Table of Contents

Table of Contents ... iii
Preface ... v
Sponsors ... vi
International Program Committee .. vii
Additional Reviewers .. viii
Author Index ... ix
Keynotes .. x

Hidden Surfaces

Exploring and Expanding the Continuum of OIT Algorithms 1
Chris Wyman

SVGPU: Real Time 3D Rendering to Vector Graphics Formats 13
Apollo I. Ellis, Warren Hunt, and John C. Hart

Masked Software Occlusion Culling ... 23
Jon Hasselgren, Magnus Andersson, and Tomas Akenine-Möller

Better BVHs

Watertight Ray Traversal with Reduced Precision ... 33
Karthik Vaidyanathan, Tomas Akenine-Möller, and Marco Salvi

Efficient Stackless Hierarchy Traversal on GPUs with Backtracking in Constant Time 41
Nikolaus Binder and Alexander Keller

Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal 51
Gabor Liktor and Karthik Vaidyanathan

Fast GI

DIRT: Deferred Image-based Ray Tracing ... 63
Konstantinos Vardis, Andreas-Alexandros Vasilakis, and Georgios Papaioannou

Photon Splatting Using a View-Sample Cluster Hierarchy 75
Pierre Moreau, Erik Sintorn, Viktor Kümpe, Ulf Assarsson, and Michael Doggett

Deep G-Buffers for Stable Global Illumination Approximation 87
Michael Mara, Morgan McGuire, Derek Nowrouzezahrai, and David Luebke
Table of Contents

Ray Tracing

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightcut Interpolation</td>
<td>99</td>
</tr>
<tr>
<td>Hauke Rehfeld and Carsten Dachsbacher</td>
<td></td>
</tr>
<tr>
<td>GVDB: Raytracing Sparse Voxel Database Structures on the GPU</td>
<td>109</td>
</tr>
<tr>
<td>Rama Karl Hoetzlein</td>
<td></td>
</tr>
<tr>
<td>Local Shading Coherence Extraction for SIMD-Efficient Path Tracing on CPUs</td>
<td>119</td>
</tr>
<tr>
<td>Attila T. Áfra, Carsten Benthin, Ingo Wald, and Jacob Munkberg</td>
<td></td>
</tr>
<tr>
<td>Adaptive Sampling for On-The-Fly Ray Casting of Particle-based Fluids</td>
<td>129</td>
</tr>
<tr>
<td>Hendrik Hochstetter, Jens Orthmann, and Andreas Kolb</td>
<td></td>
</tr>
</tbody>
</table>

Textures and Shading

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinite Resolution Textures</td>
<td>139</td>
</tr>
<tr>
<td>Alexander Reshetov and David Luebke</td>
<td></td>
</tr>
<tr>
<td>Filtering Distributions of Normals for Shading Antialiasing</td>
<td>151</td>
</tr>
<tr>
<td>Anton S. Kaplanyan, Stephen Hill, Anjul Patney, and Aaron Lefohn</td>
<td></td>
</tr>
</tbody>
</table>

VR and GPU Compute

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison of Projection Methods for Rendering Virtual Reality</td>
<td>163</td>
</tr>
<tr>
<td>Robert Toth, Jim Nilsson, and Tomas Akenine-Möller</td>
<td></td>
</tr>
<tr>
<td>A Fast, Massively Parallel Solver for Large, Irregular Pairwise Markov Random Fields</td>
<td>173</td>
</tr>
<tr>
<td>Daniel Thuerck, Michael Waechter, Sven Widmer, Max von Buelow, Patrick Seemann, Marc E. Pfetsch, and Michael Goesele</td>
<td></td>
</tr>
</tbody>
</table>
Preface

We are very pleased to present the proceedings of High-Performance Graphics 2016. This is the eighth year of the conference, which has become the leading international conference on graphics hardware, systems, and algorithms. The conference brings together researchers, engineers, and architects to discuss the complex interactions of parallel hardware, novel programming models, efficient graphics algorithms, and innovative applications.

High-Performance Graphics (HPG) was founded in 2009 as the combination of two important and well-respected conferences in computer graphics: Graphics Hardware, an annual conference focusing on graphics hardware, architecture, and systems since 1986; and Interactive Ray Tracing, concentrating on interactive ray tracing and global illumination since 2006. HPG combines the best research from these two fields and covers a very broad range of exciting algorithms for interactive and high-performance graphics solutions.

This year’s proceedings continue to reflect this tradition of synthesis, with about half of the accepted papers being related to ray tracing. In total, 32 papers were submitted to HPG 2016, of which 17 were accepted, resulting in an acceptance rate of about 53%. We want to express our deepest gratitude to all the 107 reviewers, 34 IPC members, and all the submitters for your hard work in making a successful proceeding.

Ulf Assarsson and Warren Hunt
Papers chairs
Sponsors

AMD

Intel

NVIDIA

Disney Research

Samsung

ACM SIGGRAPH

EG
International Program Committee

Akenine-Möller, Tomas
Assarsson, Ulf
Billeter, Markus
Crassin, Cyril
Foley, Tim
Harada, Takahiro
Heitz, Eric
Hunt, Warren
Kopf, Johannes
Lanman, Douglas
Lee, Won-Jong
Lefohn, Aaron
Liani, Max
Manocha, Dinesh
McGuire, Morgan
Membarth, Richard
Niessner, Matthias

Owens, John
Park, Woo-Chan
Poulin, Pierre
Ragan-Kelley, Jonathan
Ritschel, Tobias
Schwarz, Michael
Sen, Pradeep
Sintorn, Erik
Slusallek, Philipp
Steinberger, Markus
Tatarchuk, Natalya
Thomaszewski, Bernhard
Wald, Ingo
Wang, Rui
Westermann, Rüdiger
Woop, Sven
Zhou, Kun
Additional Reviewers

Áfra, Attila
Aila, Timo
An, Xiaobo
Andres, Bjoern
Auzinger, Thomas
Bærentzen, Jakob Andreas
Ballester-Ripoll, Rafael
Bannister, Marc
Barringer, Rasmus
Bauszat, Pablo
Belcour, Laurent
Benard, Pierre
Benthin, Carsten
Bouchard, Guillaume
Brunvand, Erik
Buchholz, Bert
Chaurasia, Gaurav
Chen, Qifeng
Dammertz, Holger
Davidovic, Tomas
Eisemann, Elmar
Elor, Hadar
Fatahalian, Kayvon
Fenney, Simon
Fisher, Matthew
Fuefterling, Valentin
Georgiev, Iliyan
Gomez, Dorian
Gribble, Christiaan
Grosch, Thorsten
Guehl, Pascal
Guennebaud, Gael
Hart, John
Hwang, Seok Joong
Jendersie, Johannes
Kaplanyan, Anton S.
Karras, Tero
Keely, Sean
Kensler, Andrew
Kerbl, Bernhard
Kilpatrick, Charlie
Knoll, Aaron
Komodakis, Nikos
Laine, Samuli
Lasram, Anass
Lee, Jaedon
Lefebvre, Sylvain
Liktor, Gabor
Mäkinen, Otso
Mara, Michael
Meyer, Quirin
Museth, Ken
Nah, Jae-Ho
Nalbach, Oliver
Nehab, Diego
Olsson, Ola
Paris, Sylvain
Park, Jeongsoo
Patow, Gustavo
Popov, Stefan
Reinert, Bernhard
Ren, Peiran
Ribardiere, Mickael
Rougier, Nicolas
Salvi, Marco
Selgrad, Kai
Shin, Youngsam
Stamminger, Marc
Sun, Xin
Vardis, Konstantinos
Vekslar, Olga
Vineet, Vibhav
Walter, Bruce
Wyman, Chris
Yan, Ling-Qi
Yang, Lei
Yoon, Sungeui
Zirr, Tobias
Author Index

Áfra, Attila T. .. 119
Akenine-Möller, Tomas 23, 33, 163
Andersson, Magnus 23
Assarsson, Ulf 75
Benthin, Carsten 119
Binder, Nikolaus 41
Buelow, Max von 173
Dachsbacher, Carsten 99
Doggett, Michael 75
Ellis, Apollo I. 13
Goesele, Michael 173
Hart, John C. 13
Hasselgren, Jon 23
Hill, Stephen 151
Hochstetter, Hendrik 129
Hoetzlein, Rama Karl 109
Hunt, Warren 13
Kämpe, Viktor 75
Kaplanyan, Anton S. 151
Keller, Alexander 41
Kolb, Andreas 129
Lefohn, Aaron 151
Liktor, Gabor 51
Luebke, David 87, 139
Mara, Michael 87
McGuire, Morgan 87
Moreau, Pierre 75
Munkberg, Jacob 119
Nilsson, Jim 163
Nowrouzezahrai, Derek 87
Orthmann, Jens 129
Papaioannou, Georgios 63
Patney, Anjul 151
Pfetsch, Marc E. 173
Rehfeld, Hauke 99
Reshetov, Alexander 139
Salvi, Marco 33
Seemann, Patrick 173
Sintorn, Erik 75
Thuerck, Daniel 173
Toth, Robert 163
Vaidyanathan, Karthik 33, 51
vardis, Konstantinos 63
Vasilakis, Andreas-Alexandros 63
Waechter, Michael 173
Wald, Ingo 119
Widmer, Sven 173
Wyman, Chris 1
Keynote

Bryan Catanzaro

Abstract
During the past few years, Deep Learning has made significant progress towards solving many difficult Artificial Intelligence tasks. Although the techniques behind deep learning have been studied for decades, they rely on large datasets and large computational resources, and so have only recently become practically applicable. Training deep neural networks is very computationally intensive: training one model takes tens of exaflops of work. The more models we train, the more hypotheses we can evaluate about how to solve our problems, and the more research progress we can make. Accordingly, we care a great deal about reducing training time - so High Performance Computing is central to our work. Once we have a good model, we deploy it to users, which is also a computationally intensive problem. Therefore, throughput oriented processors and associated programming models are central to the current and future success of deep learning. In this talk, I will discuss the use of GPUs for training and deploying deep learning models. I’ll talk about the directions I think deep learning is leading GPU hardware and programming models.
Keynote

The Technology to Create the Magic

Markus Gross

Abstract
Disney Research was launched in 2008 as a network of research laboratories that collaborate closely with academic institutions such as the Swiss Federal Institute of Technology in Zurich and Carnegie Mellon University. Its mission is to push the frontiers of technology in areas relevant to Disney’s creative entertainment businesses. Disney Research develops innovations for Parks, Film, Animation, Television, Games, and Consumer Products. Research areas include video and animation technologies, postproduction and special effects, digital fabrication, robotics, and much more. This talk gives an overview of Disney Research spiced with some examples of our latest and greatest inventions. The focus is on the collaboration between ETH Zurich and the Walt Disney Company displaying the synergies arising from this program. This talk will highlight a company perspective as well as a view from the academic angle.

Short Biography
Markus Gross is a Professor of Computer Science at the Swiss Federal Institute of Technology Zürich (ETH), head of the Computer Graphics Laboratory, and the Director of Disney Research, Zürich. He joined the ETH Computer Science faculty in 1994. His research interests include physically based modeling, computer animation, immersive displays, and video technology. Before joining Disney, Gross was director of the Institute of Computational Sciences at ETH. He received a master of science in electrical and computer engineering and a PhD in computer graphics and image analysis, both from Saarland University in Germany in 1986 and 1989. Gross serves on the boards of numerous international research institutes, societies, and governmental organizations. He received the Technical Achievement Award from EUROGRAPHICS in 2010, the Swiss ICT Champions Award in 2011 and the IEEE Visualization Technical Achievement Award in 2015. He is a fellow of the ACM and of the EUROGRAPHICS Association and a member of the German Academy of Sciences Leopoldina as well as the Berlin-Brandenburg Academy of Sciences and Humanities. In 2013 he received a Technical Achievement Award from the Academy of Motion Picture Arts and Sciences, the Konrad Zuse Medal of GI and the Karl Heinz Beckurts price. He cofounded Cyfex AG, Novodex AG, LiberoVision AG, Dybuster AG and Gimalon AG.