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Abstract
In this paper, we present a novel framework termed Anisotropic Spectral Manifold Wavelet Transform (ASMWT) for shape
analysis. ASMWT comprehensively analyzes the signals from multiple directions on local manifold regions of the shape with a
series of low-pass and band-pass frequency filters in each direction. Using the ASMWT coefficients of a very simple function, we
efficiently construct a localizable and discriminative multiscale point descriptor, named as the Anisotropic Spectral Manifold
Wavelet Descriptor (ASMWD). Since the filters used in our descriptor are direction-sensitive and able to robustly reconstruct the
signals with a finite number of scales, it makes our descriptor be intrinsic-symmetry unambiguous, compact as well as efficient.
The extensive experimental results demonstrate that our method achieves significant performance than several state-of-the-art
methods when applied in vertex-wise shape matching.

1. Introduction

In geometry processing, computer graphics and computer vision,
shape descriptors are commonly used in extensive applications.
They play an important role in the success of the applications.
One prominent approach to construct shape descriptors is to define
a point descriptor or signature that can capture the most notable
characteristics of a given shape through encoding the neighbor-
hood of each point. Among extensive strategies to construct such
point descriptors, the most popular one is called Spectral Descrip-
tor [SOG10,BMM∗15], which is generated from the processing on
the eigen-functions and eigenvalues of the Laplace-Beltrami oper-
ator (LBO). The representative works of such methods include the
heat kernel signature (HKS) [SOG10] and the wave kernel signa-
ture (WKS) [ASC11]. However, the HKS suffers the problem that it
is highly dominated by the information from low frequencies, while
conversely a portion of such low frequency information is absent in
the WKS, which easily results in matching noises. Some efforts
have been put forward to improve their performance [LB14].

Recently, Hammond et al. [HVG11] developed Spectral Graph
Wavelet Transform (SGWT) to perform multiresolution analysis
for the signals on graphs. Actually, the filters in SGWT include both
low-pass and band-pass filters, which allows to integrate the advan-
tages of the two above spectral descriptors. Utilizing the multiple
layers of SGWT coefficients, Li et al. [LH13] constructed a pyra-
mid descriptor. However, their work mainly focuses on the shape
retrieval and is not sufficient discriminative and compact for shape
matching.

Another common shortcoming of the above mentioned spectral
descriptors is that they are isotropic and insensitive to the direction
information of the shape. Therefore, they are ambiguous under its
intrinsic symmetries. As to this problem, several strategies have
been exploited to incorporate the important direction information
for 3D shape analysis [MBBV15, BMR∗16].

Contributions In this article, we firstly propose a novel pow-
erful tool to process and analyze the signals defined on man-
ifolds, named as Anisotropic Spectral Manifold Wavelet Trans-
form (ASMWT). The core idea is based on the eigen-systems
of Anisotropic Laplace-Beltrami Operator (ALBO) provided in
[BMR∗16] to extend SGWT to be direction-aware. In this new
framework, the anisotropic levels of the wavelet can be flexibly
controlled, as well as their orientations by specifying different pa-
rameters. Benefitting from the desirable properties of ASMWT, we
utilize only one single layer of the ASMWT coefficients of a very
simple intrinsic signal on a manifold to construct a very robust,
compact, computation efficient, and highly discriminative point de-
scriptor for point-wise matching between shapes. Moreover, the de-
scriptor is also isometric-deformation invariant and especially, un-
ambiguous to the intrinsic symmetry. Experiment results show that
it outperforms the state-of-the-art methods.

2. Anisotropic Laplace-Beltrami Operator

We model a shape as a connected smooth compact two-dimensional
manifold (surface) X (possible with boundaries) embedded in
R3. Given a Riemannian metric for this shape, < f ,g>L2(X) =
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X f (x)g(x)dx expresses the standard inner product on it and the

space of the square integrable real functions is denoted as L2(X) ={
f : X → R,

∫
X f (x)2dx <∞

}
, where dx is the area element in-

duced by this Riemannian metric. The second fundamental form, a
2× 2 matrix, its eigenvalues, κM and κm, are called the principal
curvatures and their corresponding eigenvectors VM(x) and Vm(x)
constitutes an orthonormal basis on the tangent plane TxX at point
x. In order to model a heat flow that is position and direction de-
pendent, Boscaini et al [BMR∗16] defined ALBO as following

∆αθ f (x) =−divX(RθDα(x)Rθ
T∇X f (x)),

where∇X f and divX f are the intrinsic gradient and the divergence

of f (x) ∈ L2(X) respectively. Dα(x) =
[ 1

1+α

1

]
is the ther-

mal conductivity tensor acting on the intrinsic gradient direction in
the tangent plane (represented in the orthogonal basis VM(x) and
Vm(x) of principal curvature directions) and used to control the
anisotropic level along the maximum curvature direction. Rθ is a
rotation by θ in the tangent plane, which endows ALBO with mul-
tiple anisotropies at angle θ w.r.t. the maximum curvature direction.
Note that, when α = 0, θ = 0, ALBO becomes the conventional
Laplace-Beltrami operator.

In practical applications, a 3D shape surface is usually dis-
cretized into a triangular mesh and the discretization of the ALBO
takes the form of a sparse matrix. Given a mesh M = (V,E,F), it
includes N vertices V = {1, · · · ,N}, a set of edges E and a set of
triangles F = (i jk). For each triangle i jk, we firstly compute the di-
rections of principal curvature VM ,Vm, then attach an orthonormal
reference frame Ui jk = [VM ,Vm,n]∈R3×3 to it, where n is the unit
normal vector to this triangle. The tensor Dα operating on its tan-

gent vectors is expressed w.r.t Ui jk as Dα =

 1
1+α

1
1

 . Let

ei j ∈ R3 denote the oriented edge pointing from vertex i to vertex
j, normalized to unit length. Define the Hθ-weighted inner product
between edges ek jand eki as〈

ek j,eki
〉

Hθ

= eT
k j RθUi jkDαUT

i jkRT
θ︸ ︷︷ ︸

Hθ

eki,

where Rθ is the corresponding 3×3 rotation matrix when rotating
the basis vectors Ui jk on each triangle around the respective normal
n by the angle θ. Now, we can get N ×N ALBO matrix Lαθ =
−A−1Bαθ. The element ai of the mass matrix A= diag(a1, · · · ,aN)
denotes the local area element at vertex i and the stiffness matrix
Bαθ = (bi j) is composed of weights

bi j =


− 1

2

( 〈ek j ,eki〉Hθ

sin βi j
+
〈ek j ,eki〉Hθ

sin γi j

)
, (i, j) ∈ E,

−∑k 6=i bik, i = j,
0, otherwise.

(1)

where βi j , γi j are the two angles opposite to the edge between ver-
tices i and j in the two triangles sharing the edge.

3. Anisotropic spectral manifold wavelet transform

In this section, we extend SGWT to be direction sensitive based
on the eigen-decompositon of ALBO. On the triangular mesh

M, a function f is represented as a N-dimensional vector f. The
inner product of two functions on the mesh f and g is dis-
cretized as 〈f,g〉 = fTAg , where A is the mass matrix. The eigen-
decomposition of ALBO can be solved as a generalized eigen-
problem Bαθφαθ,k = λαθ,kAφαθ,k, where λαθ,k is the kth eigenvalue
of matrix Lαθ and φαθ,k is the corresponding eigenvector. In prac-
tice, we usually only need the first K eigenvectors and eigenvalues.

Given a wavelet kernel g(λ) and a scaling function kernel
h(λ), which are analogous to a band-pass and low-pass filter, the
Anisotropic spectral manifold wavelets (ASMW) and the scaling
functions are respectively defined as

ψαθ,tm(n) =
K−1

∑
k=0

amg(tλαθ,k)φαθ,k(m)φαθ,k(n),

ϕαθ,m(n) =
K−1

∑
k=0

amh(λαθ,k)φαθ,k(m)φαθ,k(n).

where m,n = 1,2, · · · ,N are the indices of the vertices and m rep-
resents the location of the wavelets and the scaling functions, and
t is the wavelet scale. Correspondingly, the transform coefficients
are given as

W f (αθ, tm) =
〈
f,ψαθ,tm

〉
A =

K−1

∑
k=0

amg(tλαθ,k) f̂αθ(k)φαθ,k(m)

S f (αθ,m) =
〈
f,ϕαθ,m

〉
A =

K−1

∑
k=0

amh(λαθ,k) f̂αθ(k)φαθ,k(m),

where f̂αθ(k) =
〈
f,φαθ,k

〉
A. In this paper, as to consider all the fre-

quencies equally-important overall, we use Mexican-hat wavelet
kernel g(λ) = λexp(−λ) and the scaling function kernel h(λ) =

1.2exp
(
−
(

λ

0.4λmin

)4
−1
)
. For any practical computation, the

continuous scale parameter t of the wavelets must be sampled to
a finite number of scales. Choosing J scales

{
t j
}J

j=1 will yield a
collection of N× J wavelet functions ψαθ,t jm. The minimum and
maximum scales of the discretized wavelet tJ and t1 are computed
as tJ = 1/λmax, where λmax is the upper bound of the spectrum
of Lαθ and t1 = 2/λmin, here λmin = λmax/elow and elow > 0 is a
user-defined parameter determining the lower bound of the spec-
trum. The remaining scales tJ ≤ t j ≤ t1 are spaced logarithmically
equispaced between the minimum scales tJ and maximum scales t1.
Obviously, SGWT is the special case when α = 0,θ = 0. We show
a series of ASMW determined by various parameters in Figure 1.

4. The proposed ASMW descriptor

For each vertex i of the mesh, we choose the ASMWT coeffi-
cients of the delta function δi to encode the multiscale local context
around the point. For a given α and θ, utilizing J scales wavelet
coefficients and the corresponding scaling function coefficients, we
define a J+1 dimensional row vector

dαθ(i) =
(
Sδi

(αθ, i),Wδi
(αθ, t1i),Wδi

(αθ, t2i), · · · ,Wδi
(αθ, tJ i)

)
to describe the shape information at angle θ. To comprehensively
capture the information from all directions around each point,
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Figure 1: ASMW determined by varied parameters. From the left to right, wavelets on the first three shapes are determined by different
anisotropic levels α = 0(isotropic),3,300 , the middle three by different angles θ = π/4,π/2,3π/4 and the right three by different scales
t j, j = 1,3,5. The other parameters are the same in each three ones.

we use L equally-spaced rotation angles θ = θ1,θ2, · · · ,θL, θ ∈
[0,2π). Finally, combining each dαθl (i), l = 1,2, · · · ,L, we build
our ASMW descriptor, a L(J +1) dimensional row vector

ASMWD(i) = (dαθ1(i),dαθ2(i), · · · ,dαθL(i)) .

Optionally, we may also use multiple degrees of anisotropy, α1,α2,
. . . , αA.

ASMWD has lots of desirable properties. It is invariant under the
isometric deformations and able to distinguish the intrinsic symme-
try of the shape. We show these two properties in Figure 2(a) and
Figure 2(b) respectively.

(a) (b)

Figure 2: Illustration of the properties of ASMWD. (a) Isometric
deformation invariant. The two shapes have isometric deforma-
tion between them and the solid and dotted curves represent the
ASMWD of the two points(corresponding to the point with the same
color) on the left and right shape respectively. (b) Disambiguity of
the intrinsic symmetry. ASMWDs are computed at two pairs of in-
trinsic symmetric points on a human shape. Solid curves are for the
descriptors of the left-part points and dotted curves are for right
points.

5. Experiments and results

In this section, we will employ our descriptor in point-to-point
matching for extensive challenging shapes. All experiments are
tested on a PC with Intel(R) Core i7-4790 CPU at 3.60 GHz and
16.0 GB RAM.

The public dataset CAESAR [PWH∗17] is used to test the de-
scriptor performance. CAESAR is the largest commercially avail-
able dataset that contain 3D scans of over 4500 subject in a stan-
dard pose. We select a random set of 20 shapes from the fitted-
meshes subset of this dataset where each shape has nearly 6K ver-

tices. These datasets are considerably challenging due to the pres-
ence of non-isometric deformations as well as significant variabil-
ity between different human subjects. Set K = 200, J=5, L = 8 and
anisotropic level α = 10 to compute our descriptor and the code
and settings of other methods in the comparison are provided on-
line. For a fair comparison, all the dimensions of the descriptors
are set to 48 if without special account. The matched point for each
point is obtained using nearest neighbor search in descriptor space,
where the distance between points is evaluated by Euclidean dis-
tance of the descriptors.

Quantitative evaluation We use three criteria to evaluate de-
scriptor performance including cumulative match characteristic
(CMC), receiver operator characteristic (ROC) and correspondence
quality characteristic (CQC). Note that, all the above criteria were
evaluated with the asymmetric setting where we consider symmet-
ric points as incorrect matching, which is more rigorous than those
commonly used in spectral analysis.

The performance comparison with several state-of-the-art de-
scriptors is demonstrated in Figure 3. Those methods resulted from
LBO are plotted by dashed curves while ALBO by solid curves. It
is clearly seen that ASMWD outperforms all competitors. There ex-
ist very distinct gaps between ASMWD and the isotropic descrip-
tors, such as HKS, WKS, WFT [BMM∗15]. This means that the
direction information plays important role to improve the perfor-
mance of the descriptor. For completely comparison, we also make
comparison with AHKS [BMR∗16] and AWFT [MRCB16], both
also generated from ALBO eigen-decomposition while using dif-
ferent filters. The results show the outstanding advantages of the
filters(wavelet kernels and scaling function kernels) used in our
method. Moreover, DEP [MOR∗18] and AWFT have much lower
computation efficiency than ASMWD, since DEP needs to solve a
number of linear systems of equations and AWFT requires amount
of input signals and too much transform coefficients for each signal.

Qualitative evaluation In Figure 4, we demonstrate the robust
performance of our descriptor on several human models with dif-
ferent deformations. The results show that our descriptor manifests
good localization and specificity, and disambiguate the intrinsic-
symmetry even under some large deformations.

6. Conclusion and future work

In this paper, we introduced a novel framework termed anisotropic
spectral manifold wavelet transform for shape analysis. The gener-
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Figure 3: The performance evaluation on CAESAR dataset. All descriptors in these plots are 48-dimensional vectors.

Figure 4: The visualized Euclidean distance (Normalized) of the descriptors between a reference point( white sphere on the arm of the
leftmost human shape) and the rest points on the human shapes with different transformations. From left to right the deformation the shape
endured is near isometric deformation, deformation with micro holes, with noise, with sharp noise, local scaled and global scaled. The
nearest point to the reference on each human shape is colored with magenta . Hotter color represents the larger distance. For visualization
clarity, distances are saturated at the first 10% value.

alized wavelet transform allows to capture more underlying infor-
mation of the signals on manifolds from multiple directions of the
local geometry of shapes. Based on the multiscale transform coef-
ficients of a very simple function, we proposed a very discrimina-
tive and compact descriptor. We showed that our descriptors could
be successfully used to address point-to-point shape matching. And
extensive experiment results illustrated that it achieved significantly
better performance than previous methods. In the future, other ap-
plications will be explored by using ASMWT.
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