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Fig 3. A preliminary branch condensed tree design (a) with corresponding densMAP [NBC21] projection (b). Selected branches are labelled and given a hue. Relative 
lightness encodes the average density along the branches. Points in the 2D projection are coloured by their membership to each branch to provide additional context.
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Introduction

While branches in the data's manifold can 

represent meaningful subgroups (see, f.i., 

[RM79, PZH*19]), clustering algorithms 

generally cannot detect them. Instead, 

detecting branches within clusters requires 

using a centrality metric [Car14]. 

Our branch detection method decouples 

both dimensions by detecting clusters using 

data point distances, describing the 

connectivity within the clusters as networks, 

and performing a filtration over the 

centrality to detect branches within clusters.

Data Abstraction

The primary data structure to describe is a 

condensed tree as used in the HDBSCAN* 

clustering algorithm [MH17, CMZS15]. 

Conceptually, the condensed tree can be 

seen as a directed tree structure with two 

types of nodes: segments and points. 

HDBSCAN* selects segments from the 

condensed tree based on their stability to be 

the final detected clusters. Our branch 

detection approach then constructs another 

condensed tree describing the branching 

hierarchy for each selected cluster. Figure 1 

schematically shows this construction.

Task Requirements

1. Show which segments were selected and 

communicate their stability.

2. Communicate the shape of the detected 

clusters. Figure 2 demonstrates how 

branch-condensed trees show clusters’ 

shapes.

3. Communicate the density profile over the 

cluster shapes. The existence and 

position of density maxima are important 

for interpreting the detected clusters and 

branches, as they express the variability 

and likelihood of similar observations.

Example: C. Elegans Single Cell

Figure 3A shows a preliminary branch condensed tree design summarising C. elegans' cell 

development data [PZH*19]. The design adapts [MHA17]'s condensed tree plot, showing 

segments as a hierarchically laid-out binary tree. In contrast to [MHA17]'s design, only the 

direct children of a segment are counted, rather than all children in a segment's sub-tree, 

effectively prioritising shape interpretation over stability comparison. 

Fig 1. Schematic condensed trees. Coloured circles indicate segments, and black points represent data points. Points in the sub-tree of
selected segments (A, B) also occur in the branch condensed tree; dotted arrows indicate possible data point matches.

Fig 2. Branch condensed tree captures the shape of clusters. 2D point clouds 
coloured by the detected branch subgroups (left) with their corresponding 

branch-condensed trees (right).
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Future Work:

• How to scale to multiple clusters? Simply showing numerous branch-condensed trees would not 

communicate why clusters were selected. 

• How to scale to more sub-groups? The colour coding is limited in number by distinct hues. 

• How to communicate how many local density maxima occur at a particular centrality along a branch?

Potential Alternatives

• An adapted Bubble Tree Map [GSWD18].

• A Mapper-like [SMC07] summary graph.

• A Rivet-like [LW15] exploration view.
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