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Figure 1: Open Tree by Ruby Arnold

Abstract
Space filling curves, invented by mathematicians in the 19th century, have long been a fascination for artists,
however there are no interactive tools to allow an artist to create and explore various levels of recursion of the
curve in different parts of the artwork. In this work a new type of painting tool for artists is introduced, which
gives the artist control over the very base of a space filling curve, i.e recursive subdivision. Although there are
many such curves that would lend themselves to this treatment, the Flowsnake (Gosper) curve has been chosen
in this work, mainly for its aesthetics. The curve is based on a hexagonal grid, and in our system hexagons
are subdivided at the artist’s touch in a non-homogeneous manner, leaving a trail that forms the space filling
curve. Some tools are introduced for controlling the painting, such as limiting the depth of recursion, and the
‘slow brush‘, which interpolates slowly between subdivisions to allow the artist to stop at a chosen level. A set
of space filling curve brush types provide different shapes and profiles, for giving the artist control of the non-
homogeneous subdivision, including the ability to un-subdivide the hexagons. An algorithm for drawing the curve
non-recursively is introduced in order to produce a polyline suitable for processing on the GPU to make the system
function at interactive rates. An animated version of the image can be made by replaying the subdivisions from the
first level. Some examples made by art students and graduates are shown, along with the artist’s comments on the
system.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Mathematics has been a driver for many forms of art and
in particular space filling curves (a special case of frac-
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tal curves) have fascinated both artists and mathematicians
since Guiseppe Peano invented the concept in 1890 [Pea90].
A space filling curve is defined to pass through every point
of a specific region. The first three levels of Peano’s ‘Nine’
curve is shown in Figure 2. At each iteration the curve visits
more points in the square. The curve is also self-similar, to
iterate from one level to the next, each square is replaced by
a scaled down version of itself at that level, in this case nine
replacements.

Artists such as Susan Happersett [Hap0] have used space
filling curves and there are many books and web sites de-
voted to their beauty [Man82, Ven15, Ven12]. Programming
languages such as Logo (e.g. see [AD86, Wyv75]) and oth-
ers designed to model such recursive structures as a space
filling curve do not, in general, appeal to the majority of
artists. To give access to procedural modelling, paint-like in-
terfaces have been introduced to aid the design of objects
such as landscapes [Epi15] or trees [LRBP12].

Despite advances to create better artist interaction and
exploration, a paint-like interface for editing space-filling
curves has not previously been devised. In this work, we
seek a method that allows an artist to interact with space
filling curves in such a way that the integrity of the curve is
preserved, while giving the artist the freedom to explore the
medium. To this end we have designed a method for paint-
ing space filling curves, along with a number of useful tools
(‘brushes’) for helping an artist control the painting. We call
the system, FlowPaint. Several art students and recent fine
arts graduates have used the system and created some ex-
ample artwork. These examples and the comments on the
system given by the artists are reported in Section 6.

FlowPaint presents the artist with a procedural brush that
leaves a connected trail forming a space filling curve. Since
the trail is made of vectors not pixels, and the brush causes
the space filling curve to subdivide wherever it touches, the
system is technically a drawing system rather than painting,
but the analogy to a paint system seems to work well for the
artists who have so far used FlowPaint.

The contributions of the research described in this paper
are summarized as follows:

• A method that allows an artist to ‘draw’ a space filling
curve, and control the recursion depth interactively and
non-homogeneously.

• Each drawing is created from a single polyline which op-
erates similar to contour drawing, however as the curve is
guided by the rules of the Flowsnake curve, control of the
line is imperfect. (Imperfections in the medium character-
ize an art form - ‘Wabi-Sabi’. )

• A series of ‘brushes’ that allow the artist to select cells
to be subdivided similar to the way a paint system selects
pixels.

• The use of the ‘slow’ brush, that gives the artist the ability
to partially change the recursion level of a cell by interpo-
lating the points of the space filling curve.

• A fast, non-recursive table driven drawing algorithm that
exploits the vertex buffer on the GPU.

2. Background and Previous Work

Space filling curves have been used for many applications
in science, such as for parallel domain decomposition in sci-
entific computing applications [AS97], for dithering when
using a bi-level display to represent continuous tone im-
ages [WN82], as a mathematical representation of nature
[Man82] and for artistic effects [Ven12]. Although artists
have used space filling curves as part of an artwork [Hap0]
there has been no examples of attempts to build an interac-
tive painting system based on controlling the recursion depth
of a space filling curve.

2.1. Artistic Constraints

Artists have long worked with certain constraints to forge
a new style. For example the pointillists [Ruh98] limited
themselves to composing images with painted points and
found something new in the gestalt. More recently image
mosaics [FR98] are limited to creating an image from many
smaller images, and Ascii art [Wik13] to using the Ascii
character set to create an image. Outlines or contour lines
of 3D shapes are often used to help teach art students about
shading. These are examples of imposing constraints on an
artist, where perhaps other methods would produce more re-
alistic shading. An artist can become paralyzed by innumer-
able choices and imposing a constraint can free the artist in
the hope that a style might emerge. In our work the math-
ematical constraint on a contour (polyline) is that it should
form part of a space filling curve. To create shading an artist
has to operate under this constraint. Each of these methods
are characterized by their imperfections, a concept known in
Japanese art as ‘Wabi-Sabi’ [Pow04].

2.2. Drawing Space Filling Curves

Prusinkiewicz in his book with Lindenmeyer classifies space
filling curves as FASS curves (an acronym for space-filling,
self-avoiding, simple and self-similar) [PL96]. One such
curve is the Flowsnake curve, invented by mathematician,
Bill Gosper in the early 1970s, was made popular by Mar-
tin Gardner in his Scientific American article in 1976,
[Gar76], and more recently some variations were published
by Fukuda et al in [HMG01].

The recursive construction can be done in several ways.
Seymour Papert’s Logo language [AD86] could be pro-
grammed to draw such a space filling curve, and he in-
troduced the concept of Turtle graphics to draw the result.
Prusinkiewicz [PL96], defines an L-system to represent the
Flowsnake. A recursive string rewriting system, which for a
particular recursion level, will produce a longer string whose
symbols can be interpreted again by turtle graphics. Another
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approach is to traverse a variation on the scene graph, in
which internal nodes are geometric transformation matrices,
leaf nodes are primitives such as a line, and graph cycles
represent recursive objects. In the work of [Wyv75], a re-
cursive graph was constructed using a simple text input lan-
guage. Examples were given of different space filling curves,
in which a numerical limit was used to define the maximum
level of recursion.

In the current work an interactive, table driven algorithm
has been introduced to produce the Flowsnake curve at dif-
ferent levels of subdivision, depending on where the user
moves the mouse. In this case speed and the ability to re-
cursively subdivide a particular hexagon according to user
input were the driving criteria for programming the curve
this way, see section 5.1.

Figure 2: Top left construction of Peano’s Nine curve level
1. Top right shows level 2, bottom left; level 3 and bottom
right a nine-curve image painted using FlowPaint.

3. Choosing a space filling curve

Space filling curves by definition tend to fill a defined area
as the recursion depth is increased. Essentially there is a cel-
lular structure to the curve. The quality that the curve must
possess to be usable by FlowPaint is that the cell can be re-
placed by a subdivided cell at the next level of recursion,
such that the points at which the curve enters and leaves the
cell are identical with the subdivided curve at the next level.
This can be seen for the square cell of Peano’s Nine-curve in
Figure 2 where each line will be replaced by a scaled down
version of the curve in the direction indicated by the arrows;
in all nine replacements. There is an option in the Flow-
Paint system to use the Nine-curve; the bottom right image

A

B

C
D

P

Q

Figure 3: Construction of Flowsnake curve. Left shows level
1 with the centre hex further subdivided to level 2. Right
shows the result without the hexes.

Figure 4: Construction of Hilbert curve is not at first sight
suitable for our FlowPaint system.

of Figure 2 (the letters ‘CAe’) was painted with FlowPaint,
but all who have used the system agree that the Flowsnake
curve is the more aesthetic choice.

The Flowsnake curve is algorithmically similar to the
Peano Nine-curve, except that it is based on a hexago-
nal grid. At level zero a line connects two vertices of the
hex skipping a single vertex; blue line PQ in Figure 3. To
progress from level zero to level one, the line is replaced
by seven scaled down versions of itself, connecting points
on the subdivided hexagonal grid (Figure 3). The line PQ is
replaced by the 7 magenta Flowsnakes, the line AB in the
figure has been further replaced by a level two Flowsnake
shown in green. The condition that has to be satisfied is that
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each line in level n−1 is replaced by the curve at level n in
such a way that the end points of the scaled down version ex-
actly matches the end points of the line that it has replaced.
Note that the level n− 1 curve is unaffected by subdividing
the neighbouring hexagon. Such a replacement is not imme-
diately possible in all space filling curves, for example the
Hilbert curve rescales the entire curve at each level, and in-
troduces new segments as shown in Figure 4. Level zero is
shown in green, level one in blue and level 2 in orange. The
extra segments are shown in red. Even this curve should be
possible to use for painting, due to recent work on half ton-
ing for images by Chung et al, which has led to a variation on
the Hilbert curve, that allows non-homogeneous subdivision
and connects the subdivided portions in an aesthetic manner,
see [CHL07]. It should be possible to extend FlowPaint to
include this type of curve in the future.

Despite other possible curves, the Flowsnake curve ful-
fills the requirements for FlowPaint and has an aesthetic ap-
peal to the computer science and art students who have used
the system. We have performed experiments on other space
filling curves, but the tools developed in this research are
demonstrated with the Flowsnake curve, although they could
be easily extended to work with other curves.

Figure 5: A simple curved path drawn using a maximum
depth of 6. The subdivided hexagons are shown on the left
and the Flowsnake curve on the right.

4. Painting with a space filling curve

In FlowPaint the artist usually uses a tablet stylus for in-
put. The artist can set a maximum and a minimum recursion
depth so that when a hex is entered the hex under the cursor
will be subdivided to the current maximum level set by the
user, see the curve in Figure 5. The maximum depth was set
to 6, both the hexagons and the Flowsnake curve is shown.
In FlowPaint the artist has the choice to see either represen-
tation or both. Hexagon colour, and Flowsnake colour can
be set independently. The hexagons (and thus the Flowsnake
curve) can also be unsubdivided by right clicking and paint-
ing. In this case a minimum depth can be set so that when an
artist unsubdivides a hexagon, the hexagon under the cursor

will be repeatedly unsibdivided until the minimum recursion
depth is reached.

Figure 6: Some examples of various brush types.

Figure 7: Close up of a 30 wide depth 6 vertical brush.

4.1. Brush Types

Several different brush types are available to the artist. The
simple circular brush subdivides every hexagon it touches to
a user set radius. Linear brushes, sample the hexagon grid
in a horizontal or vertical line, and can produce interest-
ing effects. The profile brush is similar to the linear brush
but instead of simply subdividing hexagons to the maximum
depth, the maximum depth of recursion will be set following
a normal distribution along the length of the brush, with the
maximum in the centre. The effects produced by any brush
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Colour Brush Type Width Max. Depth
magenta circle brush 1 6
green circle brush 4 6
orange circle brush 4 5
blue horizontal line brush 8 6
red horizontal line brush 15 7

Table 1: Various different brush types matching the strokes
in Figure 6

depends on its width and the maximum depth. Some exam-
ples are shown in Figure 6. Table 1 gives the details of the
type, width and maximum depth of each of the examples
in the figure. Figure 7 shows a detail of a vertical brush of
width 30, where the maximum recursion depth was set to 6.
Although the differences seem small in the figure, the artists
found the different brushes useful in creating an overall ef-
fect.

Figure 8: Level 0 and level 1 with level 0.5 in between draw
in red.

4.2. The Slow Brush

Each line in the Flowsnake subdivides into 7. A simple way
of making a level that is in-between two levels is to sub-
divide each line into 7 segments, then linearly interpolate
each of the intermediate points to their correct position in the
level+1 as shown in Figure 8. Seven segments are bounded
by 2 vertices and 6 vertices equally spaced along the line
are introduced. Each intermediate point is interpolated to the

Figure 9: Using the slow brush technique

corresponding vertex in the next level. Irving et al use a sim-
ilar technique to inflate a 2D fractal curve to 3D, see [IS13].
In FlowPaint the technique is offered to the user in an an-
imated fashion. By selecting the slow brush each click ini-
tiates an animated subdivision of one level to the next. The
animation proceeds slowly while the artist presses down the
stylus, so that they can choose at what point in the interpo-
lation to stop by relaxing the pressure. A slow ‘unsubdivide’
technique could be used to run the animation backwards in
case the artists wants to return slowly to an earlier level, al-
though this is not currently implemented. Figure 9 shows a
variety of partially subdivided levels. The image was made
by subdividing some areas more deeply than others, then go-
ing back over the levels using the slow brush technique.

5. Implementation

5.1. Linearising the FlowSnake

The Flowsnake can be viewed as seven connected line seg-
ments that suitably scaled and orientated replace each of the
line segments at the level above see Figure 10. For faster
drawing using the GPU, the drawing function was designed
to output the Flowsnake as a series of vertices in the cor-
rect order. In this way a vertex buffer can be employed to
make use of the GPU. To build the Flowsnake the initial
level 0 parent hexagon (drawn in magenta) is subdivided into
7 smaller level 1 hexagons as indicated in the figure, and
each of these hexagons is replaced by a line segment of the
Flowsnake level 1 in black. When the artist’s brush passes
over a hexagon it is subdivided and the Flowsnake of the
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Figure 10: Direction of the Flowsnake

next level drawn. In the figure all the green hexagons have
been subdivided into the grey level 2 hexagons. The red level
2 Flowsnake will replace the arrow of the level 1 snake, the
blue Flowsnake to the right replaces the next arrow and so
forth.

The way in which the hexagon and vertex numbering are
defined is explained below in section 5.2. The lower left
green level 1 hexagon is hexagon number 5 (number in green
in the centre of the hexagon) the red number 0 beside it is the
number of the centre grey level-2 hexagon.

There are two types of Flowsnake, forwards and back-
wards indicated by the black arrows in Figure 10. In the
L-system definition in [PL96] these were given symbols Fl
and Fr and the productions match the order of the arrows in
the figure. If we think of these as simply direction 0 and 1
then the arrows identify the type of each of the seven line
segments (Flowsnakes) in the the order: 0 1 1 0 0 0 1 in
the forward direction and the order 1 0 0 0 1 1 0 in reverse.
In FlowPaint instead of a string rewriting system, the Flows-
nake is implemented through some tables that avoid the stor-
age of very long strings and their conversion to turtle move-
ments. This is done in order to make use of the GPU and
save memory for more vertices (i.e. more complex Flows-
nake paintings) the algorithm that follows will use a table
drive approach to produce the curve rather than having to
process each level of the L-system.

In Figure 10 it can be seen that each hexagon is character-
ized by an input vertex (invtx) and an output vertex (outvtx)
see algorithm 1. For the number 5 green hexagon (hex-5) the
input vertex (start vertex) is vertex 0 (vertex-0) and the out-

put is vertex-2. The Flowsnake simply connects these two
vertices. The input vertex of the next hexagon (green hex-
6) is vertex-5 and the output is vertex-3; the Flowsnake is a
backwards type as indicated by the arrow.

In its path from vertex-4 to vertex-0 of the magenta level
0 hexagon (the level 0 line is not shown to avoid cluttering
the figure), the level 1 Flowsnake visits the level 1 (green)
hexagons in the order: 5604321. As long as we know the first
hexagon visited at a particular level and the direction type of
the Flowsnake, the order of the hexagons can be calculated
or in our implementation looked up in a table. Similarly the
matching vertex numbers of the next hexagon can be calcu-
lated (also stored in a table) so that at any level the input and
output vertices can be calculated and the Flowsnake drawn
in the correct order. In overview:

1. subdivide the parent hexagon into seven hexagons
2. number the hexagons and their vertices, and build the h-

table.
3. determine the input and output vertex of each of these

hexagons.
4. draw the Flowsnake by connecting the input and output

vertices sending the results to the vertex buffer.

Steps 1-3 are only executed on subdivision, but drawing
can occur at any time.

5.2. Building and numbering the hexagons

In our system the data structure (see section 5.3) for a
hexagon is simply called; hex. Each hex is constructed so that
vertex-0 is the extreme rightmost vertex, and the vertices are
numbered in counter clockwise order. When the hex is sub-
divided into 7 smaller hexagons (the data structure for this is
a hexring) the hexagon in the centre is always 0 and the hex,
which has a vertex in common with vertex-0 of the parent
hex is number 1 and the hexagons are numbered sequentially
in counterclockwise order, see the green hexagons in the fig-
ure. The relevant numbers in the centre of each hexagon are
also in green. Now we have a consistent hex and vertex num-
bering system. The actual coordinates of the hex are stored
in the hex data structure when the hex is created. Once the
correct vertex numbers of the Flowsnake are calculated, a
simple look-up produces the actual coordinates.

5.3. Data Structures

Two mutually recursive classes form the basis of FlowPaint.
Each hex refers to its parent ring of hexagons (hexring), and
also keeps a reference to its child hexring. The hexring keeps
track of it’s child hexes and it’s parent hex. The hexes are
generated by the parent hexring. They are assigned a Flows-
nake type (forwards or backwards) and a set of tables are
calculated to facilitate indexing the Flowsnake coordinates
(details in Section 5.4). The process starts with an initial hex.

When working out the geometry of the subdivision as
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shown in Figure 3, the parent hexring is not precisely sub-
divided into hexes (hexagons do not pack as do squares), the
triangle marked D is outside the parent hex but inside one of
the child hexes. Fortunately there is an identical triangle (C
in Figure 3) that is inside the parent hex but outside all the
children. Since these triangles come in pairs the area of the
parent hex is identical to the sum of the areas of the child
hexes. Thus the ratio of the side of the parent hex to the side
of a child hex is

√
7.

5.4. Calculating the Tables

The first table simply indicates the type of Flowsnake (for-
wards or backwards). When a hex is subdivided we know the
parent type and can thus label each hexagon with the type
of Flowsnake taken from the appropriate table: i.e. forwards
(type 0 parent) is : 0 1 1 0 0 0 1 and backwards (type 1 par-
ent) is: 0 1 1 1 0 0 1. When the smaller hexes become parent
hexes their type is taken from the appropriate table.

A table, called the h-table, stores the hexagon order along
the path of the Flowsnake for the hexring. This is calculated
from knowing the type of the parent. At any level the par-
ent hex is subdivided into 7 hexagons (a hexring). The child
vertex numbering is taken from the parent. In Figure 10, it
can be seen that vertex-0 of each of the green hexagons, is
the vertex coincident (shared) with a vertex of the magenta
parent. Thus the start and end points of each Flowsnake are
given by the numbering of the parent’s vertices. The black
Flowsnake connects the vertices of the green coloured child
hexes as follows: 02 35 35 35 24 35 02 taking into account
the direction of the Flowsnake. By knowing the numbering
of the vertices of the parent hex, the subdivided hexagons are
appropriately numbered and the vertices connected using the
correct direction definitions. Each of the child hexes is num-
bered (0 to 7 with 0 always in the centre) and the correct
hex numbers on the path of the two different types of Flows-
nake are held in tables. As a hexring is entered there is an
offset (modulo 7) added to the table depending on the num-
ber that was assigned to the parent hex in it’s own hexring.

The tables are set up once, when a hexring is initialized.
When drawing occurs the tables simply supply the correct
input vertex and output vertex (outvtx) for the hex that is be-
ing processed. The drawing function ensures that the vertices
are sent to the vertex buffer in the right order (i.e. always
drawing in the forward direction).

On generating a hexring, algorithm 1 is used to correctly
order the hexagons in the h-table.

Having found the hex numbers along the Flowsnake path
within a hexring, the next step is to find input and output
vertices for the seven child hexes. This can be found eas-
ily from the parent input and output vertices. By choosing
that every vertex on the parent corresponds to vertex-0 of
the child, means that the numbering of shared vertices on
neighbouring child hexes is constant. Vertex-0 and vertex-1

Algorithm 1 Finding the 7 Hexagons along the Flowsnake
if notset(parentHexNum) then

h[0]← 5 % level 0 hex
end if
if parentType == 0 then % not level 0 hex

if h[0]<0 then
h[0]← (parent->getInvtx() +1) MOD 7

else
h[0]← (invtx+1) MOD 7

end if
h[1]← (h[0] MOD 6) + 1
h[2]← 0
for (i = 3; i < 7; i++) do

h[i]← ((h[0]+7-i) MOD 6) + 1)
end for

else
if parentHexNum ==0 then % centre hex

h[0]← getgparentphex(0) % same number
as in the h-array of grandparent

else
h[0]← (outvtx+3) MOD 7

end if
h[1]← (h[0] MOD 6) + 1
h[2]← ((h[0]+1) MOD 6) + 1
h[3]← ((h[0]+2) MOD 6) + 1
h[4]← 0
h[5]← ((h[0]+4) MOD 6) + 1
h[6]← ((h[0]+3) MOD 6) + 1

end if

are not shared (see Figure 10), and the other 4 are num-
bered as follows: 2 5, 3 4, 4 3, 5 2. I.e. The 2 5 means that
vertex-2 on hex-5 is the same vertex as vertex-5 on hex-6. As
described above the correct hex numbers are in the h-table.

The centre hex has to be treated separately as unlike the
other hexes, each vertex is shared with two other hexagons,
so the correct vertex numbers depend on the next hex on the
path. The input vertex of the centre hex is the same vertex as
the output vertex of one of the surrounding hexes. All these
surrounding vertices are numbered either 3 or 4. In practice
only vertex-3 is ever chosen so it can be seen from the figure
that the chosen vertex on the centre hex will be the number
of the previous hex minus 1. This gives the input vertex. E.g.
The Flowsnake goes from hex-6 to hex-0. So hex-6 (vertex-
3) is the shared input vertex to the centre hex in Figure 10,
so the input vertex of the centre hex will be 6−1 = 5, (green
vertex-5 in hex-0). The output vertex of the centre hex de-
pends on the type of Flowsnake and is either two to the left
or two to the right of the input vertex.

5.5. Brush and animation implementation

Each brush is represented by a set of point samples that are
then tested against the top level hexagon mesh. If a point lies
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within a hexagon it is subdivided into a hexring and the point
tested recursively in the child hexes. The process terminates
when the current maximum limit is reached. For the slow
brush the drawing routine is called while the mouse is down
and each call increases the linear interpolation towards the
next level. After some trial and error the increment at each
mousemove call was set to be 0.05, which the artists who
have worked with the system find acceptable. The density
of point samples in a brush affects performance (see future
work section). In the future offering artist controlled brush
density should enable more effects to be implemented.

Animation is also handled using the slow brush technique.
To morph between a line and a completed Flowsnake is sim-
ply a matter of dividing the line successively into seven seg-
ments, interpolating the points towards the target points in
each hexring and continuing recursively. It may be more ef-
ficient to store the vertex buffers of each frame, but would
require a lot of memory for large Flowsnakes.

Figure 11: Flow Tree by Ruby Arnold

6. Case Studies and Results

Several art students and recent graduates of the University
of Victoria were asked to use the system, to produce some
artwork of their choice and to comment on the tools and fa-
cilities offered. Rhea Lonsdale graduated with a Bachelor of
Fine Arts with Great Distinction with a major in Studio Art,
and a minor in Digital Culture and New Media. Ruby Arnold
from the Visual Arts department graduated in 2013 and holds
a Bachelor of Science from the faculty of Fine Arts having
done a combined major in Visual Arts and Computer Sci-
ence. Hovey Eyres is a current student in the Faculty of Fine
Arts.

Hovey Eyres produced Figure 14 in about half an hour in
her second session with FlowPaint. Figure 15 is a detail of
Marilyn’s right eye. Rhea Lonsdale produced the vase in Fig-
ure 12 in a few minutes after using the system for an evening.
She spent an hour producing Figure 13, but part of that time

Figure 12: Vase by Rhea Lonsdale

was spent figuring out a workflow for doing hatching (see the
comments). Ruby Arnold made the teaser image (see Fig-
ure 1). None of the students enhanced the images with other
software, but in the teaser image the artist painted a back-
ground and imported it into FlowPaint. The tree without the
background is shown in Figure 11.

Figure 15: Detail of Marilyn’s right eye
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Various other students used the system and commented,
but preferred to remain anonymous.

Quotes from the art students:

“FlowPaint is reminiscent of contour drawing, a tech-
nique in which an artist uses a single, unbroken line. Contour
drawing is a common method for artists to gain proficiency
in rendering from life without the use of value and shading.
Despite constricting users to a similar unbroken line, Flow-
Paint lends itself to representation which uses value. The line
itself is difficult to control to create complex representations
without relying on value to create shapes, and value is cre-
ated by means of the density of the folding line as it subdi-
vides. The resulting drawing is thus not unlike pointillism or
even ASCI art, wherein broken singular points and individ-
ual characters respectively are used to build value.”

“I like working under the constraints of the system. What
ever you do a continuous line is produced. You can always
see the start point just left of the bottom of the image, and
the end point on the extreme right. ”

“The FlowPaint application is a unique experience in dig-
ital image creation. Most methods mirror the traditional aes-
thetics of pencil, pen and paint. The images created using the
Flowsnake application are genuinely digital, which makes
both the process and results quite interesting”

“FlowPaint as an art tool is interesting as it enables
the making of geometrically complex drawings which have
essential qualities, which divert from traditional drawing.
Some of the limitations of control encourage exploration,
such as the speed of the cursor as it draws when using high
depth. In doing so the artist experiences a lag from cursor
movement to lines drawn, and it’s within this constraint that
techniques such as scattering can be used to draw. By rapidly
sketching with a high brush width vertically or horizontally,
one makes marks more similar to those found in traditional
drawing, such as crosshatching. Ultimately, the tool rewards
creative approaches to its unique qualities as a medium.”

Several students commented that hand movements using
very wide brushes had to be slow as the system could not
keep up and some drop out occurred. In other words the
mouse movements were missed as too much processing was
going on with multiple hexagons being subdivided. Mean-
while Rhea Lonsdale took advantage of the sparse effect cre-
ated by the wide brush to obtain a cross hatching effect. She
demonstrates this in the accompanying video but also it can
be seen in her work shown in Figure 13.

The unsubdivide brush was quite popular, and although
useful, does not replace ‘undo’ as was our original design in-
tent. Students also wanted better colour control, particularly
for the colour to be taken continuously from an underlying
image, providing the ability to overpaint the image with the
Flowsnake.

Nearly all the students liked the fact that the image is con-
structed from a single line that forms a space filling curve.

Like other accepted artistic methods, zooming in reveals in-
teresting details.

Figure 16: Two space filling curves generated from images:
Left a space filling version of Hilbert (software by Neil Bick-
ford) and right Flowsnake created using FlowPaint. The pro-
cedure which replaces grey areas by a corresponding Flows-
nake, using the slow brush technique to create grey between
the fixed recursion levels.

7. Conclusion and Future Work

In this work we have demonstrated that it is possible to
use space filling curves, particularly the Gosper Flows-
nake, to construct brushes that leave a trail that is a non-
homogeneously subdivided space filling curve. Several dif-
ferent tools have been demonstrated to help produce artistic
effects. Some artwork was produced by several artists and
were generally enthusiastic about the technique, and thought
that the results demonstrated a new style.

In the future, the range of brush types will be expanded
to explore better colour control as well as the use of profile
brushes at different scales with user defined profile curves
that control the subdivision of the surrounding cells. It is a
current limitation of the system that a wide circular profile
brush, slows response time. This depends on both width and
depth of subdivision.

Images can also be represented by non-homogeneous
curves and work in this area inspired Neil Bickford (a high
school student ) to develop a method for a Hilbert Curve 16.
The figures show subdivision according to some underlying
feature such as the grey level of a particular area. Other met-
rics for saliency could also be explored. The ideas offered
in the artist’s comments will also be used to achieve better
colour control, as well as exploring new ways to allow the
artist to control subdivision.

Although artists can unsubdivide a hexagon, it does not
completely replace the ’undo’ command. Limited undo can
be implemented by pushing references to each hex as it
is subdivided, onto a stack and unsubdividing. Undoing an
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‘unsubdivision’ would also be possible by subdividing. The
amount of available memory would limit the stack size. All
the recursion levels used are in the vertex buffer even if at
the current zoom level they are not in view. Thus the artist
will find some limitations in speed when the buffer can no
longer be held on the GPU. A better approach would be to
store on the GPU only what is actually displayed on screen
to alleviate this problem. The second issue is that recursion
levels that are deep relative to the current scale will result
in vectors that are smaller than a pixel, and thus should not
be stored in vertex memory. Implementing these improve-
ments would be straightforward and again help relieve the
GPU memory issue.
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Figure 13: Victoria by Rhea Lonsdale
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Figure 14: Marilyn by Hovey Eyres
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