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Abstract

A large number of photographs of cultural heritage items and monuments is publicly available in various Open

Access Image Repositories (OAIR) and social media sites. Metadata inserted by camera, user and host site may

help to determine the photograph content, geo-location and date of capture, thus allowing us, with relative success,

to localise photos in space and time. Additionally, developments in Photogrammetry and Computer Vision, such as

Structure from Motion (SfM), provide a simple and cost-effective method of generating relatively accurate camera

orientations and sparse and dense 3D point clouds from 2D images. Our main goal is to provide a software

tool able to run on desktop or cluster computers or as a back end of a cloud-based service, enabling historians,

architects, archaeologists and the general public to search, download and reconstruct 3D point clouds of historical

monuments from hundreds of images from the web in a cost-effective manner. The end products can be further

enriched with metadata and published. This paper describes a workflow for searching and retrieving photographs

of historical monuments from OAIR, such as Flickr and Picasa, and using them to build dense point clouds using

SfM and dense image matching techniques. Computational efficiency is improved by a technique which reduces

image matching time by using an image connectivity prior derived from low-resolution versions of the original

images. Benchmarks for two large datasets showing the respective efficiency gains are presented.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Digitizing and Scanning—

I.3.7: Three-Dimensional Graphics and Realism— I.3.7: Virtual reality— I.3.8: Applications—

1. Introduction and Contributions

Photogrammetry aims to reconstruct the 3D geometry of

an object based solely on 2D images. Structure from Mo-

tion (SfM) algorithms [HZ04] use data from unstructured

sources, e.g. photographs or video taken by off-the-shelf

cameras in order to recover the structure of a scene in the

form of a 3D point cloud, as well as the camera positions.

Additionally, the amount of photographs available online

and for free in social media sites and Open Access Image

Repositories (OAIR), such as Flickr and Picasa, is enor-

mous. One challenge in applying SfM to images harvested

from the web is that camera characteristics, resolution and

content of these images may be uncertain. However, the
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presence of metadata inserted by camera, user and OAIR in

the form of Exif tags improves search accuracy. Addition-

ally, comparing the features of O(n2) image pairs in order

to establish connectivity among n images is time consuming

because, for OAIR, n is very large and image connectivity

sparse. Our main goal is to enable architects, archaeologists,

but also the general public to reconstruct in 3D, views of

historical monuments from images harvested from the web

in a simple, robust and computationally efficient manner

on desktop or cluster computers or via a cloud-based ser-

vice. Focusing on cloud-based environments and simple-to-

use web front ends is suitable for the end user with limited

computational resources. Beside the benefit of decentralised

processing and storage, such cloud-based services will have

significant impact on the documentation of cultural heritage

when professionals in the field share high-quality 2D images
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of historical sites and their 3D models, produced and en-

riched with metadata collectively. This paper describes our

implemented Image Search and Retrieval Engine and 3D Re-

construction Pipeline with optimisations to shorten the im-

age matching process. It is capable of producing 3D dense

point clouds from hundreds or thousands of photographs re-

trieved from Open Access Image Repositories. The system

can be run on a variety of hardware; from medium- to high-

end desktops to dedicated computer clusters depending on

the number of input photographs. Its usage is as simple as

defining a few keywords for searching for images in OAIR.

Our system will then automatically analyse image Exif data,

retrieve relevant and suitable images based on tags and pro-

duce a 3D reconstruction of the scene as a dense 3D point

cloud. The implemented 3D Pipeline uses public domain

software: [VF08] for SIFT (Scale Invariant Feature Trans-

form), Bundler for Bundle Adjustment [SSS08b] and SURE

[RWFH12] for dense point cloud derivation.

Our contribution is threefold. Firstly, we provide a soft-

ware tool which seamlessly and robustly searches and down-

loads photographs and then produces dense 3D point clouds

of the scene they depict. Our implementation is highly par-

allelisable and simple to use. Image search is quite powerful

because image metadata is also searched. Thus, relevancy

of search results can be improved by optionally specifying

a geographical bounding box, date period, image resolution,

camera model and characteristics, etc. Additionally, we have

already used our software tool as the back end of a cloud-

based service, currently under testing. Secondly, we reduce

image matching time by utilising lower-resolution versions

of the original input images to estimate image connectivity

priors and investigate how this method affects quality and

speed [AWWF]. In particular, image matching time can be

shortened by first working on a low-resolution version of the

input images in order to quickly establish image connectiv-

ity. When the images are processed at their original resolu-

tion, this image connectivity prior helps to avoid matching

un-connected pairs. Based on experiments presented in this

article, this method can reduce processing time by up to 67%

with little quality loss, depending on input images. Thirdly,

we enrich the final 3D product with additional metadata such

as historical context and links to related artefacts and deliver

it to Digital Libraries, for example EUROPEANA and UN-

ESCO Memory of the World, and Virtual Museums. We pro-

vide benchmark results over two image datasets and for var-

ious image reductions showing the improvement in process-

ing time versus cameras “missed” – an indication of quality

loss. The use of our implemented pipeline from monument

search to 3D reconstruction is demonstrated with the presen-

tation of the 3D dense point cloud from the complete search

results of the keyword Colisseum from Flickr.

2. Related Work

The first system to apply SfM algorithms to online, unor-

ganised photo collections was Photo Tourism [SSS06] which

computed the viewpoint of each photo in the collection and

a sparse 3D model of the scene. Scalability was an issue be-

cause of the exhaustive pairwise image matching employed.

An improvement of the matching process was introduced by

Snavely et al. [SSS08a] who constructed skeletal sets of im-

ages whose reconstruction approximates the full reconstruc-

tion of the whole dataset. A similar project, Building Rome

in a Day [AFS∗11] performs dense modelling from inter-

net photo collections consisting of millions of images. The

increased speeds obtained are due to some refinements e.g.

filtering by early 2D appearance-based constraints as well as

parallelising the matching process and using Approximate

Nearest Neighbour (ANN) [AMN∗94] search whose results

are pruned by RANdom SAmple Consensus (RANSAC)

[FB81]. An important factor for the impressive performance

of this system is the utilisation of graphics processors and

parallel computation on multi-core computer architectures.

Frahm et al., in [FFGG∗10] improved the performance by

an order of magnitude larger dataset by combining image

appearance and colour constraints with 3D multi-view ge-

ometry constraints. This provides an initial registration to be

used in computing the dense geometry of the scene using

fast plane sweeping stereo [YP03]. In the framework of par-

titioning methods, Farenzena et al., [FFG09], introduced a

new hierarchical scheme for SfM where matched images are

placed in a hierarchical cluster structure, thus revealing the

sub-problems which can be dealt in parallel.

3. Search, Download and 3D Reconstruction Pipeline

Today there exist a variety of OAIR over the Internet, for

example Flickr and Picasa. Typically they offer an API for

searching metadata and retrieving stored images. Using im-

ages from OAIR for 3D reconstruction presents some chal-

lenges: (a) size, resolution and quality of images varies enor-

mously; (b) irrelevant objects and people obscure the main

subject; (c) images matching the geo-location requirement

do not necessarily contain the site in question because the

camera is looking somewhere else, usually away; (d) dates

set in cameras and inherited by the image are not always ac-

curate; (e) users do not always tag or describe their images

or they do so incorrectly; (f) Image processing software may

be used to alter the photographs.

The steps in our 3D reconstruction pipeline are:

(1) Convert all input images to a common lossless for-

mat and calculate sensor width in pixels for each image.

(2) Reduce the size of each input image by factor r. (3) For

each image, extract SIFT features. (4) Match SIFT features

among all image pairs, O(n2), yielding a connectivity matrix

(CM1) to be passed to Bundle Adjustment and be pruned

with RANSAC.(5) Perform BA using Bundler, [SSS08a].

This is done incrementally adding a few images at every it-

eration, resulting in the determination of camera orientation

and sparse scene geometry. The connectivity matrix CM1

will be used initially. (6) Analyse the output of BA and de-

duce connectivity matrix CM2. (7) Repeat step 3 but this

time with the original, full-resolution images.(8) Using our
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own feature matching implementation (based on KeyMatch-

Full.cpp of [SSS08a]) match features among only those pairs

of images which are connected according to CM2, calcu-

lated in step 6. This will result in connectivity matrix CM3.

(9) Perform BA on the original images using CM3 calcu-

lated in step 8.(10) Reconstruct the scene as a dense point

cloud utilising the sparse scene geometry derived in the pre-

vious step. For this purpose, we utilise SURE [RWFH12].

Figure 1: The implemented 3D Reconstruction Pipeline

Figure 1 depicts the steps in our pipeline. The procedure

in the yellow/light area (Low-Res step) applies steps 2 to

6 on lower-resolution versions of the original images. This

stage can be quite fast depending on scaling factor r. The

purple/dark area represents a typical SfM pipeline modified

to accept an image connectivity matrix in order to speed up

the image matching stage by skipping the image pairs which

are not connected according to the CM3 calculated in step 8.

The implemented 3D Reconstruction Pipeline can exploit all

the available processing cores at its disposal. Optionally, the

SIFT detection stage can be performed on GPU.

4. Results

Two image sets are used in order to quantify improvements

in the total processing time and quality cost, for various

image area reduction factors r (5% and 95% of the origi-

nal). The two datasets, captured on-site, are from the interior

of the Asinou Church, Cyprus (S1), and the exterior of the

Archangelos Church, Pedoulas, Cyprus (S2). Processing was

done on a single node comprising 2 Intel X5650@2.66GHz

hexa-core CPU and 48GB RAM under Linux. Experiments

were run twice. Mean values are presented in table 1. Each

row in tables 1(a) and 1(b) corresponds to a run through

the 3D reconstruction pipeline for a given image area re-

duction (r). The first column (%r) shows the new image

area as a percentage of the original. Thus, the first row

(r = 100%) corresponds to the original image size and the

last row (r = 5%) to a 95% reduction by area. The 3rd col-

umn (Tcpu) shows the CPU time in seconds taken for one

complete run for a given image size. It uses UNIX’s time

command and takes into account activity on all cores.

Figure 2: Top: Arch. Michael, Pedoulas, Cyprus. Middle:

Colisseum, Rome. Bottom: Asinou Church Interior, Cyprus

The 4th column (T100%) shows run time as a percent-

age of that of the original size images (Tcpu|r = 100%):

T100% = 100%× (
Tcpu

Tcpu|r=100%
−1). A positive T100% means

longer run time than the original by T100% %, while a neg-

ative number means faster run time. The greyed rows show

where processing improvement occurs first. The mean re-

projection error and the number of cameras “missed” by BA

are shown as EP and EM . The mean number of features per

image after BA is shown as K/C. The total number of 3D

points produced by BA is E3D. For both datasets our pro-

posed methodology shows an improvement in run time with-

out significant loss of quality. In particular, for S1 reducing

image area to 25% of the original, results in 36% faster pro-

cessing and with only 2 cameras missed. For S2, reducing

image area to 10% of the original, results in 67% faster pro-

cessing and also a reduction in cameras missed by 32%. In

general, the relationship between processing time and scal-

ing factor, r, is linear. The use of our pipeline from search to

3D reconstruction is demonstrated with the presentation of

the 3D dense point cloud from all the search results for the

keyword “Colisseum” from Flickr. This is a set of 1,090 im-

ages which includes a lot of irrelevant entries because no fil-

tering was applied. 3D models of the Arch. Michael (mesh),

Asinou interior and the Colisseum (point clouds) are shown

in figure 2.

5. Conclusions and future work

We have presented a simple, robust and fully parallelisable

software tool which searches for images on Open Access Im-

age Repositories based on user-defined keywords and other

constraints such as geo-location, dates, copyright and cam-

era model characteristics, downloads them and constructs a

3D dense point cloud using our implementation of an SfM

pipeline modified in order to accelerate the image matching

process with the Low-Res step. Our software can be used as
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r(%) MP Tcpu (s) T100%(%) K/C EP E3D EM

100 0.81 46327 0 8814 0.194 553538 0
95 0.77 65643 42 8575 0.193 548133 2
90 0.73 63171 36 8141 0.193 548482 1
85 0.69 59994 30 7707 0.193 548609 1
80 0.65 58112 25 7261 0.193 548337 2
75 0.61 55855 21 6822 0.193 548348 2
70 0.57 52574 13 6394 0.193 548268 2
65 0.53 49745 7 5947 0.193 548369 2
60 0.49 46873 1 5509 0.193 548221 2
55 0.45 44312 -4 5063 0.193 548191 2
50 0.41 41679 -10 4581 0.193 548245 2
45 0.37 39530 -15 4097 0.193 548231 2
40 0.33 36780 -21 3602 0.193 548165 2
35 0.28 34668 -25 3108 0.193 548287 2
30 0.24 32492 -30 2622 0.193 548228 2
25 0.20 29637 -36 2135 0.193 548042 2
20 0.16 27371 -41 1685 0.193 546230 7
15 0.12 25011 -46 1228 0.193 546125 8
10 0.08 22615 -51 801 0.193 544077 11

(a) Archangelos Michael Church, S1

r(%) MP Tcpu (s) T100%(%) K/C EP E3D EM

100 8.27 105151 0 44015 0.556 611267 76

95 7.86 123851 18 43374 0.540 561586 79

90 7.44 120274 14 42640 0.540 561557 79

85 7.03 114291 9 41751 0.541 560832 79

80 6.62 108878 4 40882 0.540 562141 79

75 6.20 102169 -3 39735 0.541 561054 79

70 5.79 96301 -8 38452 0.540 562534 79

65 5.38 89702 -15 37030 0.541 561580 79

59 4.88 83172 -21 34999 0.541 560574 79

55 4.55 78271 -26 33482 0.542 562517 79

54 4.46 77218 -27 33044 0.541 561302 79

50 4.13 72642 -31 31412 0.541 561740 79

44 3.64 70998 -32 23445 0.551 789872 51

40 3.31 67233 -36 21758 0.552 788621 51

35 2.89 60845 -42 19353 0.552 785942 51

30 2.48 54977 -48 16807 0.548 787998 51

25 2.07 49156 -53 14120 0.554 791019 51

20 1.65 43491 -59 11266 0.550 790518 51

15 1.24 39251 -63 8342 0.549 789746 51

10 0.83 34976 -67 5415 0.551 788231 51

5 0.41 24692 -77 3473 0.540 560024 79

(b) Asinou Interior Church, S2

Table 1: Results of running the 3D reconstruction pipeline

on (a) the Archangelos Michael dataset, S1 and (b) the Asi-

nou dataset, S2, for various image reductions, %r yielding

MP mega-pixels. Completion time (sec) and time relative

to original in columns Tcpu and T100%. Negative T100% in-

dicates faster completion compared to original. Greyed row

indicates when speed up begins. K/C is mean number of key-

points per camera used in BA EP is mean reprojection error

of cameras in BA, E3D is the number of 3D points estimated

in BA and EM is the number of cameras missed.

a back-end to a cloud-based service where end users share

processing time and storage costs as well as 2D images and

metadata for the enrichment of collectively produced 3D

models. Tested on two image datasets (not from OAIR),

our 3D reconstruction pipeline yielded up to 67% faster

processing when using image connectivity based on lower-

resolution versions of the originals. At the same time, the in-

crease in the cameras missed during bundle adjustment was

very small. A 3D point cloud obtained by searching on OAIR

and reconstructing without any manual intervention is also

presented. We aim to use Feature Selection techniques, such

as clustering and Principal Component Analysis for reducing

the size of feature space and compacting SIFT descriptors.

We also aim to express image connectivity within a stochas-

tic framework and utilise different ways to estimate it.
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