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Figure 1: We acquire the measured SVBRDF of a flat material sample using only 20 input images captured on a spherical gantry,
with optimized light-view directions. As can be seen, the rendered images match the captured data, and new validation views
not used as input at all. We recover an independent BRDF for each point on the surface, visualized by the rendered spheres.

Abstract

We acquire the data-driven spatially-varying (SV)BRDF of a flat sample from only a small number of images
(typically 20). We generalize the homogenous BRDF acquisition work of Nielsen et al., who derived an optimal
minmal set of lighting/view directions, treating a 4 degree-of-freedom spherical gantry as a gonioreflectometer.
In contrast, we benefit from using the full 2D camera image from the gantry to enable SVBRDF acquisition. Like
Nielsen et al, our method is data-driven, based on the MERL database of isotropic BRDFs, and finds the optimal
directions by minimizing the condition number of the acquisition matrix. We extend their approach to SVBRDFs
by modifying the optimal incident/outgoing directions to avoid grazing angles that reduce resolution and make
alignment of different views difficult. Another key practical issue is aligning multiple viewpoints, and correcting
for near-field effects. We demonstrate our method on SVBRDF measurements of new flat materials, showing that
full data-driven SVBRDF acquisition is now possible from a sparse set of only about 20 light-view pairs.

1. Introduction

Parametric BRDFs such as the Phong or Ward models have
been widely used, but greater fidelity is provided by mea-

sured data-driven reflectance, and databases such as the
MERL BRDFs [MPBM03]. However, each istotropic 3D
BRDF in this database contains over a million samples, and
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extension to spatially-varying BRDF acquisition is imprac-
tical (general SVBRDFs are 6D; we consider isotropic ma-
terials, hence 5D). Even when the final SVBRDF represen-
tation is factored and compressed [LBAD∗06], thousands of
images are initially required (we focus only on initial acqui-
sition; such techniques can be applied later if desired).

This paper describes an image-based SVBRDF acquisi-
tion system for flat material samples, using a 4 degree-of-
freedom spherical gantry to position the light source and
camera. We usually need only 20 images (optimized light-
view direction pairs), and we provide these directions for
other researchers (Fig. 3). As opposed to other methods for
efficient SVBRDF acquisition [AWL13, TFG∗13], ours is a
direct method, without needing to project patterns or apply
frequency-space analysis or deconvolution. We also recover
an independent BRDF at each point/pixel (Fig. 1), not just a
spatial modulation or texture-like quantity [AWL15].

Our paper builds closely on [NJR15], which developed
a logarithmic mapping of the MERL database, enabling a
simple linear BRDF subspace. Their method also uses a
spherical gantry, but treats it as a gonioreflectometer, sim-
ply averaging the camera image across the sample. In con-
trast, we consider the full 2D camera image to acquire
SVBRDFs, essentially applying [NJR15] independently to
each pixel/point on the material.

The optimal directions in [NJR15] include several outgo-
ing directions close to grazing angles to measure Fresnel ef-
fects. However, this causes a loss in spatial resolution, and
makes precise alignment between different images/views of
a spatially-varying material difficult. We optimize for a new
set of directions specialized for acquisition of SVBRDFs.
We also address other practical concerns, such as alignment
of different views and correction for near-field camera ef-
fects over the material sample (Fig. 2). We use simulations
on MERL BRDFs to validate the stability of results using
our optimal directions (Fig. 4). Practical results show we can
reconstruct accurate SVBRDFs of flat samples of unknown
real materials from only a few input images (Figs. 1, 5).

2. Background

We base our reconstruction and optimization on the MERL
isotropic BRDF database [MPBM03]. This database in-
cludes 100 materials, each having 3 color-channels that
are treated as independent materials. A total of m = 300
BRDFs are considered. Each material is represented using
p = 1,458,000 measurements in the (θh,θd ,φd) parame-
terization [Rus98] space, with resolution of 90× 90× 180.
We apply the logarithmic mapping of [NJR15], which trans-
forms BRDF ρ to ln[(ρ · cosweight +ε)/(ρref · coswieght +ε)],
where ε = 0.001 avoids dividing by zero, and cosweight =
max{cos(n ·ωi)cos(n ·ωo),ε}, where n, ω0, ωi are the nor-
mal, incident and outgoing direction vectors respectively.

Let X ∈ Rm×p be the full matrix of all MERL BRDF

Figure 2: Showing near-field effects and view alignment,
which we address for practical SVBRDF reconstruction.

observations, where the rows are mapped BRDFs and the
columns are sampling directions. We apply principal com-
ponent analysis on X and get the principal components Q ∈
Rp×k. In our case we choose the number of samples/images
we take as k. Therefore, an arbitrary BRDF x can be obtained
as a linear combination of the basis [NJR15],

x = Qc+µ, (1)

where c ∈ Rk×1 is a vector of coefficients. µ ∈ Rp×1 is the
mean BRDF. In practice, we observe x at some set of n cho-
sen directions, from which we can estimate c as follows:

x̃− µ̃ = Q̃c, (2)

where the tildes indicate that we have a reduced set of ob-
servations at n directions, with µ̃ and x̃ ∈ Rn×1. Q̃ ∈ Rn×k

is the set of rows in Q corresponding to the set of observed
directions. The above equation can be solved using ridge re-
gression (I is the identity matrix. We use η = 40.)

c = argmin| (x̃− µ̃)− Q̃c|2 + η|c|2 =
(
Q̃T Q̃ + ηI

)−1 Q̃T (x̃− µ̃) .
(3)

Therefore given some captured (homogeneous) BRDF
samples x̃, the coefficients c can be solved. Then, the full
BRDF is recovered by using equation 1.

3. Optimal Directions and Reconstruction

In this paper, we focus on measuring the SVBRDFs of flat
planar materials. We assume that the reflectance of any point
on the material’s surface is an isotropic BRDF. In principle,
it is straightforward to apply the BRDF acquisition method
above separately to each point on the surface. However, there
are some non-trivial practical issues, which we address next.

3.1. Near-Field Effects and View Alignment

Unlike for homogeneous BRDFs, the sample now occupies a
finite area within the field of view for the camera (about 4◦ in
our gantry setup). Therefore, in a perspective camera image,
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each point/pixel is at a slightly different direction with re-
spect to the camera, as shown in Fig. 2. This means that each
pixel will have a slightly different Q̃ matrix, but equation 3
can still be applied to reconstruct the BRDF separately at all
positions on the material’s surface. (We assume the light is
distant, but near-field lighting effects are also easy to correct
for, since they also correspond simply to modifying Q̃).

Another important issue is alignment of multiple cam-
era views, which must be put in correspondence in order
to avoid blurring in SVBRDF reconstruction, as shown in
Fig. 2. We tried a number of solutions involving standard
homographies, but found that care must be taken to avoid in-
accuracies and blurring/ghosting. As discussed in Sec. 4, we
pick a reference view, and for each pixel in it, project to the
other views using intrinsic and extrinsic camera calibration.

3.2. Optimal Directions

[NJR15] provide optimal directions for homogeneous
BRDF acquisition by minimizing the condition number of
Q̃. However, we found that simply using these directions
and doing a pixel-by-pixel reconstruction on spatially vary-
ing materials yields poor results. One reason is that [NJR15]
include many viewing directions close to grazing angles. For
SVBRDFs, this will result in a significant loss of resolution
at oblique angles, where the sample covers only a small field
of view. In addition, a precise image alignment to the refer-
ence view is difficult to establish. Hence, we re-optimize the
sampling directions with an additional constraint that avoids
grazing views. We start from 1 sample direction and iter-
atively do optimization and add one new direction until we
get the desired number of n directions. After adding one new
direction, similar to [NJR15], we optimize the directions by
alternatively moving each direction along the gradient of Q̃,
but we only allow changes if the viewing angle is < 65◦.

Figure 3 shows the optimized 20 sampling directions for
SVBRDF reconstruction in Rusinkiewicz coordinates, as
well as thumbnails of the corresponding input images. Note
that these camera directions apply to the center of the sam-
ple; we correct for near-field effects at other pixels, so most
points on the material are sampled using directions close, but
not exactly equal, to the optimal directions in Fig. 3.

3.3. Verification by Simulation

In order to validate our new directions, we first recover
BRDFs in simulation on the 100-material MERL database.
This simulation is done on homogenous BRDFs, but assum-
ing a finite sample and field of view, as in Fig. 2. We use 90
materials as training data to calculate the basis matrix Q̃ and
use this basis to recover the other 10 materials. We account
for the camera field of view, by considering 100 uniformly
sampled spatial positions on the flat sample.

It is shown in Fig. 4 that sampling from our close to

θh[◦]θd [◦]φd [◦]
0 30 0
0 63 0
0 16 0
1 59 0
1 44 0
2 51 59
2 62 151
3 43 130
3 60 79
4 22 22

θh[◦]θd [◦]φd [◦]
4 69 166
6 61 56
7 47 6

11 71 172
12 36 58
20 42 17
25 73 127
27 15 96
56 37 107
63 34 129

input images

Figure 3: Optimized sampling directions for SVBRDF re-
construction in Rusinkiewicz coordinates. We also show
thumbnails of the input images for one of our samples.

Figure 4: Average reconstruction error for our new opti-
mized directions is comparable to previous work, and does
not degrade significantly for practical near-field effects.

optimal directions generates comparable error to using the
same number of optimal directions from [NJR15]. More-
over, when using the 4◦ camera field of view typical for
our spherical gantry setup and acquisition samples, the er-
ror does not degrade significantly, even though most points
on the material are using slightly different, sub-optimal di-
rections. However, for a larger 10◦ field of view, the errors
are more significant, since points at the edge of the sample
will have viewing directions far from optimal.

4. Results: Real SVBRDF Measurements

The acquisition device is a high-precision spherical gantry
with two robotic arms. A light source and a camera are at-
tached to the two arms, which can be accurately positioned
anywhere in the hemisphere around the sample.

We make the common pin-hole camera approximation,
and use the method proposed in [Zha99] to compute cam-
era intrinsics using 39 images of a checkerboard at differ-
ent viewing directions. The checkerboard images for BRDF
sampling directions in Fig. 3 are also captured for estimating
extrinsic parameters. We also capture an additional checker-
board image by placing the camera at (θ,φ) = (0◦,0◦). We
will call this view the reference view for simplicity. We
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Figure 5: Unknown SVBRDFs recovered by our method. We render our reconstructed results for several views with different
lighting conditions, and compare them with captured images. These validation views were not used in reconstruction at all.

base our SVBRDFs’ resolution on the image of this refer-
ence view. Every final recovered SVBRDF contains a set of
isotropic BRDFs, each of which corresponds to one small
region on the material’s surface intersected by a one pixel
cone from the reference view. For actual measurements, we
use multiple exposures to obtain high-dynamic range images
of the flat sample from each light-view sampling direction in
Fig. 3. The same procedure is also performed on a spectralon
board to calibrate the light intensity.

We find pixel-wise correspondence between sampled im-
ages, by transforming the pixels’ positions in the reference
view to each view using calibrated information of all views.
For each spatial position (pixel) in the reference view, we
have now measured BRDF samples and corresponding di-
rections from all captured views. We then use the reconstruc-
tion framework described in Sec. 2 to recover every posi-
tion’s isotropic BRDF, and a final SVBRDF is generated.

To demonstrate the practicality and efficiency of our
method, we measured three different materials’ SVBRDFs.
These are all greeting cards with many different reflectances
for the letters, decorative items and background. The appear-
ance can vary dramatically between diffuse and specular di-
rections, and is not usually well modeled by parametric re-
flectance models. It is shown in Figs. 1 and 5 that our recov-
ered SVBRDFs look very close to ground truth in both input
views and validation views that were not used at all when re-
constructing the SVBRDF. We also show spheres rendered
with the BRDF recovered at several different pixels; we see
that BRDFs at each pixel are independent and accurate, with
no artifacts. Close inspection indicates the major limitations
are from not accounting for fine-scale normal variation.
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