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Abstract
Global reconstruction of two-dimensional wall paintings (frescoes) from fragments is an important problem for many archaeo-
logical sites. The goal is to find the global position and rotation for each fragment so that all fragments jointly "reconstruct" the
original surface (i.e., solve the puzzle). Manual fragment placement is difficult and time-consuming, especially when fragments
are irregularly shaped and uncolored. Systems have been proposed to first acquire 3D surface scans of the fragments and then
use computer algorithms to solve the reconstruction problem. These systems work well for small test cases and for puzzles
with distinctive features, but fail for larger reconstructions of real wall paintings with eroded and missing fragments due to the
complexity of the reconstruction search space. We address the search problem with an unsupervised genetic algorithm (GA):
we evolve a pool of partial reconstructions that grow through recombination and selection over the course of generations. We
introduce a novel algorithm for combining partial reconstructions that is robust to noise and outliers, and we provide a new se-
lection procedure that balances fitness and diversity in the population. In experiments with a benchmark dataset our algorithm
is able to achieve larger and more accurate global reconstructions than previous automatic algorithms.

Categories and Subject Descriptors (according to ACM CCS): 2D Reconstruction, Genetic Programming, Machine Learning,
Statistics, Computational Archaeology, Data Mining, Machine Learning

1. Introduction

At archaeological sites around the world, many artifacts are found
shattered into small fragments, and archaeologists face a diffi-
cult reconstruction task of reassembling the fragments, similarly
to how one would arrange pieces of a jigsaw puzzle. For exam-
ple, the ancient Greek civilization of Thera in the Akrotiri settle-
ment created many wall mosaic paintings more than 3,500 years
ago that have been left buried under volcanic ashes until today,
when reconstruction of these wall paintings provides valuable in-
formation about the ancient civilization [Dou92]. Reconstruction

of fragmented wall paintings is part of a more general and chal-
lenging problem of 2D and 3D reconstruction of fragmented ob-
jects: torn documents [BBB05], archaeological artefacts [KL06],
puzzles [SDN13], as well as other computer vision and graphics
tasks [LK∗81, RL01, HKH∗10], where viewing fragments as part
of an arrangement provides a more insightful holistic understand-
ing.

Finding a globally consistent arrangement of fragments in an
artifact is a notoriously difficult problem [BLD∗12]. Fragments
are fragile, present in large quantities, and cumbersome to han-
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dle, which makes reconstruction systems difficult for manual effort
even for relatively small-sized artefacts [WC08]. Computer-based
methods have been developed in which fragments are scanned
to produce 3D meshes and then reconstruction is performed au-
tomatically [BTFN∗08, CBR∗11] or with moderate human guid-
ance [CWA∗01,LGJ∗07]. However, those methods still are far from
being able to reconstruct large artifacts with missing fragments and
erosion, which makes them impractical for typical large-scale ar-
chaeological reconstruction scenarios.

To make the computer-modeled reconstruction more practical,
it is typically sub-divided into two sub-problems: local assembly,
which handles finding which fragments should be adjacent, and
global assembly, which handles finding globally optimal fragment
placements [HFG∗06]. We focus on the global assembly problem.
Given a set of mostly incorrect pairwise fragment constraints on
position and orientation (matches) predicted by a local assembly al-
gorithm, we aim to find the largest set of matches that consistently
and correctly places fragments into a common coordinate system
(solve the puzzle).

There exist methods that tackle the specific problem of wall
painting reconstruction [CBR∗11]. While these methods can tol-
erate a small percentage of incorrect matches, they generally are
unable to reconstruct large wall paintings because they are greedy,
and therefore not robust to noisy and incorrect matches or incorrect
partial reconstructions.

We introduce the idea of using genetic algorithms in archaeo-
logical reconstruction. To formulate wall painting reconstruction
as a problem that can be solved by evolutionary computation, we
describe a selection procedure that filters a population of partial
reconstructions and a recombination procedure that generates new
reconstructions from existing candidates. We use these procedures
to perform a robust search of the large space of fragment recon-
structions (which describe the placement of a subset of fragments).
Our selection procedure uses a novel fitness function that mathe-
matically captures the characteristics of a correct partial reconstruc-
tions. Our recombination procedures uses an Iterative Normalized
Eigenvector Method that is robust to outliers. The combination is
robust to incorrect matches and thus can build larger correct recon-
structions than previously possible.

The contributions of our work are:

• A genetic algorithm framework for wall painting reconstruction
that creates larger and more consistent reconstructions than was
possible previously.

• A novel robust Iterative Normalized Eigenvector Method (it.
NEVM) that handles noisy matches and discard outliers.

• A cluster selection procedure that encourages selection of clus-
ters with potential for growth.

2. Related Work

The problem of fragmented object reconstruction is a classical
problem faced in various fields: puzzle solving [WSKL88], re-
assembling fragmented artefacts [WSKL88], and reconstructing
torn documents [BBB05]. The idea of using an automatic approach
for this task dates back to [FG64]. [KS09] and [WC08] provide

good overviews of recent methods considered in assembling bro-
ken 2-dimensional and 3-dimensional objects. Previous work can
be roughly subdivided into methods of local and global assembly.

Local Assembly

Methods that address the local assembly problem typically focus
on generating a set of pairwise matches between fragments. These
methods consider properties that would be shared by adjacent frag-
ments. For example, fragments could be matched based on face
image similarity (when available) [URD∗04,FT05,SE06], 2D frag-
ment contour complementarity [KK01,DGLS02,PPE∗02], or frac-
ture surface alignment [BTFN∗08, VB12, VVSB14]. Supervised
learning approaches that aggregate many properties have also been
used to predict fragment matches [TFBW∗10, FSTF∗11]. These
methods usually produce large sets of potential matches, most of
which are incorrect. Our goal is to select the maximal subset of cor-
rect matches to form a consistent global assembly from predicted
matches.

Global Assembly

Global assembly methods have been proposed to select a subset
of predicted matches that place fragments consistently within a
common coordinate system. These methods need to address sev-
eral mutually-related challenges: how to detect match outliers or
noisy transformations, and how to navigate the exponential search
space of the possible fragment arrangements.

Reconstruction of fragmented objects can be viewed as a
graph [PK03, SBVV14], in which fragments are represented by
nodes and matches are represented by edges. To navigate the
search space, various heuristic approaches are usually applied. Ag-
glomerative hierarchical clustering methods [BK93,ÜT99,PPE∗02,
BBB05,KK01,MP06,DS09,SE10,CBR∗11,SBVV14] start by ini-
tializing individual fragments as clusters, and proceed by merging
clusters, where merges can be ranked by a scoring function, until
all fragments are contained in one cluster or no new merges can be
made. In dense cluster growth methods [KK01, GMB02, MK03], a
best cluster (or small set of best clusters) is incrementally grown
until a heuristic stopping criterion is reached. A limitation of these
approaches is that they are greedy: a promising but incorrect merge
between partial reconstructions early in the process will be propa-
gated until the end of the algorithm, without the possibility of being
corrected.

To reduce the possibility of selecting incorrect merge configura-
tions, some authors apply strict conditions on when a merge is cre-
ated. For example, [GMB02] proposed a reconstruction approach
when a fragment is added to a cluster only when it could be linked
by at least two matches. While this condition can avoid many false
positives, it is detrimental if fragments are sparsely connected to
each other.

Genetic Algorithms

Genetic algorithms (GA) [Joh92] allow exploration of multiple par-
tial reconstructions at once, and avoid early selection of a single
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solution. GAs have previously been applied to solving jigsaw puz-
zles [TFSM02]. Recently, [SDN13] provided an overview of ex-
isting approaches, and reconstructed 22,834-piece puzzles. While
wall painting reconstruction can be seen as an instance of solving
a jigsaw puzzle, there are several fundamental differences that dis-
tinguish this specific problem. Jigsaw puzzle borders are typically
known a priori, while in wall painting datasets the edges of the puz-
zles are most often unknown. Next, jigsaw puzzle pieces exhibit
much less shape variation than aged, weathered artifact fragments,
some of which may be missing, causing artificial holes in the recon-
struction. Our approach to wall painting reconstruction is to model
it as an evolutionary problem and design selection and recombina-
tion operations to tackle its specific challenges.

3. Approach

In this paper, we introduce a novel fully automatic method for re-
construction of fragmented wall paintings.

We propose a genetic algorithm (GA) for wall painting recon-
struction. Genetic algorithms have been previously shown to be
able to successfully navigate large multi-dimensional and unstruc-
tured search spaces that are challenging for traditional optimization
techniques [Joh92]. We show how this approach can benefit recon-
struction of partial and fragmented wall paintings.

The design principles of GAs are typically guided by a princi-
ple of survival of the fittest in a diverse population of individuals
that are allowed to mate (merge). In our algorithm, clusters are it-
eratively re-combined using a probabilistic procedure that consid-
ers merges that will likely result in best new candidates, while the
parent clusters are kept in the population. A novel robust convex
optimization method is applied to each new cluster that iteratively
discards outliers and creates a consistent set among the pairwise
matches. To handle the large search space, a selection procedure
is introduced that ranks clusters and allows fair selection of the
top candidates. During the course of the selection procedure, clus-
ters are compared using a fitness function that highly ranks clusters
with characteristics that allow growth.

The key idea behind the procedure design choices is that it is
difficult to distinguish correctness of matches and clusters without
assembling them into larger entities and evaluating their consis-
tency. While [CBR∗11] applied this thought to evaluation of po-
tential merges, we show that by incorporating it into all procedures
of the algorithm while simultaneously removing reliance on greedy
search yields better solutions overall.

4. Algorithm

The input to our algorithm is a set of predicted pairwise matches
between fragments. Each match is represented by a transforma-
tion that aligns the fragment boundaries and a numerical score
that ranks it relative to others [FSTF∗11], so that higher scoring
matches are more likely to be correct than lower scoring matches.
The output is a reconstruction – a cluster of fragments connected
by a consistent set of matches.

The algorithm proceeds as shown in Figure 1. It starts with an
initial population of clusters consisting of one or two fragments.

The clusters then pass through a number of evolutionary iterations
consisting of selection and recombination that create larger clus-
ters. Evolution terminates either when a fixed number of iterations
have occurred, or when no new clusters can be generated. The fol-
lowing section describes these steps in detail.

4.1. Initialization

The first step of the algorithm is to create an initial set of clusters.
In our implementation, the initial clusters consist of singleton clus-
ters, consisting of single fragments and no matches, as well as pair
clusters, consisting of two fragments and a match. Pair clusters are
generated directly by the pairwise matches provided as input.

4.2. Selection

At the start of each iteration, it is necessary to select from a large
population of similar clusters only the clusters that will meaning-
fully contribute to evolution. To perform selection, we employ a
problem-specific fitness function (See Fitness Function section for
more details) to rank the clusters in the current population. We
sought a procedure that would achieve three goals: separate cor-
rect clusters from wrong, rank clusters by size and preserve frag-
ment diversity in the population. We thus perform two sub-selection
procedures. The first is a diversification step, where clusters in the
population that have a high fragment Jaccard coefficient J (number
of shared fragments divided by total number of unique fragments)
are filtered so that only the more fit cluster is kept. To make the
process of comparing every pair of clusters efficient, clusters are
assigned hash values of binary strings that represent the fragments
they contain. The second is a variant of rank-selection, where clus-
ters are binned according to B = 114 bins, where each bin repre-
sents a fragment that is part of the cluster (a cluster can be part of
multiple bins). We then select the top clusters from each bin until a
selection threshold S has been satisfied.

4.3. Recombination

After the best subset of clusters has been identified, it is used to
generate new clusters. Recombination (also known as crossover) is
the process of creating a new cluster given two parent clusters. In
our case, the parent clusters need to share either a common frag-
ment (Recombination By Fragment) or a set of spanning matches
(Recombination By Match), so that the aligning transformation can
be estimated. The recombination step is run once in each iteration.

Recombination By Fragment

Given a pair of clusters that share a fragment, an aligning trans-
formation is specified which defines a potential child cluster. Since
different fragments may induce different spanning transformations,
we consider all possible spanning fragments (and induced transfor-
mations), and choose the highest scoring resulting child cluster to
be created.

Recombination By Match

A configuration in which two clusters and a spanning match be-
tween a fragment from the first cluster and a fragment from the sec-
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Figure 1: Overview of the Genetic Algorithm (GA) pipeline. The main steps of the algorithm are: Initialization, Selection and Recombination.
The last two steps are iterated until a terminal criterion: a fixed number of iterations that have happened, or until no new clusters can be created
(convergence).

ond cluster is given uniquely specifies a potential new child clus-
ter. Since the space of spanning matches is typically very large,
we employ a roulette-sampling procedure (weighted sampling with
replacement) to choose which matches will be considered, with
matches that have a higher score given a higher selection proba-
bility. Specifically, given a set of N spanning matches with scores
f1, f2, . . . , fN , the probability P that match i will be selected is:

P(i) =
fi

∑
N
j=1 f j

Cluster Merge Creation

For each potential cluster merge (during fragment or match recom-
bination), we aim to select the best merge by either spanning match
or spanning fragment recombination. For each potential cluster, we
check if there are equivalent spanning matches in the set of all pos-
sible matches that can be inserted. Finding such matches is im-
portant because they show whether the new cluster is consistent
with existing matches. When the potential merges between a pair
of clusters Ci and Cj are compared, we score the merge as Ci jβi j,
where Ci j is the fitness score of the resulting cluster, and βi j is pa-
rameter proportional to the number of inserted equivalent matches,
which encourages merges which have a lot of consistent spanning
matches to be selected.

4.4. Cluster Optimization and Feasibility

Each potential merge consists of a pair of clusters and a transfor-
mation that aligns them, and results in a new child cluster. How-
ever, in the large population of resulting child clusters, many are
in-feasible, contain global misaligned fragments, or are missing

matches. We thus process the newly created raw population to ac-
count for these issues, and generate clusters that result from feasible
merges.

Cluster Optimization

Once a cluster is created via a spanning fragment or spanning match
merge, it needs to be globally relaxed so that the fragment positions
and orientations satisfy the match constraints as well as possible.
Each match is a constraint on fragment orientation and translation,
and it is difficult to jointly optimize both. The orientation optimiza-
tion can be decoupled from the translation optimization, and solved
first. Given θ1,θ2, . . . ,θN ∈ [0,2π] unknown fragment orientations
(represented by rotation angles), and a set of known (but possibly
noisy or incorrect) orientation constraints δi, j = θi − θ j, we can
formulate finding optimal orientations as a set of equations:

θi−θ j = δi, j (mod 2π)

The above equations contain non-linear constraints that we can lin-
earize them by defining zi = eiθi , and formulating the optimal op-
timization search as a least squares (LS) objective. LS methods are
highly susceptible to outlier effects because the objective function
becomes highly dominated by outlier contributions, which results
in noisy and incorrect solutions. We employ the robust formulation
proposed by [Sin11], which limits the contributions of each incor-
rect match. The transformed objective is:

max
θ1,θ2,...,θn∈[0,2π)

n

∑
i, j=1

e−iθi Hi je
iθ j (1)

where H is the n×n complex matrix with entries:

H =

{
eiδi j/m( fi) if match δi j is observed
0 otherwise
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Iter. 2: 8 fragments Iter. 4: 16 fragments Iter. 6: 28 fragments Iter. 8: 45 fragments Iter. 10: 53 fragments

Iter. 10: 53 fragments Iter. 11: 56 fragments Iter. 12: 69 fragments Iter. 13: 72 fragments Iter. 14: 88 fragments

Figure 2: Sample run of our algorithm: evolution of clusters through iterations. Shown above are the top clusters after the end of each
respective iteration. The clusters progressively accumulate more correct matches as their consistency is verified with more fragments.

where m( fi) is the number of matches of fragment fi (the goal is
to equalize the importance of fragments by match degree), which
normalizes the contributions of fragments that are connected by
different numbers of matches.

We extend this method by formulating an iterative version (Iter-
ative Normalized Eigenvector Method) based on [O∗14]. In partic-
ular, we iterate the estimation of angles with the subset of match
constraints that were respected by the output from the previous it-
erations i.e. we reject matches that differ from generated angles by
more than a threshold T . This process is repeated until the number
of rejected matches in each iteration converges to zero. We find that
the iterative version further improves the robustness of the method,
and generates more accurate solutions.

Feasibility

After the cluster has been created and globally optimized, we check
for its feasibility and add it to the population of clusters only if
it passes the check. A cluster is considered in-feasible if it would
not represent a valid configuration in a real wall painting. We thus
prune clusters if they have high overlap to fragment area (where
overlap is computed using hexagonal simplifications of fragment
areas for fast computation). Clusters that are densely connected via
matches and have a high ratio of fragment area to the convex hull
are more likely to be correct. Thus we impose constraints on the
ratio of fragment covered area to convex hull of the cluster and the
maximum allowable number of spanning matches (matches that, if
removed, would leave the cluster disconnected). We discuss these
parameters in supplementary material.

Fitness Function

An integral part of the evolution is the cluster fitness function, that
determines how to rank the clusters with respect to the rest of the
generated population.

The population of clusters is sorted according to a fitness func-
tion that represents the correctness and size of clusters. Clearly,

correct clusters (i.e. those consisting of mostly correct matches and
this fragment placements) need to be assigned high scores so that
they are selected in the next round of the selection procedure. The
function must also reflect the size of the cluster, as the clusters need
to be encouraged to grow in number of fragments, rather to con-
verge to a subset of the fragments. Since clusters that have dense
match connections and high scoring matches are typically the best
candidate clusters for growth, we incorporate this prior knowledge
into the fitness function. Specifically, we calculate the number of
fragments span fi or number of matches spanmi that are part of the
spanning tree of cluster Ci, i.e. if removed, the cluster will become
disconnected. The goal of the fitness function is to minimize span fi

and spanmi , since in clusters that can be easily disconnected, global
cluster optimization is unable to detect and remove match error. Let
MaxST (Ci) be the sum of the match scores of the maximal span-
ning tree of cluster Ci. Then the fitness function of the cluster Ci
is:

f (ci) = MaxST (Ci)−W (span fi + spanmi)

where W is the weighting parameter that controls the importance
of the spanning match and fragments.

5. Experimental Results

We conduct experiments to test the proposed method on a chal-
lenging benchmark wall painting dataset for which ground truth
fragment alignments are available for verification. We compare our
reconstruction method to existing techniques used previously for
the same dataset. We also quantitatively evaluate the contribution
of the individual components of our algorithm (selection, cluster
optimization, fitness function). In particular, we evaluate the results
using the number of fragments in the largest cluster at convergence
as well as the match correctness F-score (harmonic mean of preci-
sion and recall of the number of correct matches compared to the
total number of matches in the cluster).

All experiments were conducted on Linux servers with 2.6 GHz
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Method # of Fragments F-score
Our Full System (GA) 90 0.823

Hierarchical Clustering (HC) 42 0.411
Dense Cluster Growth (DCG) 7 0.082

Table 1: Performance comparison of different wall painting recon-
struction methods with our fitness and feasibility criteria.

Sandy Bridge processors with 16-core CPU nodes. Selection and
recombination procedures were implemented to make use of all
parallel threads available.

Dataset

Our experiments are run with data from the Princeton Syn-
thetic Fresco, a plaster wall painting created and fractured by
Greek archaeologists for the purpose of testing reconstruction al-
gorithms [BTFN∗08]. While much younger than its counterparts
(some of which are over 3,000 years old), this wall painting was
constructed with a similar process similar to the ones created in an-
cient times in Akrotiri, Greece. It was artificially weathered to cre-
ate erosion similar to the originals and thus presents a challenging
test case for our system. In all, the wall painting has 129 fragments
with 256 manually verified ground-truth matches between adjacent
fragments. The fragments are partitioned into three disjoint con-
nected components, of which one is large (114 fragments) and the
other two are small – we execute our tests only on the largest con-
nected component, as is performed in [CBR∗11].

For each test, we run the fragment matching algorithm of
[FSTF∗11] to generate a set of 49,153 match proposals, of which
we found 180 to be correct. Following the approach of [CBR∗11],
we augment this set by adding the missing truth matches, so that
both methods start from the same initialization for fair comparison.

Comparison to Alternative Methods

The goal of the first experiment is to evaluate the proposed genetic
algorithm (GA) approach in comparison to commonly used recon-
struction methods: Dense Cluster Growth (DCG) and Hierarchical
Clustering (HC).

The Dense Cluster Growth (DCG) [KK01,GMB02,MK03] is a
popular algorithm that relies on the notion that given a seed cluster,
one can iteratively add the best fragment and then replace the seed
cluster with the newly formed cluster. This approach is equivalent
to the configuration of our algorithm where only one best cluster
is selected at every iteration, and clusters can only be formed by
merging with this cluster. This approach is limited by the inability
to backtrack after it has added several wrong matches to the seed
cluster.

The Hierarchical Clustering (HC) [BK93, ÜT99, PPE∗02,
BBB05, KK01, MP06, DS09, SE10, CBR∗11, SBVV14] is another
approach that expands the search space by maintaining a queue of
many existing clusters, iteratively merging the best candidate pair
of clusters and deleting the two parent clusters. The algorithm con-
verges after no more feasible clusters can be created.

Figure 3: Comparison of reconstruction quality and size of the
best runs of Dense Cluster Growth (DCG), Hierarchical Clustering
(HC), and our method (GA), corresponding to numerical results in
Table 1.

To achieve the most meaningful and fair comparison of the above
algorithms with our method, we implemented the above algorithms
with the same cluster feasibility conditions and fitness function
as used in our algorithm (the choice of these functions will al-
ways affect the final reconstruction result for any of the described
method). We evaluate the three techniques based on the F-score
(harmonic mean of precision and recall) of correct matches in the
largest output cluster. Precision is defined to be the proportion of
correct matches in the cluster, and recall is the proportion of cor-
rect matches retrieved by this cluster. For example, small but mostly
correct clusters will be assigned a high precision but low recall
score. Because the merging strategy is probabilistic in nature, we
chose the best of ten independent trials for our system and the HC
algorithm, and the best of all of the 114 available starting points for
the DCG algorithm.

A table comparing the number of fragments in largest recon-
struction and best F-score for each of the three methods appears
in Table 1. The proposed GA approach is able to achieve the high-
est F-score by a large margin compared to previous approaches, as
well as the largest number of fragments in the reconstruction. In
Figure 3, we show the corresponding reconstructions. The GA ap-
proach is able to achieve the highest combination of precision and
recall by a large margin compared to previous approaches. Specif-
ically, our algorithm achieves a reconstruction of 90 fragments,
while the HC algorithm reconstructs a subset of 42 fragments and
the DCG algorithm reconstructs a subset of 7 fragments.

Comparison to the Previous State-of-the-Art

Next, we compare our reconstruction to the one produced
by [CBR∗11], the previous best result for the same data set, but us-
ing a hierarchical algorithm with a different optimization function
and feasibility criteria. Since the code and data for that previous
result are not available to us, we can only compare our results visu-
ally. Figure 5 shows the best result presented by [CBR∗11] in their
paper. It can be seen that it contains fewer correctly placed frag-
ments, fewer correct matches, and more misalignment errors than
our result. It is interesting to note that the different algorithmic cri-
teria used in the algorithm of [CBR∗11] produces a significantly
different reconstruction result to our implementation of hierarchi-
cal clustering seen in Figure 3 (achieving a larger reconstruction
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Figure 4: Reconstruction result of [CBR∗11]. The final reconstruc-
tion contains 118 fragments and 188 matches, ten of which are
incorrect. There are subsets of fragments that are incorrectly po-
sitioned with respect to each other, as well as clear drift. Image
obtained from authors of [CBR∗11].

Figure 5: Comparison of Reconstruction methods. Our final recon-
struction contains 90 fragments and 187 matches, three of which
are incorrect. Wrong matches resulted in only two misplaced frag-
ments that are attached to the boundaries of the wall painting
(which in itself is a source of ambiguity).

at a cost of extra error and misalignment), which further highlights
the importance of these components to achieving large and correct
reconstructions.

Evaluation of Algorithmic Contributions

We evaluate the reconstruction quality of the best reconstruction
at each iteration of our algorithm. In Figure 6, we show averaged
precision-recall plot for the first 10 iterations of our algorithm,
along with error bars that describe the variation of quality (one such
longer sample run is shown in Figure 2). The behavior of precision
fluctuates at low recall levels (corresponding to plausible but in-
correct smaller clusters getting created). However, at larger recall
levels, the precision actually increases, which shows that our algo-
rithm is able to verify and build upon the consistency of the best
reconstruction. This experiment followed our hypothesis that the
fitness of the partial reconstructions, which is difficult to verify us-
ing a heuristic evaluation function, can be successfully measured
using consistency in a larger reconstruction.

Figure 6: Precision-Recall comparison of different iterations of our
algorithm. We aggregate the results from ten independent runs (10
iterations each), and average precision and recall values in each
iteration (the vertical bars show the standard deviation).

Figure 7: We compare the performance of our method with the pro-
posed fitness function as well as simpler heuristic variants. It can
be seen that the fitness function that accounts for connectivity in
the clusters significantly outperforms any heuristic functions.

As a final experiment, we evaluate the individual contributions
of the algorithmic components of our approach. Specifically, we
investigate the effect of the proposed fair selection procedure on
reducing the computational time while maintaining the same qual-
ity of reconstruction. In Figure 7, we compare the proposed fitness
function with simpler variants: (1) sum of match scores in a cluster
and (2) the number of fragments. It can be seen that using the pro-
posed fitness function achieves at least a 2x improvement in F-score
within the same amount of compute time.

In Figure 8 we compare different optimization approaches used
during the recombination step to optimize each new cluster. The

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

89



Elena Sizikova & Thomas Funkhouser / Wall Painting Reconstruction Using a Genetic Algorithm

Figure 8: We compare the performance of our method with various
cluster optimization methods. The Iterative Normalized Eigenvec-
tor Method (it. NEVM) converges at a higher F-score value than
any of the other methods, which shows its ability to successfully
filter noise and outliers from matches.

proposed Normalized Eigenvector Method (NEVM) achieved a
higher F-score than the previously used Least Squares (LS) ap-
proach whenever both algorithms were run for the same amount
of time. The iterative versions of these algorithms also showed the
same trend in performance, however, they were able to continu-
ously increase the size of the correct reconstruction, as seen in Fig-
ure 8, when their non-iterative counterparts converged. The pro-
posed Iterative Normalized Eigenvector Method achieved the best
reconstruction overall within the time of evaluation.

6. Conclusion and Future Work

We present an approach for wall painting reconstruction using a
genetic algorithm. The algorithm recombines clusters of fragments
using a novel robust optimization method that iteratively discards
outlier matches while optimizing fragment transformations, which
allows the algorithm to handle large amounts of noise and to avoid
converging into local minima. It addresses the difficulties of an ex-
ponentially large search space by favoring the qualities of correctly
reconstructed clusters and selecting the clusters with a potential
to grow. It also tackles the difficulties of backtracking from plau-
sible but incorrect solutions by maintaining a population of sub-
reconstructions at every iteration step. The combination of these
methods is an algorithm that can reconstruct more accurate and
larger reconstructions than was possible previously.

Our results are far from perfect, and we hope that our findings
will stimulate further research into better global assembly tech-
niques for the challenging task of archaeological artifact recon-
struction. First, it would be interesting to see how other stochastic
optimization techniques can handle and navigate the challenging
search space of the problem. Second, we show how robust convex
optimization methods can benefit in finding order in challenging
and noisy pairwise match sets, and it would be interesting to see

how other such techniques could be adapted for this task. Finally,
given the importance of the fitness and feasibility criteria for par-
tial reconstructions, it would be interesting to learn these functions
from existing artifacts that contain ground truth and apply them to
unsolved wall paintings.
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