
IMET - International Conference on Interactive Media, Smart Systems and Emerging Technologies (2023) Short Paper

N. Pelechano, F. Liarokapis, D. Rohmer, and A. Asadipour (Editors)

Integrating Julia Code into the Unity Game Engine

to Dive into Aquatic Plant Growth

A. Lewerentz1,2 , N. Manke3 , D. Schantz3 , J. S. Cabral2,4 and S. v. Mammen3

1Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2Center for Computational and Theoretical Biology, University of Wuerzburg, Wuerzburg, Germany

3Games Engineering, Faculty of Mathematics and Computer science, University of Wuerzburg, Wuerzburg, Germany
4School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

Abstract

Ecologists use process-based ecological models to predict biodiversity, but their complex results can be challenging to com-

municate. This challenge can be addressed through interactive visual simulations, which are easy to create with sophisticated

game engines such as Unity. However, mechanistic models are increasingly written in the Julia programming language and

Unity does not support its integration. In this paper, we present a Julia-Unity plugin that allows direct coupling of Julia and

Unity codes. It was developed in a user-centred, iterative manner. The given use case of an immersive, interactive simulation of

a macrophyte growth model was tailored to public outreach and science communication. The resulting, rather versatile plugin

is a novel tool that features immersive visualisations of Julia-coded simulation models, ecological or otherwise. Due to the

features of a game engine, they are particularly apt to engage a wider audience, facilitate collaboration and interdisciplinary

work, and enable the exploration of complex systems.

CCS Concepts

• Human-centered computing → Visualization toolkits;

1. Introduction

A major challenge in ecology is to predict future changes in bio-
diversity as a result of land-use change, climate change, and ex-
ploitation. Process-based models—rule-based or numerical repre-
sentations of simplified aspects of a real system—are key tools
to address this challenge [CVH17]. The output of these models
can include multiple agents, parameters, and dimensions such as
time and space. To better understand the multidimensional output,
an interactive visual representation that goes beyond printing two-
dimensional figures is very helpful [RN11]. In addition, visualisa-
tion and interactive representations also help to better communicate
the model and its outputs to the public. However, building more
complex and appealing applications that can visualise complex data
requires expertise and appropriate tools.

Since the 2000s, game engines, i.e. comprehensive software sys-
tems that facilitate the design and development of interactive appli-
cations, have been widely used to support various scientific fields
[LJ02]. Unity is a popular game engine that provides special sup-
port for the development of interactive applications [Haa14]. It of-
fers many types of predefined data objects that can be augmented
with custom scripted behaviours written in C#. However, process-
based ecological models are typically based on dynamic program-
ming tools [Pau07], that are tailored to scientific computing and

give lower priority to interactive visualisation, such as the Julia pro-
gramming language [BEKS17]. Julia is highly efficient, provides
scientific programming functionality, allows for high-level code de-
sign, and yet facilitates fast iteration cycles due to its dynamic prop-
erties. However, there is no native support for using Julia in Unity
applications and, to the authors’ knowledge, no suitable plugin for
tightly integrating Julia into Unity code has yet been published.

Immersive visualisations of process-based models written in the
Julia language are emerging in various contexts. For example, the
Julia package ’Modia3D.jl’ [NO20] specifically allows the mod-
elling of 3D mechanical systems. Dedicated packages such as
’Makie.jl’ [DK21] and ’NetworkViz.jl’ [JAM∗16] support differ-
ent scientific visualisation approaches. The ’OpenModelica’ mod-
elling framework provides both extensive visualisation function-
ality and tight integration with the Julia programming language
[FPA∗19]. Furthermore, there are already interactive applications
that have successfully coupled programs written in Julia with game
engines [CBL21]. One example is the serious game bioDIVER-
sity [LSG∗21], which allows players to experience the underwater
worlds of lakes. Here, Julia code is integrated directly into Unity to
simulate plant growth using a Julia C# interface that utilises Julia’s
C++ API in the form of a dynamically linked C++ library (DLL).

In this paper, we describe the Julia-Unity bridge in detail and

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/imet.20231263 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-8194-2686
https://orcid.org/0009-0007-4065-9132
https://orcid.org/0009-0007-1223-2828
https://orcid.org/0000-0002-0116-220X
https://orcid.org/0000-0002-7866-5788
https://doi.org/10.2312/imet.20231263


A. Lewerentz, N. Manke, D. Schantz et al. / Integration of Julia Code into Unity

present how we have turned it into an easily accessible plugin for
the Unity engine that supports not only the use case of an underwa-
ter plant growth visualisation, but also other interactive visualisa-
tion contexts. The required plugin implements an application pro-
gramming interface, or API, that allows Julia code to be called and
executed from within Unity, and data to be passed back to Unity.

2. Technical realisation

The plugin and the extended support for the concrete use case were
developed as part of an interdisciplinary university course between
computer scientists and ecologists. To ensure an effective goal-
oriented development cycle, we followed a user-centred engineer-
ing (UCE) approach [Ric14].

The technical realisation of the Julia-Unity plugin includes

1. a dynamic linked C++ library (Julia Interface),
2. the Unity package itself (Julia Unity Package), and
3. a Demo application for testing the package (MGM Simulation).

2.1. Design and Development

The ’Interface’ is the software component that connects the Unity
and Julia environments (Fig. 1 (a)). It allows the exchange of model
data and parameters between Julia and Unity and the execution of
code snippets in the respective ’other’ environment. However, the
user of our plugin does not interact directly with the interface real-
ized in C++, but uses C# classes that encapsulate the functionality
of the interface and are part of a Unity package. The structure of the
Unity plugin and how it interacts with a Unity project and a Julia
model with all its key components is shown in Fig. 1 (b).

For the interface between Julia and C++, a DLL was chosen be-
cause the Julia installation already provides an API for communi-
cating with C++, and because Unity can use the functionalities of
the DLLs as native plugins from C#. Julia’s API requires Julia to
be installed on the user’s machine. The DLL was implemented by
encapsulating Julia’s API functions in newly created functions and
exporting them to make them accessible in a C# language environ-
ment. More specifically, the API allows the transfer and translation
of data types and basic data containers, such as arrays, between
the two languages. This allows functions, modules, and data values
written and handled in Julia code to be referenced and used from
C++. We have also encapsulated the C++ functionality for handling
errors thrown by Julia. When data is passed between Julia and C++,
the data type must be properly converted to match the specifications
of the receiving language.

We chose the Unity package format for the project because it
makes it easy to distribute and include various assets such as DLLs,
scripts, and other files (Fig. 1 b). The ’JuliaBase’ class encapsulates
the DLL in C#, contains ’struct’ data structures for handling ac-
cess to Julia functions, modules, and data values, allowing two-way
communication between Julia and Unity. Julia’s ANY data type for
multidimensional arrays posed a problem due to its complex repre-
sentation in C languages. We have resolved this issue by offering
a Julia script that grants access to individual values within mul-
tidimensional arrays through the use of dissect functions, which

allow for the deconstruction of said arrays into lower- and one-
dimensional ones. The ’JuliaBaseManager’ class ensures that these
dissect functions are loaded and referenced during the start-up of
a given Unity scene. It requires a ’JuliaBaseManager’ instance in
the scene. To use additional Julia scripts, they must be listed in the
’Inclusions.txt’ file. The ’FileHandler’ makes the contents of the
file accessible so that the enabling ’JuliaModelHandler’ can load
the Julia scripts. To simplify the setup process, the ’Installation-
Manager’ checks and sets the necessary environment variables in
the Windows operating system and downloads the required version
of Julia. It opens a window within the Unity editor that provides a
simple user interface for triggering the appropriate installation rou-
tines and opening the documentation of the Julia Unity package. A
simple C# interface called ’IJuliaPluginDebugger’ is provided for
logging errors thrown by Julia or the package’s classes and for dis-
playing messages, which allows the creation or extension of one’s
messaging and logging system.

2.2. Usage

From a user perspective, Julia models can be used from within
Unity once the Julia Unity package has been installed and set up.
The actual functionality of the package is made available in the ’Ju-
liaBase’ class. To use it, one needs to place a ’JuliaBaseManager’
instance in a given Unity scene. This ensures that the relevant data
is properly converted and passed to and from the Julia process. The
’JuliaInstallationManager’ and the ’JuliaModelHandler’ can be ex-
tended with an instance of the ’IJuliaPluginDebugger’, allowing
them to provide feedback on the state of the Julia installation and
the Julia process. The ’JuliaModelHandler’ provides two serialised
lists in the inspector for naming Julia functions and modules. En-
tries in these lists are then referenced in a dictionary data structure
and can be called using the ’InvokeReferencedFunction(...)’ meth-
ods of the ’JuliaModelHandler’ class. To make the Julia program
code accessible, its files must be placed in the ’JuliaScripts’ folder
and be listed by full name in the file ’Inclusions.txt’ file. They are
loaded by the ’JuliaModelHandler’ class calling the ’LoadMod-
elDependencies()’ method.

The Julia Unity Package is open source and available on GitHub
(https://github.com/NicoManke/JuliaUnityPackage). Tem-
plate versions of the required text and Julia files are available in the
templates folder. The package tutorial and documentation are lo-
cated in the documentation folder.

3. Use Case: Macrophyte growth simulation

To demonstrate the Julia Unity Package, we present an im-
mersive application for visualising an eco-physiological plant
growth model, the Macrophyte Growth Model (MGM) [LHH∗22].
Macrophytes—aquatic plants large enough to see with the naked
eye—are essential for the functioning of freshwater lakes as they
provide multiple ecosystem services like oxygen production, nutri-
ent cycling and habitat for other aquatic organisms.

3.1. Macrophyte Growth Model

MGM [LHH∗22] is a depth-explicit mechanistic model that sim-
ulates the life cycle of submerged macrophytes from germination

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

98

https://github.com/NicoManke/JuliaUnityPackage


A. Lewerentz, N. Manke, D. Schantz et al. / Integration of Julia Code into Unity

Interface

C# JuliaC
Model Data Model Data

Unity Project Julia Model"Plugin"

Unity Julia

UIScenes

Functions

DLLJuliaBase

FilesFile Handler

IJuliaDebugger

Model Handler

Inclusions.txt

abstracted termsLEGEND

(a)

(b)

Communication Communication

Live Parameter 

Changes

Live Parameter 

Changes

calls Julia 

function

calls C

function
Dissect 

Functions
loading and 
referencingJulia Base 

Manager

Project specific Model 

Handler/Manager

IJuliaDebugger

Implementation

Parts of individual 

Unity Project

Editor

Window

Installation 

Manager

has

instance 

of

contains

file names

gets

file names

 
Unity Project Julia Model Components of package Base is part of

Figure 1: The Julia Unity Package’s structure and its components’ function as mediators between a given Unity project and Julia model.

At a high level of abstraction, the dependencies between Unity, the Interface, and Julia are shown (a). Meanwhile, at a medium level of

abstraction, the technical components involved, such as the Plugin, and their interactions are revealed (b).

through vegetative growth to reproduction. The daily growth rate of
each individual is a function of photosynthesis and respiration and
is primarily dependent on the light availability, nutrient availabil-
ity, and water temperature. The water temperature follows seasonal
changes. Light availability is a function of depth, seasonal changes
in solar radiation, and turbidity of water. The model output includes
time series of biomass, height, number of individuals, and individ-
ual weight of the simulated species per simulated depth. The model
output is written to the console and to text files.

3.2. MGM Simulation

The combination of the Macrophyte Growth Model and the Julia
Unity Package led to the creation of an interactive demo applica-
tion, the MGM Simulation, which has a main menu and a lake land-
scape visualisation showing the simulation results (Fig. 2 (a)). Al-
though MGM Simulation is a visualisation tool, pure visuals were
not the main focus of this implementation. Therefore, the assets
used are not state of the art. Instead, it was more important to trans-
late the data into realistic growth behaviour and to test the Julia
plugin. The translation required additional functionalities to be im-
plemented. The ’PlantGenerator’ class was created to control the
distribution, growth, and death of plants. The ’WaterManager’ class
was created to display changes in water temperature and quality.
The user can set up the Julia installation path, select a species and
lake from a preset list, run the model, and enter the scene. The lake
landscape shows the selected species and lake output at different
depths. Different species have different eco-physiological param-

eters that make them grow differently at the same depth, which
the Unity model helps to visualise (Fig. 2, (b-d)). The daily en-
vironmental factors relevant to the simulation, such as the water
temperature, are also displayed as numbers on the screen. To allow
control of the MGM simulation at runtime, we have provided an
easy-to-use graphical user interface, as part of the ’UI’ (Fig. 1 (b)).
We could not rely on the editor window of the Julia Unity Package,
as it is not available after building the standalone application. The
duration of the visualisation for a day can be set by the user, and
ranges from 0.25 to 5.0 seconds. Advanced users can modify the
input files to add other species and lakes to the simulation or adapt
the model code.

4. Conclusion & Future Work

The proposed Julia Unity Package is a step towards better immer-
sive visualisations for Julia-coded simulation models, but it has two
drawbacks. It requires the user to install Julia, which makes the
distribution of applications built with the package inflexible. This
could be solved by using a portable version of Julia or the data
models written in Julia, which do not require a Julia installation on
the user’s machine. Another solution could be to compile the Julia
model using the ’PackageCompiler.jl’ Package [CDT23]. In addi-
tion, long computation times can freeze the application, but multi-
threading can divide the workload and speed up computation. The
second limitation did not have a major impact on the MGM simula-
tion, as the data calculation for one lake and species only took sec-
onds on gaming and office PCs. Therefore, graphical notification

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

99



A. Lewerentz, N. Manke, D. Schantz et al. / Integration of Julia Code into Unity

(a)

(b) (c) (d)

Figure 2: The landscape employed in the MGM simulation is

shown (a). The growth of three different species in the same lake

is compared: a typical oligotrophic species that forms dense stands

(b), a mesotrophic species with a higher growth rate (c), and an

eutrophic species producing a higher biomass per individual (d).

of the loading state was considered sufficient. The first limitation
results in longer set-up and preparation times for presentations and
tests on new machines, especially if Julia was not installed. This
hampers the use and reduces its one-time appeal.

We propose combining Julia and Unity to create immersive vi-
sualisations of process-based ecological models. With the MGM
simulation we show an exemplary use case. Compared to individ-
ual technical solutions such as bioDIVERsity [LSG∗21], the plugin
provides a reproducible workflow that can be used for various other
applications. As Julia is a relatively young language, there is a lack
of such plugins. Therefore, we hope that the proposed plugin will
help to use and translate Julia models into interactive tools, for out-
reach, communication, education, and gaming.

Resources

• Julia Unity Plugin: https://github.com/NicoManke/

JuliaUnityPackage

• Trailer: https://youtu.be/sJ3bboF1WCY
• MGM simulation: https://github.com/NicoManke/MGM_

Simulation

Acknowledgment

We thank Julian Gröh and Andreas Knote for their ideas during
the development of bioDIVERsity, which inspired this project. Fur-

thermore, we thank anonymous reviewers for their helpful advice
and comments on a previous version of the article. AL and JSC ac-
knowledge funding by the Bavarian Ministry of Science and the
Arts in the context of the Bavarian Climate Research Network
(BayKliF).

References

[BEKS17] BEZANSON J., EDELMAN A., KARPINSKI S., SHAH V. B.:
Julia: a fresh approach to numerical computing. SIAM Rev. 59, 1 (Jan.
2017), 65–98. doi:10.1137/141000671. 1

[CBL21] CASTELO-BRANCO R., BRÁS C., LEITÃO A. M.: Inside
the matrix: immersive live coding for architectural design. Interna-

tional Journal of Architectural Computing 19, 2 (June 2021), 174–189.
doi:10.1177/1478077120958164. 1

[CDT23] CARLSSON K., DANISCH S., TREVISANI L.: Ju-
liaLang/PackageCompiler.jl: Compile your Julia package.
https://github.com/JuliaLang/PackageCompiler.jl, 2023. 3

[CVH17] CABRAL J. S., VALENTE L., HARTIG F.: Mecha-
nistic simulation models in macroecology and biogeography:
state-of-art and prospects. Ecography 40, 2 (2017), 267–280.
doi:10.1111/ecog.02480. 1

[DK21] DANISCH S., KRUMBIEGEL J.: Makie.jl: flexible high-
performance data visualization for Julia. Journal of Open Source Soft-

ware 6, 65 (Sept. 2021), 3349. doi:10.21105/joss.03349. 1

[FPA∗19] FRITZSON P., POP A., ASGHAR A., BACHMANN B., BRAUN

W., BRAUN R., BUFFONI L., CASELLA F., CASTRO R., DANÓS A.,
FRANKE R., GEBREMEDHIN M., LIE B., MENGIST A., MOUDGALYA

K., OCHEL L., PALANISAMY A., SCHAMAI W., SÖLUND M.,
THIELE B., WAURICH V., ÖSTLUND P.: The OpenModelica in-
tegrated modeling, simulation, and optimization environment. In
The American Modelica Conference 2018, October 9-10, Somberg

Conference Center, Cambridge MA, USA (Feb. 2019), pp. 206–219.
doi:10.3384/ecp18154206. 1

[Haa14] HAAS J. K.: A history of the unity game engine. Diss. Worcester

Polytechnic Institute 483, 2014 (2014), 484. 1

[JAM∗16] JAMADAGNI C., ANILKUMAR A., MATHEW K. T., MULI-
MANI M., KOOLAGUDI S.: Dynamic 3D graph visualizations in julia.
In Proceedings of the Summer Computer Simulation Conference (San
Diego, CA, USA, July 2016), SCSC ’16, Society for Computer Simula-
tion International, pp. 1–8. 1

[LHH∗22] LEWERENTZ A., HOFFMANN M., HOVESTADT T., RAEDER

U., CABRAL J. S.: Potential change in the future spa-

tial distribution of submerged macrophyte species and species

richness: the role of today’s lake type and strength of com-

pounded environmental change. Preprint, unpublished, May 2022.
doi:10.22541/au.165401091.12520929/v1. 2

[LJ02] LEWIS M., JACOBSON J.: Game engines. Communications of the

ACM 45, 1 (2002), 27. 1

[LSG∗21] LEWERENTZ A., SCHANTZ D., GRÖH J., KNOTE A., VON

MAMMEN S., CABRAL J. S.: bioDIVERsity – a computer game to
face the image problem of aquatic plants. Mitteilungen der Fränkischen

Geographischen Gesellschaft, 67 (2021), 29–36. 1, 4

[NO20] NEUMAYR A., OTTER M.: Modia3d: modeling and simula-
tion of 3d-systems in julia. In Proceedings of the JuliaCon Conferences

(2020), vol. 1, The Open Journal. 1

[Pau07] PAULSON L. D.: Developers shift to dynamic programming lan-
guages. Computer 40, 2 (2007), 12–15. 1

[Ric14] RICHTER M.: User-centred engineering: creating products for

humans. Springer, New York, 2014. 2

[RN11] ROTHROCK L., NARAYANAN S. (Eds.): Human-in-the-

loop simulations: methods and practice. Springer, London, 2011.
doi:10.1007/978-0-85729-883-6. 1

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

100

https://github.com/NicoManke/JuliaUnityPackage
https://youtu.be/sJ3bboF1WCY
https://github.com/NicoManke/MGM_Simulation
https://doi.org/10.1137/141000671
https://doi.org/10.1177/1478077120958164
https://doi.org/10.1111/ecog.02480
https://doi.org/10.21105/joss.03349
https://doi.org/10.3384/ecp18154206
https://doi.org/10.22541/au.165401091.12520929/v1
https://doi.org/10.1007/978-0-85729-883-6

