‘Workshop on Material Appearance Modeling (2016)
H. Rushmeier and R. Klein (Editors)

Exploring Material Recognition for Estimating Reflectance
and Illumination From a Single Image

Michael Weinmann and Reinhard Klein

University of Bonn, Germany

Abstract

In this paper, we propose a novel approach for recovering illumination and reflectance from a single image.
Our approach relies on the assumption that the surface geometry has already been reconstructed and a-priori
knowledge in form of a database of digital material models is available. The first step of our technique consists
in recognizing the respective material in the image using synthesized training data based on the given material
database. Subsequently, the illumination conditions are estimated based on the recognized material and the
surface geometry. Using this novel strategy we demonstrate that reflectance and illumination can be estimated
reliably for several materials that are beyond simple Lambertian surface reflectance behavior because of
exhibiting mesoscopic effects such as interreflections and shadows.

Categories and Subject Descriptors (according to ACM CCS): 1.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Intensity, color, photometry, and thresholding; Modeling and recovery of physical attributes 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture 1.4.2
[Image Processing and Computer Vision]: Scene Analysis—Color; Photometry

1. Introduction

The way we perceive our environment with its objects is de-
termined by the complex interplay of surface material char-
acteristics, illumination conditions and the surface geome-
try with respect to the viewpoint. While identifying mate-
rial characteristics provides important information on how
we have to handle individual objects and allows reasoning
about their fragility, deformability or weight, the extraction
of this information is complicated by the fact that material
appearance heavily depends on surface geometry, viewing
conditions and the surrounding illumination conditions (see
Figure 1). On the other hand, knowing illumination condi-
tions enables a multitude of interesting applications such as
e.g. inserting virtual objects in the scene. Understanding the
scene, hence, requires the decomposition of the scene into
its geometry, reflectance and illumination conditions.

In this paper, we focus on the reconstruction of reflectance
and illumination characteristics from a single image based
on an a-priori known surface geometry. While many tech-
niques have been developed for the reconstruction of the sur-
face geometry based on structured light scanners, multi-view
stereo systems or deflectometry, the recovery of illumina-
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tion and reflectance effects remains a challenging task due
to its severely under-constrained nature. After the separation
of the known geometry from the unknown reflectance and
illumination characteristics, the latter two modalities have to
be decoupled as well to get a more complete understand-
ing of the scene. In particular, surfaces with a complex sur-
face reflectance behavior exhibiting mesoscopic effects of
light exchange such as interreflections, self-shadowing, etc.
at surface structures on the scale of scratches or engravings
significantly complicate this separation task.

So far, related work is either limited to Lambertian sur-
faces [HFB*09, BM12, BM13] or considers BRDF models
for objects with homogeneous surface reflectance [LN12,
LN16,0N12]. However, many of the materials encountered
in daily life do not follow Lambertian surface reflectance be-
havior or simple BRDF models but exhibit complex spatially
varying surface reflectance characteristics including meso-
scopic effects such as self-shadowing, self-occlusions, inter-
reflections, etc.. As these materials cannot be modeled us-
ing simple analytical BRDF models, more complex material
models such as bidirectional texture functions (BTFs) intro-
duced in [DNGK97] have to be used.
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Unfortunately, separating illumination and reflectance is
highly challenging for objects exhibiting a complex, inho-
mogeneous surface reflectance behavior as some properties
of the different modalities can hardly be separated and might
finally be included in the wrong modality. For instance, cer-
tain colors of the surface material might be be included in
the final estimate of the illumination conditions. Standard
techniques [HFB*09] approach this challenging task by fol-
lowing an iterative approach of alternating the separate fit-
ting of either illumination or reflectance based on the as-
sumption that the other modality is known. However, such
alternating fitting approaches are susceptible regarding lo-
cal minima in the individual iterations and more recent ap-
proaches [LN12,LLN16] are tailored to homogeneous objects
that can be modeled using rather simple BRDF models.

In this paper, we hence introduce a novel non-iterative
scheme for separating reflectance and illumination, where
the estimation of material and illumination is carried out in
two separate steps. Instead of an alternating or joint fitting of
illumination and reflectance, we exploit the potential of stan-
dard machine learning approaches for the recognition of the
surface material in a database of digitized materials. Once
the material has been recognized, the surface reflectance be-
havior is constrained, and, taking benefit of the already rec-
ognized surface reflectance characteristics, the subsequent
illumination estimation task is significantly facilitated.

Our approach relies on the availability of a database of
digitized material models that covers the materials that are
expected to occur in the considered scenes. A major pre-
requisite is given by the capability of these material models
to accurately model the respective materials. Bidirectional
Texture Functions (BTFs) [DNGK97] have been proven to
allow such an accurate representation of surface appearance
including the aforementioned mesoscopic effects for many
materials. In our experiments, we use the publicly available
BTF material database published in [WGK14]. However, in
the future, significantly larger databases might be used.

In summary, the key contributions of this paper are:

e A novel approach for recovering reflectance and illumina-
tion characteristics from a single image based on material
recognition and a subsequent illumination estimation,

e An approach that is capable of handling objects exhibiting
a spatially varying surface reflectance behavior including
complex effects of light exchange.

2. Related Work

The idea of separating material properties and illumination
characteristics in an input image has gained attraction since
several decades and can be traced back to the studies in
[BT78] where the term intrinsic image has been introduced.
First solutions to this problem have been proposed based on
the Retinex theory introduced in [LM71] and its extensions
such as e.g. [Bla85,Hor86,FDB92, GJAF(09,STLOS]. Further

Figure 1: Example illustration of the dependency of mate-
rial appearance on surface geometry, surface reflectance,
and the surrounding lighting conditions. Although surface
material and geometry as well as the viewing conditions are
the same in both figures, the differences in the illumination
conditions induce a significantly different material appear-
ance.

approaches for intrinsic image decomposition for single im-
ages include [SYJL11, FPC00, GRK*11, BBS14, KPSL16].
In contrast, estimating intrinsic images from multiple views
of an outdoor scene has been investigated in [LBD12].

Furthermore, a multitude of approaches exploits the po-
tential of inverse rendering for estimating illumination and
reflectance properties, i.e. during optimization of the formu-
lated problem. For example, a more general solution to the
intrinsic image problem has been analyzed in [BM12,BM13]
where shape information is recovered in addition to the chro-
matic illumination and reflectance. In contrast, a model-
based approach has been followed in [HFB*(09] for photo
collections. Based on an initial geometry estimation ob-
tained via multi-view stereo, this technique solves for re-
flectance and illumination in an alternating manner, where
the reflectance is represented using a set of basis BRDFs
and illumination is represented using a set of wavelet-basis
functions. Similarly, in [DS13] a frequency framework is
used as well and camera response functions for the individ-
ual images of the input data formed by image collections
are calculated in addition to geometry, reflectance and il-
lumination. While all the above-mentioned approaches are
based on assuming Lambertian reflectance behavior, the di-
rectional statistics bidirectional reflectance distribution func-
tion model has been used in [LN12] for the joint opti-
mization of reflectance and illumination for objects with
smooth, homogeneous surface materials from a single im-
age. In [PCDS12], surface reflectance in terms of SVBRDFs
is estimated for video sequences. However, only a few main
light source directions derived from observed specular high-
lights are estimated in this approach. More recently, diffuse
surface models have been considered in [KSH* 14] for sepa-
rating the input image into diffuse albedo and shading based
on the Color Retinex algorithm [GJAF09]. Furthermore, the
inverse rendering approach for illumination estimation for
outdoor photo collections in [LM14] follows an iterative ap-
proach with separate illumination and reflectance estima-
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tion steps that are alternated while keeping the other modal-
ity fixed. For this purpose, an outdoor illumination model
is derived and a novel dataset is used, which contains im-
ages that are associated with their respective ground truth
HDR illumination conditions. Our approach addresses the
case of more complex surface reflectance behavior by rec-
ognizing the materials in the scene among materials in a
database that have been measured and stored as bidirectional
texture functions [DNGK97]. Based on the recognized ma-
terial model, the illumination is estimated using an inverse
rendering framework.

3. System Overview

An overview of the proposed approach for recovering re-
flectance and illumination from a single image is depicted
in Figure 2. For an object with an a-priori known geometry
obtained e.g. by using multi-view stereo techniques, struc-
tured light scanners, laser scanners or deflectometry, the first
step in the scheme is represented by searching for the closest
material in a database of synthesized images generated us-
ing different digital material models (see Section 3.2). Sub-
sequently, the estimation of the illumination is performed
based on the material model of the recognized reference in
the database (see Section 3.3) and the known surface ge-
ometry. Before we focus on the corresponding technical de-
tails, we first describe our synthesis framework for generat-
ing synthesized training data in Section 3.1.

3.1. Rendering Pipeline

An indispensable requirement of our approach is the avail-
ability of accurate digital material models that faithfully pre-
serve characteristic traits of visual material appearance in the
synthesized data. These material models are needed in the
material recognition step for the generation of training data
that depicts the appearance of the individual materials under
varying conditions regarding surface geometry, illumination
conditions and viewing configurations as mentioned in Sec-
tion 3.2. In addition, these models are needed in the illumi-
nation estimation step, which is based on the availability of
an appropriate digital material model (see Section 3.3).

For modeling spatially inhomogeneous materials which
exhibit non-local effects such as interreflections and
self-shadowing, as met in many daily life situations,
bidirectional texture functions (BTFs) as introduced in
[DNGK97] currently represent the state-of-the-art tech-
nique (see e.g. [HF11, SWRKI11, HF13, SSW*14, WK135,
WLGK16]). Bidirectional texture functions BTF(x, ®;, ®,)
are six-dimensional functions, where the material appear-
ance is represented for each point x on the surface depend-
ing on the incoming light direction ®; and the outgoing light
direction ®,. Per surface point, the dependency of the ob-
served reflectance is stored in terms of apparent BRDFs
[WHONO97] ABRDF (®;, ®, ), that have the same parameters
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Figure 2: The proposed approach for separating reflectance
and illumination. In a first step, the surface material is rec-
ognized based on known surface geometry and a material
database. Subsequently, the recognized material is used to-
gether with the surface geometry to estimate the illumination
in the scene.

input image

as conventional BRDFs. However, no energy conservation is
enforced for ABRDFs.

Similar to the approach presented in [WGK14], we im-
plemented a rendering pipeline based on the Mitsuba path-
tracer [Wen10] where the virtual objects in the scene are illu-
minated via environment maps (e.g. [Deb98]). Using path-
tracing for the rendering process, we obtain the exitant radi-
ance L,(x, o) for each surface point x via the image-based
relighting equation

Lr(x,00) = /Q BTE(x, 07, 00) Li(@:) V (x, ;) dov. (1)

Here, the incoming and outgoing light directions are repre-
sented by ®; and ®,, and L;(®;) denotes the radiance distri-
bution in the environment map over the spherical domain €.
Furthermore, V (x,®;) denotes a visibility function in form
of a binary indicator function for considering if the environ-
ment map is visible from surface point x in the direction ;.

3.2. Material Recognition

Given an input image where the surface geometry is already
known e.g. as a result of a preceding geometry acquisition,
we first focus on estimating the surface material. Instead
of fitting parametric BRDF models as in e.g. [HFB*09],
our approach is based on using the BTF database presented
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in [WGK14] and [WK14] to render different surface geome-
tries with the different materials under different natural light-
ing conditions (here, we use environment maps for relighting
the materials [Deb98]) for generating realistic training data.
For this purpose, we use the pathtracer implementation in
Mitsuba [Wen10].

For retrieving the material in the database that is closest to
the one in the image for which the estimation of surface ma-
terial and illumination has to be calculated, we use a standard
retrieval method. In the feature extraction step, we densely
extract color patches and SIFT descriptors per image, i.e. for
the training data and the query image, which has been shown
to be a valuable combination of complementary descriptor
types in [WK14]. Based on the descriptors extracted for the
training data, we compute a dictionary of visual words us-
ing the k-means algorithm. Following [LSAR10], we use a
dictionary of k = 150 visual words for the color descriptors
and a dictionary of k = 250 visual words for the SIFT de-
scriptors. For encoding the information contained in the set
of descriptors extracted for an individual image in a single
vector-based representation, we make use of the VLAD rep-
resentation proposed in [JDSP10] for describing the content
of the masked object regions, however, other representations
such as Fisher vectors [PD07] would also be adequate. In-
stead of simply counting the occurrences of the individual
visual words assigned to the descriptors within an individ-
ual image as done in standard histogram-based bag-of-words
methods, the VLAD representation is obtained by storing the
sum of deviations of the descriptors Xx; assigned to the visual
word ¢; and the respective visual word ¢; itself, i.e.

vi= Y (xi—¢), @)
{xi|NN(x;)=¢;}

where NN(x;) denotes the nearest neighbor of the descrip-
tor X; among the visual words that is given by ¢;. The final
VLAD representation of an image is obtained by concate-
nating the components v; for all j = 1,...,k according to
v = [v1,...,Vk]. For searching the closest reference in the
database to an input image, we use a nearest-neighbor clas-
sifier based on the L,-distance between the VLAD vectors.

We compute such VLAD descriptors for local image re-
gions. In order to determine the material of a particular im-
age region, the VLAD descriptor of the region is used as
input to a non-linear support vector machine classifier with
an RBF kernel. Both the regularization parameter and the
kernel parameter are determined using grid search based on
training data where materials are shown on different objects
under different illumination conditions.

3.3. Illumination Estimation

Having retrieved the closest material type in the database,
the next step consists in inferring the illumination condi-
tions. Again, similar to the material recognition performed
before, we take benefit of the availability of the database of

highly accurate digital, data-driven material models in form
of bidirectional texture functions. As illustrated in Figure 2,
at this stage we have an input image with an attached depth
map as well as an estimate of the surface material from the
material recognition step performed before.

Similar to prior work, we aim at establishing an optimiza-
tion framework for minimizing the deviation of the input im-
age from a synthetically reproduced image of the object as
seen under the illumination to be estimated. Therefore, our
objective function is represented by

* . 2
Li = argmln‘ IfI.vynth(MaGaLi) ’
Lel

; 3)

where I denotes an input image, Iy,;,(M,G,L;) represents
a rendered image using the material model M, the geometry
G and the lighting conditions L;. Furthermore, we restrict
the possible conditions of the incoming light L; to the sub-
set £ which can be represented using a linear combination
of spherical harmonics /; similar to [HFB*09,BM12,BM13,
KSES14, KSH*14]. In more detail, representing the illumi-
nation in the spherical harmonics basis with /;; being the j-th
harmonics and a.; being the assigned coefficient in the linear
combination, we obtain

L;-k = argmin H I—/ BTF(X,(D,‘,(DU) . 4)
LeL Q
2
- Li(oy) Vi(x,0;) dw; )
:argminHIf/ BTF(x,;,0) - ©)
LiEeL Q
iSHs 2
) i () Vi(x, o) dw; )
=1
4SHs 2
= argminHI—ISW,;;,(M,G7 Y oli)) H ®)
Lel j=1
§SHs 2
= argmin H I— Z O Leymen(M, G, 1;;) H . )
LeL j=1

Please note that the equality of

#SHs #SHs
Lyun(M,G, Y aujlij) = Y 0 Lyun(M,G,1;j)  (10)
Jj=1 Jj=1

is a result of the linear behavior of light. However, the latter
is easier to implement as it only requires to render the object
with the assigned material and geometry under the individual
basis illuminations. As a consequence, we have to subtract a
linear combination of these images obtained under the basis
illuminations from the input image.

Functional (9) can further be rewritten using vector-
matrix notation

2
L;‘:argming—Ax‘ , (11)

LieLl

(© 2016 The Author(s)



M. Weinmann & R. Klein / Exploring Material Recognition for Estimating Reflectance and Illumination From a Single Image 31

where x represents a vector of the coefficients correspond-
ing to the individual basis illuminations, b denotes the re-
shaped version of the input image in form of a vector and
A = A(M,G,L;) contains the synthesized image values ob-
tained under the basis illumination. This linear system can
be solved efficiently in the least-squares sense. At this stage,
one might argue that the uv-coordinates of the geometries
used for producing the images I(M, G, L;) are different from
the ones in the input image, i.e. spatially varying features
of the material such as ridges in a leather do not coincide
anymore introducing many outliers in the optimization. Our
investigations show, that the lighting estimation still gives
a rather compelling result for a multitude of materials as
enough inlier data seems to be present.

Furthermore, we also consider previous investigations
where it has been shown that the low-frequent effects re-
sulting from the lighting and the high-frequent details are
material-specific. For this purpose, we performed experi-
ments using meanABRDFs, i.e. the average of all ABRDFs
per acquired BTF instead of BTFs for rendering the images
used in the optimization functional (9). In a certain sense,
this corresponds to introducing data-driven regularization in
the optimization process. In the scope of our experiments,
this regularizer lead to an even more accurate recovery of
reflectance and illumination. As will be demonstrated in the
experimental results (see Section 4), the illumination esti-
mates are of good quality which we expect to be a main
achievement of following a two-step approach where the two
involved subproblems can be solved more easily in compar-
ison to the combined optimization.

4. Experimental Results

In our experiments, we generated synthetic data using the
rendering pipeline as described in Section 3.1. In such syn-
thesized scenarios, we have complete control on the indi-
vidual factors (scene geometry, surface reflectance behav-
ior, illumination conditions, camera parameters, ...) that
contribute to material appearance. This allows to establish
ground truth data for evaluating our approach.

For the first step of recognizing the surface material, we
make use of a database of images where the geometry is ren-
dered using the different surface materials we have measured
in the scope of the publication [WGK14]. Throughout the
experiments, we take care that the environment maps present
in the input images are not used for producing the refer-
ence data used for material recognition. Based on the surface
geometry and the recognized surface material, we subse-
quently estimate the illumination conditions. In Figure 3 and
Figure 4, we show results for the separation of reflectance
and illumination for different input images achieved using
our technique. For each input image, we show the classi-
fied material, the estimated environment map (represented
in spherical harmonics basis), the ground truth environment
map (represented in spherical harmonics basis) and a ren-
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dering of the geometry with the classified material under the
estimated environment map. Please note that our technique
is not restricted to Lambertian surface reflectance behavior
and can also deal with mesoscopic surface effects. As can be
seen, the materials can be recognized quite well for the small
subset of data we used so far. Furthermore, when comparing
the input images with the images produced using the com-
bination of the estimated surface material and the estimated
environment map (in its spherical harmonics representation),
we can observe only subtle differences which validates our
approach. For evaluating the estimated illumination condi-
tions, we also show the estimated environment map (in its
spherical harmonics representation) next to the ground truth
environment map. Here, we observe that the light intensi-
ties are matched quite well and that there are no significant
artifacts due to the influence of the material reflectance oc-
curring in case of a non-accurate recovery of illumination
and reflectance.

Please note that the texture coordinates for the re-
constructed objects have been computed using ABF++
[SLMBOS5] and, hence, deviate from the ones used for gen-
erating the input images. As a consequence, the material
mapped onto the surface via BTF patches according to
the uv-parametrization might lead to perceptual errors. For
larger structures on the surface as occurring for wood or the
coarse leather, slight deviations from the original input can
be perceived, but still the object clearly appears to be made
of the same material. In contrast, the perception of such de-
viations is negligible for the other examples which demon-
strates the potential of our approach.

In the scope of our experiments, we focused on syn-
thetic and, hence, controllable scenarios for validating our
approach. Controllable scenarios allow us to make use of
ground truth data in the scope of our experiments which
represents an important aspect for inferring insights regard-
ing the developed technique. In order to approach real-world
scenarios, larger datasets of digitized materials are required
which might be available in the future.

5. Conclusions

In the scope of this paper, we introduced a novel approach
for recovering illumination and reflectance from single im-
ages based on an a-priori determined surface geometry and
a-priori knowledge in form of a database of materials mea-
sured in standard reflectance acquisition devices. After an
initial material recognition phase, our technique continues
with estimating illumination conditions based on the recog-
nized material and the surface geometry. Our results indicate
that a recovery of reflectance and illumination can be per-
formed reliably for several materials that are beyond simple
Lambertian surface reflectance behavior.

In the future, the availability of large collections of digi-
tized materials will make our approach valuable for under-
standing real-world scenarios.
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Figure 3: Per row: Input image, classified material, estimated illumination (in spherical harmonics basis), ground truth il-
lumination (in spherical harmonics basis) and rendering of the geometry and recognized material under relighting with the
estimated environment map.
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Figure 4: Per row: Input image, classified material, estimated illumination (in spherical harmonics basis), ground truth il-
lumination (in spherical harmonics basis) and rendering of the geometry and recognized material under relighting with the

estimated environment map.
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