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Figure 1: Example of an automatically processed color image using our stylization technique with 20 derived color tones.

Abstract
This paper presents an approach for transforming images into an oil paint look. To this end, a color quantization
scheme is proposed that performs feature-aware recolorization using the dominant colors of the input image. In
addition, an approach for real-time computation of paint textures is presented that builds on the smoothed structure
adapted to the main feature contours of the quantized image. Our stylization technique leads to homogeneous
outputs in the color domain and enables creative control over the visual output, such as color adjustments and
per-pixel parametrizations by means of interactive painting.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Computer Graphics]: Image Processing and
Computer Vision—Enhancement—Filtering

1. Introduction

Image-based artistic rendering received significant attention
in the past decades for visual communication, covering a
broad range of techniques to mimic the appeal of artistic me-
dia [KCWI13]. Oil paint is considered to be among the most
popular of the elementary media because of its qualities for
subtle color blending and texturing [Sco05]. Simulating the
visual characteristics of oil paint via image filtering, however,
is a difficult task with respect to two main issues:

† http://www.hpi3d.de | http://www.cg.tu-berlin.de

I1 The color distribution should be optimized to conform
with a global color palette while preserving main feature
contours.

I2 The paint texture should be oriented to the main feature
curves to mimic the way an artist might paint with a brush.

In this work we present a technique for image styliza-
tion that employs (re-)colorization and non-linear image fil-
tering to devise artistic renditions of 2D images with oil
paint characteristics. Rather than attempting to simulate oil
paint physically-based [BWL04, LBDF13] or via aligned
strokes [Hae90, Her98, HE04, ZZXZ09], this work formu-
lates I1 and I2 as sub-problems of image filtering. The first
problem is solved by performing a recolorization, using the
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optimization-based approach of Levin et al. [LLW04], with
the dominant colors of the input image for quantization. This
approach produces more homogeneous color distributions
than local image filtering techniques and gives users more
control in refining global color tones. The second problem is
solved using the smoothed structure tensor [BBL∗06], which
is adapted to the feature contours of the quantized output, and
bump-mapped to obtain flow-based paint textures in real-time.
Furthermore, we propose an interactive painting interface that
enables GPU-based per-pixel parametrizations via on-screen
painting metaphors, enabling user-defined flow directions and
paint texture shading. Finally, the quantized output and paint
textures are blended to compose the final image (Figure 1).

The remainder of this paper is structured as follows. Sec-
tion 2 reviews related work on image stylization and filtering,
color quantization, and paint texture synthesis. Section 3
presents the methods used for image stylization with oil
paint characteristics. Section 4 presents further results and
implementation details, and states ideas for future work. Fi-
nally, Section 5 concludes this paper.

2. Related Work

Related work is found in the fields of image stylization and
filtering, color quantization, and paint texture synthesis.

Image Stylization and Filtering. For artistic image styliza-
tion one can basically distinguish between (1) stroke-based
and example-based methods, (2) region-based techniques,
and (3) image filtering [KCWI13]. A classical method for
stroke-based stylization is to iteratively align brush strokes
of varying color, size, and orientation according to the input
image [Hae90,Her98,GCS02,HE04,ZZXZ09,ZZ10,LSF10].
For an overview on this topic we refer to the survey by
Hegde et al. [HGT13]. An essential building block for region-
based stylization is segmentation. Several methods based
on a mean shift have been proposed for image abstraction
[DS02, WLL∗06] and the simulation of artforms and fabrics,
such as stained glass [Mou03] and felt [OM06]. However,
the rough boundaries of the segmented regions created by
these methods would require elaborate post-processing to
achieve color blending characteristics of oil paint. To modify
areas or image regions more abrasively, local image filter-
ing that operates in the spatial domain may be used, which
is often based on anisotropic diffusion [Wei98]. A popular
choice is the bilateral filter, which works by weight averag-
ing pixel colors in a local neighborhood according to their
distances in space and range [TM98], e.g., for image-based
abstraction [WOG06]. Flow fields have been used to adapt
bilateral filtering [KD08, KLC09] and particle-based tech-
niques [YLK12] to local image structures. In this work, quan-
tized color outputs are smoothed by flow-based Gaussian fil-
tering to provide smooth interpolations at curved boundaries,
however, we restrain from weighting in the color domain to
achieve firmer color blendings. Additional filter categories in-
clude morphological operations based on dilation and erosion

(e.g., for watercolor rendering [BKTS06]), and global opti-
mization schemes for image decomposition, such as weighted
least squares [FFLS08], local extrema for edge-preserving
smoothing [SSD09], and L0 gradient minimization [XLXJ11].
However, these techniques are less suited for rendering with
a constrained color palette, which instead requires filtering
schemes found in color quantization.

Color Image Quantization and Abstraction. The original
goal of color quantization is to approximate an image with
a relatively small number of colors while minimizing color
abbreviations. Popular approaches are based on the median-
cut algorithm [Hec82], clustering using octrees [GP88], k-
means [KMN∗02], and adaptive segmentation via perceptual
models [CPMR05] or roughness measures [YMC∗14]. How-
ever, these algorithms may absorb colors because of their
global optimization scheme, or only consider the color space.
Other approaches also consider the spatial space via local
luminance mapping and thresholding [WOG06], and in its
optimization scheme to preserve image details [YLS14], but
are mainly self-organizing with respect to the derived color
palette. By contrast, we propose a technique that derives
colors from local image regions using a scoring system for
optimal distribution, and uses the derived color palette for
image quantization. At this, the optimization framework of
Levin et al. [LLW04] is parametrized to propagate seed pixels
(using colors of the derived palette) to the remaining pixels
at the premise that pixels in space with similar intensities
should have similar colors, with an additional pass for lumi-
nance quantization. The output is then post-processed using
a flow-based Gaussian filter to provide firm color blendings.

Interactive Paint Texture Synthesis. Contrary to
physically-based paint modeling [CBWG10, LBDF13], we
separate the paint texture synthesis from color abstraction.
Our computation is based on the smoothed structure
tensor [BBL∗06] and an eigenanalysis to obtain gradient
and tangent information for directed smoothing similar
to [KD08]. The smoothing pass is adapted to the main
feature contours retrieved via the flow-based Laplacian of
Gaussian (FLoG) [KK11] to avoid ringing artifacts and
provide outputs with adaptive detail. Similar to [Her02],
line integral convolution [CL93] and bump mapping via
a Phong-based shading [Pho75] are used to synthesize
a normal-mapped height texture that is aligned to the
local feature orientations. Our computation performs in
real-time and is defined as a composition of ordered,
parametrizable image processing steps, thus it may also
be injected by user-specified motions [HE04, OMG05] via
painting [HH90]. In contrast to placing dynamic or static
rendering primitives [SIMC07], we extend the concept of
specialized local parametrizations [AWB06, TABI07] to a
generalized brush-based painting within effect-parameter
spaces, which is exemplified for local orientation and shading
corrections (e.g., glossiness of water).
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1. Color Palette Extraction

2. Seed Placement and Propagation 3. Colorization and Luminance Quantization

5. Flow Extraction 6. Paint Texture Computation

*

*

7. Image Smoothing

4. Edge Detection

Contours (DoG)

Seed Placement Color Seeds (Re-)colorized Quantized Smoothed

Flow Field Brush Texture Varnish TextureSigned FLoG

Input Output

Figure 2: Overview of the different stages performed for our stylization technique that automatically transforms color
images (left) to filtered variants with an oil paint look (right). For a detailed description of the filtering stages the reader is
referred to Section 3.

3. Method

An overview of our stylization technique is shown in Figure 2.
The processing starts with extracting a user-defined num-
ber of dominant colors from the input image (Section 3.1).
Next, the recolorization based on the optimization approach
by [LLW04] is performed to quantize the chrominance and
luminance channels based on the derived color palette (Sec-
tion 3.2). In parallel, contour lines are extracted from the in-
put image via difference-of-Gaussians (DoG) and Laplacian-
of-Gaussians (LoG) filtering, where the latter is used for
flow field computation (Section 3.3). The computation is
based on the structure tensor [BBL∗06], which is adaptively
smoothed according to the derived contour lines to avoid fil-
tering across feature boundaries. An eigenanalysis is used to
obtain gradient and tangent information for line integeral con-
volution [CL93]. The synthesized flow image is then bump-
mapped and Phong-shaded to obtain the paint textures. In
addition, the local orientation information is used for flow-
based Gaussian smoothing of the quantized output. Finally,
the color image and paint textures are blended to compose the
final result. The filtering stages are presented in more detail
in the following sections.

3.1. Dominant Color Extraction

To simulate the way artists paint with a limited number of
base colors, dominant (and contemporary) colors need to
be derived from the input image. Common approaches use
global optimization schemes that cluster similar colors and
determine the base colors from the largest clusters, such as the
median-cut algorithm [Hec82]. These approaches, however,
may produce false colors or absorb contemporary colors.

Our approach computes a color palette P with colors de-
rived from local image regions of the input image. The main
idea is to use a scoring system to classify image regions ac-
cording to their normalized entropy by penalizing the extrac-

tion from features with similar colors. The color extraction
is performed incrementally, starting with an empty palette.
Extracted colors are inserted after each iteration.

Suppose that a color palette P is given. To find a new color
for the palette, we seek for an image region R with minimal
score

S(R) = η(R)
|R| · ω̄ · L̄

. (1)

Here,

η(R) =− ∑
c∈R

pR(c) log2 pR(c) (2)

is the the entropy of the image, computed from the probabili-
ties pR(c) that a certain color c appears in the image region R,
and |R| denotes the area of the region. In addition, the region
score is weighted according to the average lightness

L̄ =
∑p∈R L(p)
|R| , (3)

to prefer vivid colors. For the lightness L, gamma corrected
intensities as defined by the sRGB standard are used. Finally,
the region score is weighted according to the average mini-
mum color distance,

ω̄ =
∑p∈R ω(p)2

|R| with ω(p) = min
c∈P

∆E
(
I(p),c

)
, (4)

to colors in the current palette P to favor colors not yet
present, where I corresponds to the input image.

To find a region with minimum score we proceed heuristi-
cally, using the following algorithm. The steps are performed
iteratively in CIE-Lab color space, n-times in total for a target
palette size of n:

1. Color Difference Mask: ω is precomputed via the mini-
mal color distance (∆E) for pixels in I to {c ∈ P}.
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Figure 3: Overview of the region selection (horizontal pass).

Mask 4Mask 3Mask 2

Mask 7Mask 6Mask 5

Input

Color Guess #5 Color Guess #5

Vertical Scanlines / Step 2(a) Horizontal Scanlines / Step 2(b)

Figure 4: Color difference masks computed for a test image
with 8 colors (including white), overlaid by the color extrac-
tion regions. The region scores for the fifth color guess are
shown at the bottom.

2. Region Search: Regions are computed for the horizontal
and vertical scanlines of the input image. The color is
extracted from the region with the better score (Figure 3):

a. First Pass: S(R) is computed for all regions of width
τ > 0 along the horizontal/vertical scanlines. The scan-
lineMx with minimal S(R) is determined.

b. Second Pass: The first pass is repeated for the orthog-
onal scanlines, bounded by the region defined atMx.
The scanlineMy with minimal S(R) is determined.

c. Area Computation: S(R) is computed iteratively for
growing horizontal and vertical boundaries around
pixel (Mx,My) until a minimum value is reached.

3. Color Extraction: Once a region R with minimum score
has been identified, a representative color is extracted from
the region and inserted into the palette P . Thereby, the
representative color is computed by finding a mode in the
box-filtered histograms of the chrominance channels.

An example of the iterative computation of dominant col-
ors, color difference masks, and optimal region selection is
given in Figure 4.

Discussion. For all examples in this paper we set the width
for the region search to τ = 3 (step 2a) and sorted the colors
in P by their weighted count in the input image (i.e., if ∆E <
ξ) and color difference to previously sorted colors. We em-
pirically determined ξ = ∆E∗ab = 7 as a good default value
for thresholding, where ∆E∗ab ≈ 2.3 corresponds to a just no-
ticeable color difference in CIE76 [MEO94]. Our algorithm

a b c
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Ours

Median
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d e f

Median
Cut
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Cut

Ours

Median
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Figure 5: Comparison of the median-cut algorithm to our
approach for dominant color extraction (the 10 dominant
colors are sorted from left to right).

is compared to the median-cut algorithm in Figure 5. Notice
how colors of single features are accurately represented and
not merged with colors of other features (e.g., the butterfly
in Figure 5a, the eagle’s beak in Figure 5c, the guitar in Fig-
ure 5e, red tones in Figure 5f). Further, we noticed that our
approach is more resistant to noise as one can observe by the
green background in Figure 5c, where a clustering approach
may also derive side tones. Furthermore, we observed that
the number of color extractions significantly affects if im-
age features are accurately represented or not. To this end,
one could use a metric to control the color coverage, e.g., to
derive colors until the maximum and/or mean of the color
difference mask (ω) falls below a given threshold. This way,
more colors could be derived for colorful images without
parameter adjustments. Finally, we believe that the accuracy
of our algorithm can be further improved when using a gener-
alized region growing technique to derive colors from feature-
aligned (non-rectangular) regions, but which remains subject
to future work.

3.2. Image Quantization using Colorization

Our goal is to quantize the input image I using the extracted
dominant colors. We formulate this task as an optimization
problem, performing a (re-)colorization [LLW04]: Given the
intensity of the input image and a number of colored seed pix-
els, the colors should be propagated to the remaining pixels
such that pixels with similar intensities have similar colors.
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Figure 6: Image quantization using the algorithm described in Section 3.2 with a palette of 26 colors and α = 5.5 for automatic
seed placement. The optimization problem was iteratively solved with the “generalized minimum residual” method [SS86].

intensity

pixels

intensity

pixels
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Figure 7: Comparison of our quantization method with the
median-cut algorithm. Notice how our approach preserves
feature contrasts at a better scale. The smoothed quantization
result is based on a flow-based Gaussian filter [KD08].

First Pass: Colorization. The optimization is performed
with the constraint that seed pixels c(ri) are set to the respec-
tive color component of the dominant color cp in P with
minimal distance:

c(ri) = argmin
cp∈P

∆E(cp, I(r)) (5)

if and only if the minimal color distance falls below a thresh-
old α > 0. For a given color channel C, the recolorized chan-
nel C′ is then computed via the objective function

argmin
C

∑
r

(
C(r)− ∑

s∈N (r)
wrs C(s)

)2
,

subject to C(ri) = c(ri) for i ∈ Seeds

(6)

where wrs denotes the squared difference between the lu-
minance values of the pixels r and s, and N (r) being the
8-connected neighborhood of r. The objective function then
yields a large sparse system of linear equations that is solved

No Quantization α = 11, 26 colors

α = 4, 14 colorsα = 7, 20 colors

Figure 8: Example for adjusting the seed placement thresh-
old α and size of the color palette to control the level of
abstraction.

for both chrominance channels of the input image in CIE-
Lab color space using the “generalized minimum residual”
method [SS86].

Second Pass: Luminance Quantization. We introduce a
second pass for luminance quantization, where the objective
function is used to recompute the luminance channel. To this
end, we reformulate the weighting function wrs to compute
the squared difference between the two hue values at pixels
r and s of the recolorized image in HSV color space. The
recomputed luminance channel is then combined with the
color channels of the first pass and results in a recolorized
image with potential color transitions within regions.

Discussion. Examples using our method are presented in
Figure 6 and Figure 7. Contrary to traditional quantization
methods, we observed that our approach produces outputs
with better color contrasts, primarily because of the scoring
system introduced in Section 3.1. The threshold for automatic
seed placement should be set greater or equal to the threshold
used for the color extraction to use all colors of the derived
palette, e.g., α = ξ = 7 as a good default value. The threshold
may also be set lower, i.e., to initially place fewer color
seeds and thus induce more color blendings, which may be
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Input [Xu et al. 2011] Our Approach

Figure 9: Comparison of image smoothing via L0 gradi-
ent minimization [XLXJ11] with our quantization technique,
combined with the output of a DoG filter, for JPEG artifact
removal.

combined with minimizing the sorted color palette to control
the level of abstraction (Figure 8).

Finally, we experimented using our method for JPEG ar-
tifact removal of clip-arts (Figure 9), where our approach
produces accurate results and may also be used to easily
redefine single colors.

3.3. Paint Texture

Oil painting is a time-consuming process that often comprises
multiple layers of paint and drying phases. During finishing,
thin protective layers (varnish) may be coated onto the paint
for protection against dirt and dust, and to even out its final
appearance. This yields two basic characteristics of oil paint
textures: (1) reliefs of varying thickness according to the used
brushes and applied number of layers with (2) a matt or glossy
tint. The first may be perceived as subtle shading or shadow-
ing that is caused by external, off-image illumination, and the
second as specular highlighting. To simulate both characteris-
tics, first, a flow image is synthesized using the gradient and
tangent information for line integral convolution [CL93].

Adaptively Smoothed Structure Tensor. Local orientation
information is derived from an eigenanalysis of the smoothed
structure tensor [BBL∗06], a method that provides stable
estimates and can be computed in real-time [KD08]. Because
the quantized image may provide large areas of solid color
tones, structure tensors with low gradient magnitudes are
replaced by inpainted information for relaxation and to avoid
singularities. For a detailed description of the integration
and inpainting process we refer to [KK11]. In addition, we
perform an adaptive smoothing of the structure tensors to
avoid filtering over feature boundaries to obtain more accurate
results (Figure 10). The basic idea is to derive the sign of the
flow-based Laplacian of Gaussian (FLoG) for thresholding.
The Gaussian filter kernel is then adapted to exclude pixel
values from weight averaging when the difference in the

Quantized Input Smoothed Flow Field

Structure Tensor With Relaxation

Signed FLoG With Adaptive Smoothing

Figure 10: Enhancements for the smoothed structure tensor
(here: σ = 8) to derive flow fields. Middle: relaxation to
avoid singularities, bottom: adaptive smoothing based on the
signed FLoG.

Brush Texture Varnish Texture

Wood NoiseWhite Noise

Figure 11: Paint textures computed for the flow field in Fig-
ure 10 and parameters K = (8.0,10.0,3.0,8.0).

signed FLoG to the origin pixel reaches a given threshold,
e.g., when the sign flips while crossing feature boundaries.

Paint Textures. Line integral convolution [CL93] is per-
formed along the stream lines defined by the minor eigenvec-
tor field of the adaptively smoothed structure tensor. Procedu-
ral monochromatic noise is blurred in gradient flow direction,
which is interpreted as fine-grained height variations with
normals N and illuminated using a directional light source L.
Principles of Phong shading [Pho75] are then used to render
the brush texture TB and varnish texture TV with pixels p∈ P:

TB(p) = 0.5+N(p) ·L,

TV (p) = kspecular · (N(p) ·L)kshininess .
(7)

At this, a set K = (σb,kscale,kspecular,kshininess) is used to
parametrize the brush and varnish textures (Figure 11), where
σb and kscale control the smoothing and relief strength of
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the brush texture, and the other parameters are used for the
varnish texture. We experimented with different noise im-
plementations and observed that high frequency noise with
no specular highlights simulate brush characteristics quite
naturally, while low frequency, discontinuous noise and sub-
tle specular highlights work well to simulate varnish. The
computation of the paint textures is local and fast, and thus
enables interactive per-pixel parametrizations (Section 3.4).

Image Composition. The quantized image is post-
processed by a Gaussian filter that is adapted to the
local orientation to create smoothed outputs at curved
boundaries [KD08]. Finally, the brush texture is multiplied
with the smoothed color image, and the intermediate result
is blended with the varnish texture using linear dodge as
blend mode. Optionally, contours are enhanced by using a
flow-based difference-of-Gaussians filter [KLC09].

3.4. Interactive Painting

When tweaking the output of an image filter, users typically
strive for a global parametrization-trade-off that corresponds
to multiple visual requirements in different image regions.
Recently, consumer photo-editing products started to extend
the concept of non-destructive per-pixel parametrizations
from alpha masking to a small set of image computations
(adjustments) by means of parameter masks. We extended
this approach by exposing selected filter parameters as image
layers that can be parametrized via painting metaphors. This
enables (1) more artistic control over the stylization process,
and (2) the modification of intermediate filters outputs with
an inadequate local parametrization (Figure 12).

Our method extends the concept of a specialized, locally
computed parametrization [TABI07] to a generalized config-
uration by brush-painting within parameter spaces of local
image filters. At this, parameters are encoded as parameter
maps and adjusted via virtual brush models according to
well-defined operation sequences. Thereby, we denote the
following conceptual objects:

• A parameter map is a typed map that substitutes a uniform
filter parameter and can be manipulated by actions.

Automated Parametrization Locally Painted Parametrization

Figure 12: Failure case of a filtering result and its man-
ual correction using our painting interface for per-pixel
parametrization.

Path

Brush Shape

Brush Stroke Parameter Maps

Actions Input

Filtered

1. Select Brush Shape and Setup Actions 5. (Re-)filter Image4. Apply Actions
to Parameters Maps

2. Draw Path 3. Derive Stroke

Figure 13: Schematic overview of our per-pixel parametriza-
tion interface: brush strokes are derived from drawn paths
and applied to selected parameter maps. The maps’ modified
local parameters are then used to (re-)filter the image.

Automated FilteringInput

Painted Water RipplesPainted Noisy Water

Smoothing Structure Tensor Shininess

Figure 14: Example of manual corrections made for parame-
ter layers used as input for the paint texture synthesis: smooth-
ing of the flow field, flow direction, and shininess.

• A brush provides a sequence of actions mapped to param-
eter maps (map-action pairs) weighted by a brush shape.

• A brush shape maps interpolated user input (e.g., position,
direction, pressure) to action-compliant input masks (brush
strokes). Brush shapes can be of arbitrary complexity,
e.g., 3D brushes [CBWG10], and are encoded as distance
maps for local weighting of actions.

• Actions define local computations to modify parameter
maps, e.g., add or blur. An action is filter-independent and
can be assigned to any supported parameter map.

This hardware-accelerated process is schematized in Fig-
ure 13 and is used to locally adjust the parameters defined by
the set K for the paint texture synthesis. An example is given
in Figure 14.
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4. Results

We have implemented the dominant color extraction us-
ing C++, the colorization and filtering stages on the GPU
with CUDA, and the painting interface with Qt. Using an
Intel R© XeonTM 4× 3.06 GHz and NVidia R© GTX 760,
a 800× 600 pixel image is processed in 50 seconds for a
palette size of 25. The color extraction is currently the limit-
ing stage, followed by the colorization, and the paint texture
synthesis that performs in real-time for images with HD res-
olution. We observed that the color extraction also provides
stable estimates when processing downscaled images (up to
the second pyramid level) to speed up the processing by a
factor of two.

A collection of images processed by our technique is
shown in Figure 15. As can be seen, the level of abstraction
is adapted to the image contents, e.g., more distinct colors
were extracted in colorful images (e.g., Venice) and wide fil-
ter kernels were used for Gaussian smoothing for soft color
blendings (e.g., the girl’s face). Moreover, noise functions
play a major role for stylization, e.g., wood noise is a good
basis to simulate thick paint (e.g., the flowers) and white noise
is quite effective to simulate detail brushes (e.g., the still life).

Limitations. An inherent limitation of our technique is that
it does not reach the individual painting style diversity of man-
ual or semi-automatic approaches. Yet the proposed painting
interface gives users some local control. Further, the current
implementation does not provide a high-level control for the
level of abstraction, but requires a manual parametrization of
color thresholds. Furthermore, image features with smooth
color transitions may not be represented as desired but with
hard transitions, depending on the seed color placement. Fi-
nally, the performance of the colorization stage currently does
not enable interactive color refinements, but we believe this
issue could be alleviated by visualizing intermediate results
of the iterative solver for visual feedback.

Future Work. We see multiple directions for future work.
A major strength of our technique is that the stylization is
based on global color palettes that may be easily refined in-
teractively. Here, we plan to implement a color transfer func-
tionality to adapt the colors of the derived palette to colors
of a target palette or image. Second, the color extraction may
be generalized to support feature-aligned (non-rectangular)
regions for a more robust extraction, e.g., via region growing.
Third, adaptive colorization and filtering approaches could be
used to stylize certain image features with more detail than
other features. Here, an additional weight for image saliency
could be used to direct the color extraction and colorization
processes to the more salient features of an image, and thus
capturing more detail with respect to the derived color palette.
Finally, the extension of our technique to video is of partic-
ular interest. Here, the colorization could be extended by a
temporal constraint as proposed in [LLW04], and an optical
flow could be used to stabilize the paint texture synthesis.

5. Conclusions

In this paper, we have presented an approach for transform-
ing images into filtered variants with an oil paint look. The
proposed color extraction and colorization methods enable
to quantize color images according to their dominant color
palette. Results show that our quantization scheme is able
to represent selected image features accurately and provide
homogeneous outputs in the color domain. In addition, we
proposed an approach for real-time synthesis of paint tex-
tures that enables local refinements via interactive, per-pixel
parametrizations. Several results demonstrate the manifold
application of our approach to different genres of photogra-
phy.
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Figure 15: Image stylization results produced with our oil paint filtering technique.
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