
EuroVis Workshop on Visual Analytics (2017)
M. Sedlmair and C. Tominski (Editors)

Combining Cluster and Outlier Analysis with Visual Analytics

Jürgen Bernard1, Eduard Dobermann1, Michael Sedlmair2, and D. W. Fellner1,3,4

1TU Darmstadt, Darmstadt, Germany
2Universität Wien, Vienna, Austria

3Fraunhofer IGD, Darmstadt, Germany
4Graz University of Technology, Institute of Computer Graphics and Knowledge Visualization, Austria

Abstract
Cluster and outlier analysis are two important tasks. Due to their nature these tasks seem to be opposed to each other, i.e., data
objects either belong to a cluster structure or a sparsely populated outlier region. In this work, we present a visual analytics tool
that allows the combined analysis of clusters and outliers. Users can add multiple clustering and outlier analysis algorithms,
compare results visually, and combine the algorithms’ results. The usefulness of the combined analysis is demonstrated using
the example of labeling unknown data sets. The usage scenario also shows that identified clusters and outliers can share joint
areas of the data space.

CCS Concepts
•Information systems → Data mining; •Human-centered computing → Visual analytics; Information visualization; •The-
ory of computation → Active learning; •Computing methodologies → Machine learning;

1. Introduction

The identification of clustered objects is an important task in ex-
ploratory data analysis. The same holds for the identification of
outlier objects, which is, to a certain degree, a counterpart to clus-
ter analysis. Clustering is often used to aggregate the data, i.e., to
replace the entire data set by information about a small set of repre-
sentatives, e.g., to address problems in the era of big data (see, e.g.,
Jain’s survey on clustering [Jai10]). In general, cluster analysis can
be used as a means to make informed decisions about ’a series of
generalizable‘ objects. In the terminology of the visual analytics
community the granularity of analysis is raised from an elementary
to a synoptic level [AA06]. In turn, outlier analysis is often used
to explore unexpected or anomalous observations hidden in com-
plex data sets [CBK09]. As such, this elementary analysis task is
important to identify objects where generalizable statements about
the data set hardly meaningful, or do not even exist.

Based on their definitions, clustering and outlier analysis support
opposed analysis tasks. The interpretation of clustered objects and
outliers seem to refer to disjoint areas of the data space. Accord-
ingly, only few visual approaches exist where clustering and outlier
analysis are used in combination. One research question that arises
is (1) whether data objects identified by clustering algorithms and
objects identified by outlier algorithms are really disjunct in any
case? Another question is (2) whether there are use cases, in which
insights for objects about being clustered or being an outlier is im-
portant? In summary, we seek to better understand whether and
how visual analytics can benefit from visual approaches combining
clustering and outlier analysis to gain a better understanding of the
characteristics of a given data set.

This approach is related to other visual analytics approaches that
require different classes of algorithmic models. Accordingly, one
challenge is the integration of clustering and outlier analysis algo-
rithms in a visual-interactive analysis tool. This challenge comes
with the problem of weighting and conflating results of two classes
of algorithms in order to better support downstream analysis goals.
In addition, both classes of algorithms provide various algorithms
with individual parameters. Challenges exist in the visualization of
multiple algorithm results as a basis for parameter improvement
and the selection of meaningful algorithm results.

Our main contribution is a visual analytics approach that com-
bines the analysis of clusters and outliers, offering four novel ideas.
First, with the approach, users have access to clustering as well
as outlier analysis techniques and can now simultaneously analyze
patterns of clusters and outliers in a visual way. Second, our ap-
proach allows to systematically leverage multiple different cluster-
ing and outlier algorithms, including the definition and refinement
of algorithm parameters. We use dimension reduction as a means to
represent high-dimensional data in 2D for any analysis result. Small
multiples are used to show different algorithm results side-by-side,
fostering visual comparison. Users can now benefit from the char-
acteristics of different implementations, as well as from mitigating
the overestimation of single results. Third, we provide a consoli-
dation view, in which a user can interactively integrate and com-
bine the information provided by multiple clustering and outlier
analysis algorithms. Towards better supporting users in making in-
formed decisions, visual encodings are provided that resemble the
overall algorithm results from different user-selectable weighting
strategies. Fourth, in an experiment with handwritten digits data,
we demonstrate that the results of cluster and outlier analysis ap-
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Figure 1: A visual-interactive system for the combined analysis of clusters and outliers. Three outlier detection algorithms are added to the
system (left), as well as three clustering algorithms (right). Visual comparison indicates that algorithm results within both classes can differ
considerably. The Consolidation View at the center contains the condensed information of the lateral interfaces, steerable with filtering and
weighting interaction. We make two observations. First, cluster and outlier analysis results are not entirely disjoint. Second, three regions
are well clustered – and thus used for an interactive labeling task.

proaches do share common areas of the data set. In a usage scenario
using the example of labeling large unknown data collections, we
demonstrate that combining both analysis tasks can facilitate the
analysis process.

2. Related Work

Related work spans from algorithms for clustering and outlier anal-
ysis to visual analytics systems facilitating the interactive clustering
and outlier analysis.

2.1. Algorithms for Cluster and Outlier Analysis

A variety of clustering algorithms exist, just as algorithms for out-
lier analysis. The complexity of the ’design space‘ increases with
the parameters for any given algorithm. In this respect, virtually
any algorithm has specific characteristics and advantages for spe-
cific applications, respectively. In turn, using Anil K. Jain’s quote:
’there is no single clustering algorithm that has been shown to dom-
inate other algorithms across all application domains‘ [Jai10]. It
can be assumed that the situation is similar with outlier analysis.

Specific classes of clustering algorithms are partitioning-based
(e.g., k-means [Mac67]), density-based (e.g., DBScan [EKSX96]),
hierarchical (e.g., applied by Seo and Shneiderman [SS02]), or neu-
ral network-based (e.g., applied by Schreck et al. [SBVLK09]).
We refer to Jain’s survey for a recent overview [Jai10]. At a
glance, outlier detection algorithms can be differentiated into five
different classes, i.e., classification-based, clustering-based, near-
est neighbor or density-based [KN98, KShZ08, ZHJ09], statisti-
cal [DJC98, Esk00], and spectral (e.g., achieved with dimension

reduction [SZS∗16]) algorithms. This taxonomy is in line with the
survey of Chandola et al. [CBK09].

2.2. Visual-Interactive Cluster and Outlier Analysis

Various visual analytics approaches support the visualization of
cluster structures, outliers, or both. In addition, a variety of ap-
proaches support defining and steering clustering algorithms while
at least a small (disjoint) number of approaches allow steering out-
lier detection algorithms. For the sake of brevity, we require ap-
proaches to allow result visualization, as well as algorithm steering
and optimization. Basically, we identified either clustering or out-
lier approaches. Hardly any approach exists allowing the visual-
interactive definition and manipulation of clustering as well as out-
lier algorithms.

A series of approaches supports the visual-interactive definition,
manipulation, and analysis of clustering algorithms. Special char-
acteristics are the initialization and visual observation of cluster-
ing algorithms [SBVLK09], or the visual comparison of multiple
clustering results [LSPS10, BvLBS11, LKS∗15] at different granu-
larities. In addition to cluster analysis capability, some approaches
also provide visualizations that emphasize anomalies, e.g., with
calendar-based views [SBM∗14], projection-based visualizations
with outlier highlighting [WVZ∗15], or with the parallel coordi-
nates technique [LSPS10,LKS∗15]. However, approaches for steer-
ing clustering algorithms hardly provide algorithms for outlier de-
tection.

Visual analytics approaches involving steering support for algo-
rithms for anomaly detection are scarce. Liao et al. use a condi-
tional random field model to detect anomalies in taxi GPS data
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Figure 2: Choice of a dimension reduction based on visual com-
parison, using the mouse data set as example. Color coding can be
added to assess the quality of representations.

[LYC10]. In an approach for the detection of spatio-temporal
anomalies in large-scale networks, different predefined anomaly
detection techniques can be used [LSW13]. Ko et al. support
anomaly detection in high-dimensional multivariate network links
[KAW∗14]. Users can steer the anomaly detection process by se-
lecting (querying) so-called conditional attributes. Finally, the def-
inition and steering of anomaly detection and removal algorithms
has been used in a visual-analytics system allowing cleansing time
series data [BRG∗12]. In summary, these works prefer steering and
manipulation of outlier analysis algorithms over cluster analysis
tasks.

3. Approach

We present a visual-interactive tool that allows the combined analy-
sis of clustering and outline algorithms. A unified visual-interactive
interface supports the selection, parameterization, and analysis of
individual algorithms (Section 3.1). To exploit the benefits of differ-
ent implementations, users can select, compare, and refine multiple
clustering and outlier algorithms (Section 3.2). Finally, the Consol-
idation View condenses relevant information from multiple algo-
rithm results into a single view (Section 3.3).

3.1. Integration of Clustering and Outlier Algorithms

A unified workflow enables the selection, execution, and analysis of
clustering and outlier algorithms. A graphical user interface (GUI)
allows the parameterization of algorithms from different classes.
The dynamically created GUI adapts to parameter sets of individual
algorithms, characterizations of parameter types and value ranges
enhance the process of parameter tuning. In combination with the
algorithm results, the approach uses quality measures to assess
cluster and outlier affinity for data objects. Centroid distances for
partitioning-based, neural network-based, and hierarchical cluster-
ings, as well as nearest neighbor distances for density-based clus-
terings are used to assess cluster quality. The output of outlier algo-
rithms can directly be used to assess outlier affinity. Normalizations
of individual quality measures produces relative quality scores and
facilitates comparability.

Visualization of High-Dimensional Data To achieve a com-
mon ground, we use the same visualization technique for any al-
gorithm result. The line of approach reflects the structure of high-
dimensional data sets at an elementary level of granularity using di-
mension reduction [SZS∗16] in combination with scatterplots. The
linear nature of PCA [Jol02] tends to be sensitive to outliers, which
is beneficial for the outlier analysis task. In turn, many non-linear
dimension reduction algorithms have advantages in local mani-
fold optimizations, which appeared reduce overplotting challenges.
Overall, users can interactively switch between five dimension re-
duction techniques (PCA [Jol02], MDS [Kru64], Sammons Map-
ping [Sam69], CCA [DH97], and t-SNE [vdMH08]). Measures like

Figure 3: Visual-interactive result views. Algorithm-dependent
quality measures are used to assess the ’interestingness‘ of every
data object. A black horizontal slider at the bottom can be used
as a filter control, e.g., to clearly separate outlier objects. At the
upper left, users can adjust the weight of the result for the global
interestingness scores.

Venna and Kaski’s Trustworthiness Measure [VK01] can be used to
assess the projection quality. Figure 2 shows a small cutout.

Visual-Interactive Result Visualization The result of every al-
gorithm is depicted in the visual-interactive Result View showing
three core characteristics (Figure 3 depicts two examples). First, the
dimensionality-reduced representation of the data is included. Sec-
ond, color-coding is used for every data object to depict outlier and
cluster (quality) scores. A purple-to-gray colormap represents the
result of outlier detection algorithms, cluster results are depicted
with a green-to-gray colormap. In addition, convex hulls [SP07]
encode spatial cluster structures (Figure 3, right). Third, a control
at the bottom allows filtering data objects with low scores. The data
objects are ranked and aligned with respect to their quality scores
from left to right, the encoding of bars shows the distribution of
scores in the notion of a pan flute. A horizontal bar serves as the
filter control (Figure 3, left).

3.2. Small Multiples of Algorithm Implementations

Users can add multiple clustering and outlier algorithms to exploit
the benefit of different algorithm characteristics. We take three re-
quirements into account. First, results of the two algorithm classes
are allocated separately, i.e., in two lateral columns for outliers
(left) and clusters (right) (cf. Figure 1). Second, different results of
the same class are visually comparable in Result Views one below
the other. Third, users can refine parameter values to improve algo-
rithms as a result of the visual comparison. To ease the refinement
process, the GUI for the selection of algorithms is reused.

3.3. Consolidation of Multiple Algorithm Results

To support informed decision making, users can consolidate the
normalized algorithm scores in two ways. First, algorithms results
of the same class can be condensed to a single ’interestingness‘
score. For this purpose, weighting sliders in every result view allow
to conflate the strengths of alternative algorithm characteristics (cf.
Figure 1). As an alternative, users can switch between objects’ min-
imum, maximum, median, or mean scores achieved with individual
algorithms. Second, the two interestingness scores can further be
combined, leading to a single variable representing the information
of the entire result collection for every data object. In the usage
scenario an orange-to-gray colormap is used to depict this overall
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Figure 4: Use case-specific visualization of handwritten digits.
Orange-colored outlines represent the overall score from all clus-
ter and outlier analysis algorithms. Three regions with high orange
scores have been used for interactive labeling. The visualization re-
veals that the selected regions refer to the clearly separated object
classes 0, 1, and 3.

interestingness score. Figure 4 demonstrates how this information
is used to support a class-labeling task.

Consolidation View The Consolidation View (cf. Figure 1, cen-
ter) shows the results of the two conflation strategies. Bivariate in-
terestingness scores are represented with a small barchart for every
data object. In the usage scenario, the global interestingness score
is mapped to the outline of every data object using an orange-to-
gray colormap. Figure 4 demonstrates the overall scores based on
Figure 1.

4. Usage Scenario

We demonstrate the usefulness of the approach using the example
of a labeling task. To support labeling, the goal is to identify inter-
esting subsets in the data. A data set of handwritten digits is used,
the selected subset is considered unknown at start. We add three
outlier analysis and three clustering algorithms. Parameter tuning,
filtering, and weighting of algorithms leads to the state presented in
Figure 1. We make three observations. First, the approach clarifies
that results of the same algorithm class reveal considerable differ-
ences, for both outlier analysis and clustering. Second, the small bar
charts at the center show that some data objects have an affinity to
both being an outlier and a cluster member. This brings interesting
insight regarding the question whether outlier and cluster areas are
necessarily disjoint. Finally, we identify three cluster regions. For
the labeling, we group each cluster region with a lasso tool (thin
blue lines).

Figure 4 shows the semantical perspective of the data set, con-
sisting of the handwritten digits 0, 1, 2, and 3. It can be seen that the
distribution of handwritten digits objects on the manifold matches
the three previously labeled regions colored blue. Orange color de-
picts the overall interestingness scores for unlabeled data (cf. Sec-
tion 3.3). With an increasing number of labels, outliers become
more interesting for the labeling task (see, e.g., the orange outliers
on the left), referring to classification problems for critical cases.
Thus, we take the labeling task one step further and train classi-
fier. In combination with a quality measure (least significant con-
fidence [Set09]), the labeling task turns into an ’Interactive Learn-

Figure 5: We use the algorithm selection interface to integrate a
classifier into the tool. The least significant confidence measure is
used to assess the classification accuracy.

ing‘ [HNH∗12] scenario. The classification result is demonstrated
in Figure 5. The classifier has high accuracy near the labels as well
as on the left-hand side. However, especially between clusters addi-
tional labels will be needed to increase the classifier performance.
In particular, outlier analysis results can help to label critical cases.

5. Conclusion

We presented a tool that combines cluster and outlier analysis.
Users are able to combine multiple algorithms of both classes and
thus can condense the information provided by different implemen-
tations to make more informed decisions. The results of a usage
scenario demonstrates that the approach is useful, e.g., for labeling
large unknown data sets. Future work includes experiments sup-
porting other analysis tasks apart from labeling. In this connection,
we draw the connection to approaches facilitating relation-seeking
tasks, e.g. to discover interesting relations between clusters and
metadata [BRS∗12, BSW∗14]. In addition, parameter space anal-
ysis and user guidance can further extend the approach. In general,
we see our work in line with the emerging field of Progressive Vi-
sual Analytics (PVA). While others have focused on making algo-
rithmic process more transparent [MPG∗14] and on quality metrics
for steering the visualization process [SASS16], our work focuses
on the combination and integration of different analysis tasks. We
hope that others will be inspired by our work and follow up with
further research on the exiting area of PVA.
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