weighting.

Water Basin (WB) As a final example to test our approach,
we acquired a real-world dataset of waves originating from
droplets falling into a basin filled with water (Figure 3(e)).
We put some water in a fish tank and coated its walls with
white paper, to avoid reflection of light. The tank was placed

on a white table surface and a high-speed camera was posi-
tioned straight above the surface. Sun light was used to avoid
temporal interference with artificial light sources, due to the
50Hz frequency of alternating current. The whole setup is
depicted in Figure 8.

We then created waves by sprinkling water droplets into
the tank. The waves produced by the droplets caused caus-
tics which allowed us to capture them in terms of brightness
variations on the white table. We captured a background im-
age with a still water surface and employed background sub-
traction to get rid of uneven illumination and stains. Subse-
quently, we applied Gaussian smoothing to reduce noise.

Similarly to the Translating Source dataset, we applied
our method only to a subset of the dataset in this case. We
chose a part where two nearby drops of water created waves
shortly after another, which then entered the observed part.
Again, using only data that does not contain the original
sources, we are able to obtain an estimate in the form of con-
centrated clusters of virtual sources. Figure 7 shows a vol-
ume rendering of the original data, together with our source
estimates. The observed part is highlighted in gray. As can
be seen in Figure 7(b), the ridges are more uneven and in-
complete than in the synthetic datasets, due to noise and and
inaccuracies of measurement. Our technique yields two clus-
ters of source candidates representing the two original drops
that caused the waves. For comparison, we provide a vol-
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ume rendering of the original data and two large crosses that
indicate the manually-determined impacts of the drops.

Supercomputer Implementation of Field Fitting Figure 9
shows results for the the virtual source field fitting applied to
the Circulating Source dataset that we obtained with our im-
plementation on the Hornet supercomputer using different
resolutions for the dataset. Figure 9(a) shows the results for
a dataset with resolution 17× 17× 25, the largest one that
we could also solve with our GPU implementation. The re-
sults for higher resolutions show that our field fitting method
scales and can accurately localize wave sources.

Time Measurements We conclude our results with a dis-
cussion of the performance achieved for the different ap-
proaches and for different parameter settings.

For the virtual source field fitting approach, as described
in Section 4.1, we performed a small problem size N scaling
test, going from N ≈ 1500 to N ≈ 7300 data points, yield-
ing execution times ranging from 2 s to 49 s on the GPU
(Table 1). For the same problem size range, the CPU im-
plementation executed in 29 s to 3974 s, and was hence only
used for validation. For the GPU, both memory consumption
and execution time scaled with O(N2) (as expected), easily
reaching the GPU memory constraint at a 17×17×25 grid.

Table 2 shows the corresponding timings for the CS
dataset on the Hornet supercomputer. As each processor
builds only its subblock of A, all other contributions to the
runtime expect TS are negligible and hence not shown. Due
to limitations on the available computing time on the Hor-
net, we could not perform a detailed scaling test. However,
even with the limited data available, we can see that our im-
plementation scales approximately linearly with the number
of processors for constant problem sizes but the runtime in-
creases more than linearly with the size of A.

For the virtual source extraction as described in Sec-
tion 4.2, we measured key quantities shown in Table 3. The
generation of ridges (Gen.) scales linearly with the number
of detected features, which mainly reflects the cost of stor-
ing produced geometry during the marching cubes step. For
an additional step, filtering the geometry to wave speed, an
unoptimized step was executed on the CPU as post process
to the marching cubes (Filt.). This step could easily be inte-
grated into the marching cubes algorithm, but was kept sepa-
rated for validation reasons. The disc generation and padding
execution time during the Fourier convolution step is small
enough to be negligible (< 1% of the Fourier step execution
time). The Fourier transformation would scale linear with
the problem size, however padding the data was necessary
to execute the algorithm. This leaves a piecewise constant,
linearly increasing scaling property for the Fourier transfor-
mation step, while the convolution step execution time is
proportional, at roughly 5% of the time.

Table 1: GPU-based least squares timings for different
datasets with the number of features NF and the number of
data points NP. We compare the time TM to establish the ma-
trix and TS to solve for the inverse.

Dataset NF NP TM [s] TS [s]

CS 12 316108 0.434 0.111
TMS 15 507489 0.593 0.222
TMSN 99 792718 2.299 2.841
TS 41 90465 2.379 0.082
OS 234 287028 3.590 2.288
OSH 496 1867424 N/A N/A
WB 12 58152 0.205 0.025

Table 2: Timings for the Circulating Source dataset in the
massively parallel implementation.

Resolution Nproc Matrix size TS [s]

17×17×25 5×2 7225×6936 45
17×17×25 5×8 7225×6936 6
26×26×38 8×13 25688×25012 174
32×32×48 16×16 49152×48128 632
40×40×60 16×16 96000×94400 5354
40×40×60 32×32 96000×94400 1185
52×52×76 52×52 205504×202800 5272

7. Conclusion

We introduced the inversion of Huygens’ principle for the vi-
sualization of wave dynamics in terms of elementary waves.
Because the inversion is computationally costly, we provided
two approaches: one solving the full problem on a predefined
grid of virtual sources, i.e., a virtual source field, and the
other based on explicit extraction of wave fronts and their re-
construction by selected virtual sources. To further limit the
computational cost, both approaches require datasets with
uniform wave propagation speed, which, however, is the case
in many applications in science and engineering.

The former approach requires both high computational
power and a sufficient memory. But it is insensitive to ar-
bitrary interference and results in a full representation of the
original field. We demonstrated the power of this approach
with a supercomputer implementation. The latter approach
is an approximation to speed up the computation and allow
for larger datasets. This approach suffers from interference
and does not provide a full reconstruction—it provides only
selected virtual sources at previously extracted wave fronts.

It is clear, that our virtual source field can only be an
approximation of the true sources that caused the original
field. Further, we observed, at least in some ambiguous con-
figurations, that several virtual sources assume the role of a
real source or that a single virtual source aggregates several
real sources. Notwithstanding these limitations, our method
yields a concise representation and can reveal important fea-
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(a) 17×17×25 (b) 26×26×38 (c) 32×32×48 (d) 40×40×60 (e) 52×52×76

Figure 9: Circulating Source dataset in massively parallel implementation.

Table 3: Timings (in seconds) for crease surface extraction (generation and filtering), Hough transform and extrema extraction.
Triangle count of the input crease surfaces, disc generation (DG), data Padding, Fourier transform, Convolution (Con), inverse
Fourier transform for convolved field (IF), unpadding of the result (Un), and extraction both for positive and negative extrema.

Gen. Filt. ∆-Count DG Padding Fourier Con IF Un. Extrema

Cones Discs Cones Discs pos. neg.

CS 0.42 15.3 463559 0.053 0.549 0.514 2.06 2.05 0.567 1.89 0.022 16.92 16.79
TMS 0.96 25.9 619035 0.064 0.571 0.521 2.05 2.06 0.568 1.89 0.020 17.57 17.34
TMSAC 0.95 20.7 619035 0.068 0.578 0.524 2.08 2.08 0.571 1.91 0.020 17.48 17.16
TS 1.25 20.2 576047 0.094 4.292 4.081 40.77 40.84 4.529 39.45 0.191 145.91 146.33
OS 0.44 9.8 252118 0.056 0.551 0.541 2.08 2.09 0.581 1.92 0.026 17.94 17.76
OSH 2.72 45.6 1149897 0.111 4.298 4.135 40.80 40.50 4.509 39.29 0.185 143.83 145.42
WB 0.58 21.6 94932 0.045 4.342 4.152 41.47 41.48 4.617 40.23 0.017 12.78 12.71

tures contained in wave propagation data. A prominent ap-
plication are of course configurations, where the real sources
are located outside of the measured region. As future work,
we plan to extend the approach to data with varying wave
propagation speed for wider applicability.
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