
k
1,
k
3,
k
2

v
9,
v
10,
v
11

0, 3, 4 0, 4, 1 1, 4,3 1,3, 2

k
0,
k
0
k
1,
k
1,
k
1
k
2
k
3,
k
3,
k
3
k
4,
k
4,
k
4

v
0,
v
1,
v
2
v
3,
v
4,
v
5
v
6,
v
7,
v
8

k
0,
k
3,
k
4

V
2

V
0

V
1

V
4

V
3

F
1

F
0

F
2 F

3

Map Partition
Steps 1-6

Reduce
Steps 7-18

Welded
Geometry

k
0,
k
4,
k
1
k
1,
k
4,
k
3

F
0

F
1

F
2 F

3

keys :

values :

v
0

v
2

v
3

v
4

v
5
v
6

v
7

v
8

v
9

v
10

v
11

F
1

F
0
F
2

v
1

F
3

F
2

k
0

F
1

F
0 F

3

k
1

k
4

k
2

k
3

v
0,
v
3
v
5,
v
6,
v
9
v
11
v
1,
v
8,
v
10
v
2,
v
4,
v
7

sorted-keys, sorted-values: cell-connections:

counts:

welded-values:

2, 3, 1, 3, 3

V
0,
V
1,
V
2,
V
3,
V
4

Figure 1: An example of using KEY-WELD with input mesh topology to find output vertex connections. After a map operation defines some

cells at left, a partition phase groups the keys and a reduce phase combines vertices and establishes a connections array to the new indices.

1 General Merging Algorithm

Figure 1 provides a simple example of applying our technique using
input mesh topology, described in Section 4.1 of the paper, to find
connections among generated vertices. First, a mapping operation
generates the connections for a set of cells. Vertices are duplicated
to allow independent operation on multiple threads. For the pur-
poses of this paper we assume the map operation is a previously
known algorithm such as Marching Cubes with the trivial exten-
sion that cell connection lists contain pairs of input index (key) and
output vertex (value) rather than just the output vertices.

Next, key-value pairs are partitioned by sorting the pairs based on
keys. From the sorted list of keys we can efficiently extract a list
of unique keys, which serves to identify the connected vertices to
be created. This list of sorted unique keys can also used to look up
where each original unsorted key resides in the final list of merged
vertices, which is how we generate the cell-connections array defin-
ing the cell topology.

The final step is to merge values with identical keys in the reduction
phase. This reduction operation provides an opportunity to com-
bine neighborhood information such as averaging normals across
surface polygons. To facilitate averaging we also generate a counts

array marking the number of cells incident to each vertex. Although
this array is not specifically necessary to describe the final topology,
it can be leveraged to find vertex incidence lists using the VERTEX-
INCIDENCE-LIST method described in Algorithm 2.

KEY-WELD(keys,values,compare,merge, transform)
keys: An array of keys uniquely identifying elements.
values: An array of mergeable elements for each key.
compare: A key comparator compare(k1,k2)! BOOL.
merge: A merging operator merge(m1,m2)! m3.
transform: A transformation transform(m1,size)! out.

⇤ Sort values using keys to make groups.
1 (sorted-keys,sorted-values) 

KEY-SORT(keys,values,compare)
⇤ Determine the new indices for each element.

2 unique-keys UNIQUE(sorted-keys)
3 cell-connections 

VECTORIZED-FIND(unique-keys,keys)
⇤ Get a reverse map from output to sorted arrays.

4 reverse-map 
VECTORIZED-FIND(sorted-keys,unique-keys)

⇤ Get the size of each group (one per unique key).
5 weld-array-size LENGTH(reverse-map)
6 counts {}
7 for i 0 to weld-array-size�2

do in parallel

8 counts[i] reverse-map[i+1]
�reverse-map[i]

9 counts[weld-array-size�1] 
LENGTH(sorted-keys)

�reverse-map[weld-array-size�1]
⇤ Merge each group into a single element.

10 welded-values {}
11 for weld-index 0 to weld-array-size�1

do in parallel

12 sort-index-start reverse-map[weld-index]
13 count counts[weld-index]
14 v sorted-values[sort-index-start]
15 for group-index 1 to count�1

do

16 sort-index sort-index-start

+group-index

17 v merge(sorted-values[sort-index])
18 welded-values[weld-index] 

transform(v,count)
19 return (welded-values,cell-connections,counts)

Alg. 1: The KEY-WELD procedure welds vertices and allows mul-

tiple local samples of vertex attributes to be merged to form a better

sampling without non-local operation during geometry generation.



VERTEX-INCIDENCE-LISTS(cell-ids,
cell-connections,
counts)

cell-ids: An array of cell identifiers for each cell vertex.
Usually sequential repeated indices {0,0,0,1,1,1, ...}

cell-connections: Result from KEY-WELD.
counts: Result from KEY-WELD, cell counts per vertex.

⇤ Use a key-sort with cell connections as the keys to
⇤ group cell identifiers by vertices.

1 (�, links) KEY-SORT(cell-connections,cell-ids)
⇤ The size of each incidence list is stored in count.

2 links-counts counts

⇤ Use an exclusive scan to find the offset to the
⇤ incidence list for each vertex.

3 links-offsets EXCLUSIVE-SCAN(links-counts)
4 return (links, links-counts, links-offsets)

Alg. 2: VERTEX-INCIDENCE-LISTS takes the output of the KEY-
WELD algorithm and quickly generates an incidence list, repre-

sented as an array of cell-ids and an array of pointers into cell-ids
called links-offsets that represents the start of each cell’s incidence

list. Adjacency lists across edges may be produced by removing in-

cidences that do not occur exactly twice in a cell, and adjacency

lists across faces may be generated similarly.

VERTEX-WELD(vertices)
vertices: Array of vertex data (i.e. coordinates).

⇤ Sort vertices to make identical vertices adjacent.
1 sorted-vertices LEXICOGRAPHIC-SORT(vertices)

⇤ Copy first element of each group of duplicates.
2 welded-vertices UNIQUE(sorted-vertices)

⇤ For each item in vertices find the corresponding
⇤ index in welded-vertices.

3 cell-connections 
VECTORIZED-FIND(welded-vertices,vertices)

4 return (welded-vertices,cell-connections)

Alg. 3: VERTEX-WELD, as demonstrated by Bell, takes geometric

soup as input and produces a welded topology.

1 Nonmanifold Surfaces

Figure 1: An example of mesh coarsening causing a non-manifold,

overlapping surface.

A problem with the coarsening technique is that in some cases, such
as the case shown in Figure 1, non-manifold surface elements may
be generated by collapsing vertices from different parts of the sur-
face. In this example, two vertices from different faces are merged
and a 3D volume is collapsed into a single plane. If such surface
elements are undesirable, they may be eliminated by calculating the
maximum edge curvature of each triangle, and removing all trian-
gles containing an edge curvature of 180�.


